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Electron-hydrogen scattering is studied in the range of incident energies from 12 to 100 eV. The
equations resulting from a six-state close-coupling expansion are supplemented by an optical po-
tential to represent contributions from states not explicitly considered. The optical potential is

evaluated through the use of a pseudostate expansion. Solutions are obtained by a linear algebraic
integral equation method. Results are presented for elastic scattering and total cross sections for
initial 1s, 2s, and 2p states. All 1s~n =2, 1s~n =3, and n =2~n =3 excitation cross sections
are computed. Particular attention is given to obtaining convergence of sums with respect to the
total angular momenta. Analytic formulas are given for the energy dependence of the cross sec-
tions from least-squares fits. Effective collision strengths are determined by averaging over a
thermal distribution of incident electron energies.

I. INTRODUCTION

In a previous paper' we have expressed the point of
view that the most satisfactory approach to
intermediate-energy electron-atom (and electron-ion)
scattering available at present would involve incorpora-
tion of an optical potential into the equations resulting
from a limited close-coupling expansion. One solves the
close-coupling equations including all states with which
one is explicitly concerned (the P set), and takes account
approximately of the other channels available to the
physical system, whether open or closed (the Q set) by
including them in a complex, energy-dependent, nonlocal
optical-'potential matrix. In principle, such a procedure
is exact in that an optical-potential matrix can be defined
such that the correct 5-matrix elements are obtained
among the P channels; but, in practice, approximations
have to be made. These are of both a formal and a com-
putational nature: For example, we neglect exchange
couplings between the channels in the Q set, and then
evaluate the optical potential by means of an expansion
in a finite pseudostate set. The results, while not perfect,
are expected to be a significant improvement over the
usual close-coupling procedure in which no account of
the Q channels is taken at all.

The present paper extends our previous applications
of this approach to electron-hydrogen scattering in
several respects: Perhaps most importantly, we have cal-
culated cross sections for 1s~n =3 and n =2~n =3
excitations. These transitions are significant in plasma
physics and astrophysics, and rather little is known
about the cross sections for these processes. (Some ex-
isting studies are discussed below. ) It is characteristic of
the n =2~n =3 transitions that a very large number of
angular momenta contribute. We have tried here to ob-
tain results which are converged in this respect. Our
methods for doing this will be described below, in Sec.
II. In addition, we give elastic scattering and total cross

sections for the 1s, 2s, and 2p states. Comparisons with
other calculations and with experiment are made where
possible. Finally, we use our values for excitation cross
sections, supplemented in some cases with results of pre-
vious variational calculations to derive eft'ective col-
lision strengths for all the transitions considered. Rate
coeScients are easily determined from the eA'ective col-
lision strength.

In contrast with 1s ~n =2 transitions which have
been extensively studied, there are relatively few investi-
gations of 1s ~n = 3 and n = 2~n = 3 transitions. We
note the existence of some unitarized Born, ' distorted-
wave, Glauber, ' and multichannel eikonal calcula-
tions, but we will consider only close-coupling calcula-
tions in any detail here. The first such calculation which
included n = 3 states was performed by Burke, Or-
monde, and Whittaker. ' This work was restricted to
energies in the neighborhood of the n = 3 threshold.
Six-state calculations over a large energy range were re-
ported by Van den Ree, " but these are apparently not
converged in regard to angular momenta. Such calcula-
tions do not make any allowance for additional channels.
Hata, Morgan, and McDowell' use an algebraic varia-
tional method' in a calculation employing a basis of up
to 18 states, including all n =1, 2, and 3 states exactly
plus the 4f; and eleven pseudostates (4 of s type, three of
p type, 2 of d, 1 of f, and 1 of g). This is the basis used
in Refs. 1 and 13 (7 s states, 5 p, 3 d, 2 f, and 1 g) and
this is also the basis used in the present calculation in
the construction of the optical potential. Their results
were confined to energies between the n =3 and n =4
thresholds. [However, extensive calculations by one of
us (J.C.) with the same basis have not confirmed the ex-
istence of a S shape resonance above the n =3 thresh-
old which they reported. ]

