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Klein paradox and the Dirac-Kronig-Penney model
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We analyze the barrier problem and the Kronig-Penney model for Dirac particles, paying atten-
tion to the Klein paradox and the nature of the potential. The ambiguities associated with the 6-
function limit are examined and the physically reasonable way to include 5-function potentials in
the Dirac-Kronig-Penney problem is identified.

Since the observation that relativistic effects play a
significant role in determining the band structure of
heavy metals, ' a number of authors have discussed the
generalization to Dirac electrons of the classic Kronig-
Penney model and its generalization to model surface
states, ' substitutional alloys, and liquid metals. It
was natural for these authors to discuss an array of 6-
function potentials. It was then noted that the method
of obtaining the band equation for a square well (or
square barrier) and taking the 6-function limit, and the
method of directly solving the Dirac equation for a 6-
function potential gave different results. However, it
was noted that these results became identical when the
strength of the 6-function potential was weak.

The conventional explanation of this discrepancy is
due to Fairbairn, Glasser, and Steslicka, and is based on
the difficulty of localizing Dirac particles within a dis-
tance A/mc without coupling to negative energy states
or producing pairs of particles. This argument has been
interpreted as leading to the Klein paradox and as justi-
fying the use of the results obtained by solving the Dirac
equation for a 6-function potential.

We have recently investigated the potential represen-
tation of quark confinement in the Dirac equation, and
the Dirac-Kronig-Penney model as a crude representa-
tion of the behavior of quarks in the nucleus. ' In the
course of these investigations we studied the manifesta-
tions of the Klein paradox in the relativistic barrier
penetration problem and in the Dirac-Kronig-Penney
model. We also obtained the general solution of the
Dirac equation for a potential which approaches a 6-
function limit. In all of these calculations we considered
both potentials of the electrostatic type and potentials of
the Lorentz scalar type. As a result of this we believe
we have obtained some new insight into the question of
how to take the 6-function limit in the Dirac-Kronig-
Penney problem. We refer the reader to Ref. 10 for a
detailed account of the calculations, and simply repro-
duce parts of that paper as they are necessary for the
present discussion.

The classic example used to discuss the Klein paradox
is the potential step. " When the potential is of the elec-
trostatic type (i.e., the time component of a four-vector

potential), and it exceeds E m, the -reflection coefficient
exceeds unity and the transmission coefficient is nega-
tive. In the hole-theory interpretation' the strong po-
tential raises the energy of the occupied negative energy
levels to the point where the electrons tunnel through to
the positive energy electron levels in the field-free region.
These electrons are then repelled by the potential bar-
rier, giving the large reflected current. The holes they
leave behind are positrons which produce the negative
transmitted current. As was demonstrated by Sauter'
and emphasized by Pauli, ' this effect depends only on
the eventual strength of the potential and is quite in-
dependent of the rate of increase of the potential, or of
its step nature.

After the introduction of the quark model of hadrons,
and the desire to find models in which the light quarks
are confined relativistically, it was realized by Bogo-
liubov' and others' that a Lorentz scalar potential did
not exhibit the Klein paradox and did provide a relativ-
istic potential model of confinement.

To see how the Klein paradox influences the barrier
problem, note that the transmission coefficient T for a
square barrier of width a and height V, is

1
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1+———— sin (Ka)
1 A

4 A. A

for electrostatic potentials, where K is the wave number
in the barrier region

IC =[(E—V, )' —m ]'~

k is the wave number in the field-free region,

A=k K
E+m ' E —V, +m

The form of '7 quoted in (1) is valid for real values of K,
in particular, for V, )E —m, and is appropriate for dis-
cussing the Klein paradox for the potential barrier. If
we allow V, and hence K to become very large, A~+1
and T|s bounded by
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1&T& 1

1+—,'(X ' —A. )
(4)

Thus, T never approaches zero, no matter how strong
the potential is. A strong electrostatic type of potential
barrier is not able to confine the particle to one side of
it. In the hole-theory picture this should be expected.
The occupied negative energy states in the barrier region
are able to tunnel to positive energy states on either side
of the barrier, producing a finite transmitted current.
To demonstrate that this result is independent of the
steepness of the barrier, consider massless particles, for
which (1) gives V = 1 for the square barrier.

For massless particles the one-dimensional time-
independent Dirac equation may be written as

i = —a [E —V, (x)]Q .

It is convenient to work in a representation in which a
is diagonal, since observables such as transmission
coefficients are independent of the representation. ' '"
This choice of representation is called the (1 + 1)-
dimensional Weyl representation ' with a„=o., (and
P=cr ). The solutions in the potential-free region are

iEX

0 e
—iEX (6)

Whatever the electrostatic potential function V, (x) is, it
cannot mix these components since (5) is diagonal even
in the region of finite potential. Thus, as long as
V, (x}~0 as

~

x
~

~ oo, the massless one-dimensional
Dirac equation has a transmission coefficient of unity.
Once again we see that the Klein paradox is independent
of the shape of the potential.

It is straightforward to verify that the