The algebraic variational calculations become quite
cumbersome at higher energies where high L values be-
come important and in practice require supplementation
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by some other method for L greater than a fairly modest
value in the range of 3 —5. One of us has recently re-
ported calculations of elastic scattering in the ls state
and 1s~n =2 transitions in the 12—54-eV range of in-
cident energies using the algebraic variational method
with an 11-state basis (this does not include the n =3
states). Partial-wave cross sections for L &6 were ob-
tained from the unitarized Born approximation with ex-
change. This procedure leads to an overestimate of the
2p excitation cross section at 54 eV. '

Edmunds, McDowell, and Morgan' have studied ex-
citation of states including n =4 at two energies (35 and
54 eV) using close-coupling calculations. More recently,
these calculations have been repeated and improved by
Whelan, McDowell, and Edmunds' (whose results are
restricted to transitions through n =3). However, both
papers either neglect exchange entirely or incorporate it
only through a local exchange potential. It is not clear
at this time that exchange is negligible at these energies
or that a local potential gives a satisfactory representa-
tion of exchange; however, their results are the most
comprehensive in existence prior to the present calcula-
tion and detailed comparisons with their work will be
made subsequently in this paper. %'e have benefited
from their emphasis on the importance of high L contri-
butions, particularly in regard to n =2~n =3 excita-
tions.

McCarthy and Stelbovics' have reported a six-state
coupled-channel optical-potential calculation at the sin-
gle energy of 54 eV. (Other calculations by these au-
thors and their collaborators have considered three
states explicitly' .) These calculations are conceptually
similar to ours, but are carried out in a very different
way in which coupled integral equations for T-matrix
elements are solved in a momentum representation. '

They report cross sections for 1s to n =2 and n =3
states only.

II. METHOD

Most of the work reported here is based on the
optical-potential approach described in Ref. 1. The
same basis of pseudostates employed in that paper is also
used here. The coupled integro-differential equations
were solved by a linear algebraic integral equation
method. The algorithm employed has been described
elsewhere.

The coupled equations, including exchange and the
optical potential were solved for values of the total angu-
lar momentum L &L

&
~ The value of L

&
varied with in-

cident energy from 17 at k =1.44 to 35 at k =7.35. In
a second range L

&
& L & L z, exchange and the optical

potential were dropped. (L2 ——48 except for k =0.91,
where Li Lq ——26. ) For L &L2, i——nelastic cross sec-
tions were extrapolated, assuming that for a given transi-
tion

=f(k ),

where f is independent of L. We then have

f~L2
L

1 f (2)

The quantity f was obtained from the values of err for L
close to L2

This procedure is, obviously, rather crude. It is based
on the assumption that for sufficiently large L ( &Lz),
partial cross sections decrease exponentially with L.
This can easily be justified in a semiclassical treatment of
the collision process for large values of the impact pa-
rameter. Equation (1) ignores, however, an L-dependent
prefactor in front of the exponential. More importantly,
Eq. (1) cannot be applied to processes such as 2s~2p
transitions in which there is a change of state with no
transfer of energy. In fact, the sum over angular mo-
menta of the partial cross sections for transitions con-
nected by a dipole matrix element in which there is no
change of energy must diverge —the integrated cross
section for 2s~~2p transition is not finite. This is easily
seen directly from the reactance matrix elements given
analytically for large L by Kingston, Fon, and Burke, '

which are proportional to 1/L.
It follows from this that a total cross section for

scattering in the 2s or 2p states cannot be defined. The
total cross section is defined only for the 1s state, and ex-
ists because this state is not degenerate. In our tables,
we give the total cross section for all transitions from
the 2s and 2p states to final states other than n =2. This
quantity is finite.

The extrapolation of the 2s and 2p elastic cross sec-
tions, which are finite, must take account of the dom-
inant 2s~~2p scattering. In these cases, it follows from
the work of Kingston, Fon, and Burke, that the angular
momentum weighted partial cross section o.L decreases
with L as

o (L ) =const/L (3)

This form was used to extrapolate the elastic cross sec-
tions to convergence. The constant in Eq. (3) was deter-
mined empirically from the cross sections actually calcu-
lated for L close to I 2.

III. CROSS SECTIONS

Our results for the cross sections are given in Table I.
In making this tabulation, we have, wherever possible,
used results from variational calculations such as those
described in Ref. 3 for small angular momenta. At
k =0.91, we have been able to make variational calcula-
tions for 0 & L & 3 and both conventional and unconven-
tional parity using a rather large basis of 11 s states, 9 p
states, 5 d, 2 f, and 1 g, including exactly all n =3 and
n =4 states. These calculations will be described in
more detail in a future report concerned with resonances
between the n =3 and n =4 thresholds. The cross sec-
tions quoted in Table I combine the results of these vari-
ational calculations with optical-potential results for
4&L &26.

For higher energies, variational calculations are avail-
able only using a smaller, 11-state basis set, as described
in Ref. 3. These calculations cover angular momentum
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TABLE I. Cross sections (units of ~ao ) for several processes.

0.91 1.44 1.96 2.25 2.57 4.00 5.50 7.35

1$

2$

2p

1$ ~2$
1$ ~2p

1$ ~3$
1$ ~3p
1$ ~3d

2$ ~3$
2$ ~3p
2$ ~3d

2p —+ 3$

2p 3p
2p ~3d

1$

2$ ~n &2
2p —+n ~2

5.756
207.7
214.8

0.167
0.359

0.036
0.063
0.033

7.015
11.539
8.014

2.982
10.048
13.429

6.416

27.50
27. 14

3.430
63.32
57.15

0.100
0.551

0.039
0.105
0.053

3.778
7.391

11.24

0.645
4.984

15.28

4.741

53.98
50.15

2.340
38.42
33.20

0.090
0.680

0.062
0.746

0.0086
0.110
0.023

0.0179
0.085
0.043

1.374
7.795
5.102

2.759
9.134

10.32

0.303
1.550

16.36

0.516
3.141

19.37

4.054
Tota

44.79
48.00

Elastic
1.965 1.664

30.89 25.37
26.32 21.13

1$~n =2 excitations
0.085 0.080
0.688 0.705

1$~n =3 excitations
0.0146 0.0123
0.088 0.095
0.036 0.034

2s~n =3 excitations
2.459 2. 182
9.265 9.083
9.223 8.138

2p~n =3 excitations
0.476 0.429
2.679 2.344

19.80 19.54
1$ Total

3.866 3.673 2.933
1 n =2 to all states except n =2

39.32 35.31 23.73
45.09 41.87 31.10

0.636
9.196
7.166

0.043
0.709

0.0072
0.110
0.0158

0.959
6.661
3.606

0.243
1.128

13.49

2.484

18.10
23.37

0.441
6.430
4.973

0.040
0.624

0.0065
0.102
0.0108

0.704
5.237
2.386

0.186
0.824

10.56

1.972

12.57
17.24

0 & L (3, and give results for n = 1 and n =2 elastic and
total cross sections plus 1s~n =2 and the 2s~~2p tran-
sition. Partial cross sections from this work were incor-
porated in the 1s elastic, 1s ~2s, and 1s ~2p entries in
Table I.

These results can be compared with a series of close-
coupling calculations reported by Edmunds, McDowell
and Morgan' and Whelan, McDowell, and Edmunds'
for incident energies including k =2.57 and 4.0. They
present 1s~n =2 and n =3 and n =2~n =3 excita-
tion cross sections from models containing differing
numbers of pseudostates and exact states. Unfortunate-
ly, none of the calculations includes exchange exactly.
Moreover, the results from their different models differ
among themselves very substantially. For example, the
different values they give for the 2p ~3d cross section at
k =2.57 range from cr =15(vrao) to 24mao, a dilference
of about 40%. Our cross sections are smaller than theirs
for all transitions except 2s~3s. Our results are closest
to the model they label "123NX7PS" at 54 eV and to
the model "123NX6PS" at 35 eV. The degree of agree-
ment is markedly better at 54 eV (within 10%, except
for 1s~3s and Is~3p transitions) than at 35 eV (8 out
of 11 transitions difFer by more than 10%). It is plausi-
ble that neglect of exchange in the work of Refs. 15 and
16 is a major contributor to the discrepancy since the
effect of exchange should decrease with increasing ener-
gy, and our calculations show that exchange is not negli-
gible at either energy. For example, in the case of the
1s ~3s transition which shows the worst discrepancy
(nearly 40% at 35 eV and 33% at 54 eV), we find that
the ratio of singlet to triplet partial cross sections
summed over all L is 0.70 at 35 eV and 0.55 at 54 eV.

The expected ratio is 0.33 if exchange can be neglected.
We will now discuss the cross sections as they are listed
in Table I.

1s elastic. The results quoted in Table I are essentially
the same as those given in Ref. 3. There are no direct
experimental measurements of this quantity, of which we
are aware, in the energy range of interest here. There
are some measurements of elastic differential cross sec-
tions. De Heer, McDowell, and Wagenaar obtained an
integrated elastic cross section by integrating measured
differential cross sections over angles. There may be
some uncertainty in the results because an extrapolation
has to be made at forward angles which are not included
in the experimenta1 measurements. Their results indi-
cate clearly that at 50 and 100 eV our calculated 1s elas-
tic scattering cross sections are significantly too small
(Ref. 21 gives o.,&

——1.22nao at 50 eV and 0.597nao at
100 eV). The most probable cause of this discrepancy is
that the pseudostate basis we use to evaluate the optical
potential becomes progressively less adequate as the in-
cident energy increases.

n =2 elastic. Our results for the elastic scattering
cross sections from the 2s and 2p states are shown in
Fig. 1. These cross sections are obviously very similar
both in shape and magnitude. There are no experimen-
tal data at all. These cross sections are quite dificult to
calculate because of the large contributions from higher
angular momentum states. From the theoretical point of
view, there is rather good agreement between the partial
cross sections calculated using the variational approach
of Ref. 3 for small angular momenta and those found
from the optical-potential method. Further, the varia-
tional results, as far as they go, do not depend strongly
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FIG. 3. Similar to Fig. for the 1s ~3p transition.
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FIG. 1. Elastic cross sections (units of mao) for scattering
from the 2s (solid line) and the 2p (dashed line) state. The en-
ergy scale refers to the energy of an electron incident on a hy-
drogen atom in one of the n =2 states (thus the energies are 10
eV less than those listed in Table I).

on the basis set employed. This supports a feeling of
some confidence in the results, but in the total absence of
experimental data or of calculations of a comparable lev-
el, it is impossible to make any quantitative estimate of
accuracy.

Ho and Chan obtained 0.2, ,~

——4162mao/105k from
Born and Glauber calculations. This expression de-

scribes their results for incident energies greater than 20
eV. This is a factor of 17 larger than the 1s elastic cross
section, calculated in the same way in the high-energy
limit. Our values for both the 1s and 2s states are some-
what larger than those of Ho and Chan, the ratio to the
1s cross section is about 14.5 at k =5.50 if the
difference in the channel energies is neglected and is
about 12 if this is taken into account. The ratio of
geometric cross sections for 2s and 1s states
((r)',, I(r)t, ) is 16.

1s ~n =2 exci'tations. Limitations of space and scope
do not permit us to review the vast theoretical literature
on these processes here. Experimental information is
quite sparse, and has not changed significantly since Ref.
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FIG. 2. Cross sections (units of ~ao) for the 1s~3s transi-
tion for incident electron energies up to 100 eV. Experimental
points are from Ref. 22.

Electron Energy (eV)

FIG. 4. Similar to Fig. 1 for the 1s~3d transition.
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hydrogen atom in an n =2 state.
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2 was written. We believe that the present calculation of
the 2p excitation cross section may be preferable on
theoretical grounds to that presented in Ref. 3. The
reason is that a large portion of this excitation comes
from relatively high angular momentum states which
were (inadequately) included in Ref. 3 using a unitarized
Born approximation. This overestimates the high I con-
tribution. The present approach should be more accu-
rate. The cross section is reduced by about 12% at 54
eV, but we note that this reduction brings the theory
into convict with the "absolute" measurement of Willi-
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FIG. 6. Similar to Fig. 5 for the 2p~n =3 transitions. The
2p ~3d transition refers to the right-hand scale.

FIG. 8. Combined cross sections from our work (solid line)
for n =1 to n =2 and n =3 (left-hand scale) and for n =2 to
n =3 transitions (right-hand scale) are compared with the re-
sults of the semiempirical formula of Ref. 27.
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ams at this energy (0.89+0.08) Recently, Van Wyn-
gaarden and Walters have argued that Williams's result
might be wrong, and have urged repetition of the experi-
ment. ' We concur.

The 1s~2s cross section does not contain such large
contributions from high angular momenta as does the 2p
(because the ls ~2s transition potential is of short
range). In this case, we believe that the results presented
in Ref. 3 are as satisfactory as those given here (and are
given for many more energies).

1s ~n =3 excitation. This work presents the first
close-coupling calculation of 1s ~n = 3 transitions at
most of the energies considered here. As this is a rela-
tively unexplored topic at the present time, we present a
detailed comparison between our results and the most
recently reported experiment. Our calculated cross
sections for 1s~3s, 1s~3p, and 1s~3p excitations are
shown in Figs. 2, 3, and 4 (for this purpose we have used
the functional fits described below), respectively, where
they are compared with the observations of Mahan, Gal-
lagher, and Smith. The agreement with experiment is
quite reasonably good for 35 eV and higher. At lower
energies the calculated values are larger than experimen-
tal ones for each case. We do not know whether this
disagreement indicates a breakdown of the optical-
potential approach near the ionization threshold, or
whether there is an experimental problem in this region.

n =2 excitations. Our cross sections for 2s~n =3
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and 2p ~n = 3 transitions are shown in Figs. 5 and 6,
respectively. The curves are drawn from the functional
fits described below. There are no experimental data.
Van den Ree has made six-state close coupling (includ-
ing exchange) of these quantities, but he presents only
graphical results. While the present calculations are far
more comprehensive than any previous work, the depen-
dence of the results on the basis sets, noted above in con-
nection with the work of Edrnunds et a/. ,

' makes it im-
possible to give an estimate of the reliability of our
values.

Total cross sections. Use of a complex optical poten-
tial makes it possible to obtain a total cross section
which includes contributions from states not explicitly
included in the close-coupling calculation. A total cross
section is found from the imaginary part of the partial-
wave scattering amplitude via the optical theorem. Our
results for the total cross section from the 1s state are in

good agreement with our previous results at low ener-
gies, and are somewhat larger (and therefore improved)
at higher energies. In the case of the n =2 states, it was
pointed out earlier that it is necessary to subtract the
2s~~2p contribution to obtain a finite result. We present
in Fig. 7 our results for the cross section for transitions
from the 2s and 2p states to all other states.

The cross sections for the superelastic transitions
2s ~ 1s and 2p ~ 1s can be inferred from the data
presented in Table I by multiplying the numbers given
there for the excitations 1s ~2s and 1s ~2p by
k /[(k —0.75)(21+1)],where 1 is the angular momen-
tum of the initial state and k is the energy for an elec-
tron incident on the ground state. If the sum of the su-
perelastic cross sections and that for transitions to the
n =3 states are subtracted from the total for states n&2,
the result is the cross section for transitions to all states
higher than n =3, including ionization. This is, in fact,
a rather large number: For example at k =2.57 (re-
ferred to the n =2 states, this corresponds to 24.75 eV),
we find for this quantity 15.79~ao for the 2s state and
19.23wa o for the 2p state.

IV. ANALYTIC FITS
AND EFFECTIVE COLLISION STRENGTHS

The collision strength for the transition i ~f is
defined by

O,f=k; g;cr,Pk; ), (4)

where k; is the incident electron energy and g; the de-
generacy of the initial state i. Calculation of the rate
coefficient q in a plasma of temperature T (in K) given
b 27

63X 10
cm secv'T g,.

(5)

where AE is the excitation energy, k the Boltzmann con-
stant, and y the effective collision strength,

Q,f(x)= g a, x '+a„+,lnx .
j=0

In fact, this was found to be quite satisfactory for all
x( ) 1) for i =1 and f =3. For i =1 and f =2, an addi-
tional term, given in Ref. 2, has to be added to cover the
range between the n =2 and n =3 thresholds. Also, in

the case of i =2, a parabolic fit of the form

A px ) = b 1 +b2x + b 3x

was found to be more appropriate for small x. The vari-
ous coefficients and the incident energy Eo, below which
the parabolic fit is to be used, are presented in Table II.
Except for the transition 2p~3s, the constants ao and

y= e ""0; xdx,
kT

p=AE/kT, x =k I~E,
is greatly facilitated by analytical fits to Q,gx ), con-
sidered as a function of the dimensionless parameter x.
For sufficiently large x, the Born approximation suggests
the form

kT (Ry)

TABLE III.

Effective

collision strengths.

2p ~35 2p —+3@ 2p ~3d

0.04
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.60
0.70
0.80
0.90
1.0

0.397
0.397
0.445
0.527
0.619
0.715
0.812
0.909
1.006
1.102
1.197
1.384
1.567
1.746
1.921
2.091

0.0597
0.0659
0.0838
0.0923
0.0966
0.0988
0.0996
0.0997
0.0993
0.0987
0.0979
0.0960
0.0942
0.0925
0.0909
0.0895

0.127
0.144
0.201
0.229
0.246
0.258
0.268
0.276
0.283
0.291
0.299
0.315
0.333
0.351
0.370
0.390

0.0524
0.0572
0.0733
0.0840
0.0924
0.0992
0.105
0.110
0.114
0.118
0.121
0.127
0.132
0.136
0.139
0.141

2.372
2.439
2.755
3.045
3.309
3.551
3.772
3.975
4.162
4, 336
4.496
4,786
5.040
5.265
5.467
5.649

3.843
3.923
4.402
4.978
5.644
6.383
7.177
8.008
8.863
9.732

10.605
12.341
14.039
15 ~ 684
17.266
18.785

3.074
3.341
4.643
5.886
7.067
8 ~ 184
9.234

10.215
11.131
11.984
12.778
14.209
15.456
16.551
17.519
18.380

2.808
2.803
2,784
2.778
2.786
2.806
2.835
2.873
2.917
2.965
3.017
3.126
3.238
3.350
3.460
3.567

10.676
10.824
11.540
12.218
12.858
13.461
14.030
14.565
15.070
15.547
15.998
16.832
17.585
18.269
18.893
19.466

14.231
15.003
19.150
23.770
28 ~ 833
34.264
39.955
45 ~ 806
S1.731
57.664
63 ~ 559
75.110
86.230
96.859

106.985
116.622
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a„+&, with n =4, were constrained to have the values
predicted by the Born approximation, and the rest were
determined by least-squares fitting. As mentioned previ-
ously, these fits were used for some of the figures.

It is of some interest to compare the results of the
present calculations as expressed through these fits with
existing semiempirical formulas. Because so little accu-
rate information is available for excitation cross sections
other than 1s ~n =2, workers in astrophysics and plas-
ma physics who needed estimates of transition rates have
had to rely on such formulas. We compare in Fig. 8 our
results for n =1 to n =2, and n =3, and n =2 to n =3
total cross sections with the formula given by Vriens and
Smeets. (In the last case, we have taken
(7/3 gcTQ —3+~cT2p —3) It will be seen from the
figures that the cross sections from the semiempirical
formulas are always smaller than those we have calculat-
ed. Consider 54 eV as a typical energy. The estimate of
Ref. 27 is too low for o.

&z by 20%, for o-&3 by 40%, and
for o.

23 by 11%. At low energies, the discrepancies are
worse, about a factor of 2 for n =2 to n =3, and a factor
of 3 for 1s to n =3. Hence, use of the present results
will make a significant difference in calculations of rate
coefficients or effective collision strengths.

Our results for the effective collision strengths can be

2

Tot al

expressed analytically in terms of the coefficients a; and
b; as follows:

T =Xi+/2

y, =pe "(b,I b,—I'+b3I"),
(9a)

(9b)

o

I(p)= (9c)

yz ——e" g pa;xo + E;(pxo)
i=0

+a„+&[e " lnxo+E](p x)o] (9d)

where the primes denote differentiations with respect to
the argument, x p =Ep /AE and E; is an exponential in-
tegral,

E(p)= f" dx
X

(9e)

Effective collision strengths for various transitions in
the range 0.04(kT(1 Ry are given in Table III. The
Is~2p results (Table I) are somewhat smaller than the
corresponding value reported earlier on the basis of an
11-state calculation (Ref. 3) as discussed above. In the
case of the 1s~2s transition, we recommend use of the
results of Ref. 3.

The effective collision strengths are shown graphically
in Figs. 9—11. It will be observed that the n =2 to n =3
collision strengths are dominanted for the temperatures
considered by transitions with a 3d final state. This is as
expected for 2p to 3d, but perhaps not so for 2s to 3d.

IO -/

3d

P3p

3S
ll
C:

CL

I

2

Total ~
3cl

3p
I ~ ~

3s

IO
O.O

I

0.2 0.4
t

0.6 0.8

Temperature (Ry)

IO
OD

I

0.2
I

0.4
I

0.6
I

0.8
t

1.0

FIG. 10. Similar to Fig. 9 for 2s to n =3. Note that the en-

ergy scale refers to an electron incident on an atom in the

n =2 state.

Temperature (Ry)

Similar to Fig. 10 for 2p to g =3.
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V. CONCLUSIONS

We have calculated cross sections for 1S to n =2 and
n =3 and n =2 to n =3 excitations; elastic scattering
cross sections in the 1s, 2s, and 2p states, plus total cross
sections insofar as these exist. A six-state close-coupling
expansion was employed, and a complex optical poten-
tial was included to incorporate effects of channels not
considered explicitly. Where available, results for some
partial waves from variationa1 calculations were includ-
ed. Analytic representations of the collision strengths
have been obtained for the convenience of potential
users of these data. Quantities closely related to rate
coefficients (eff'ective collision strengths) have been ob-
tained by averaging over a Maxwell distribution of in-
cident energies. Substantial differences between the

present results and existing semiempirical formulas have
been found, particularly at low energy.

What is really lacking is an adequate evaluation of the
accuracy of the theoretical methods employed through
confrontation with experiment. This is particularly seri-
ous in the case of n =2 to n =3 transitions where the
theoretical uncertainties are greatest. Some of these
transitions —those with an initial 2s state —ought to be
accessible to experiment. We urge that these fundamen-
tal problems not continue to be neglected by experimen-
talists.
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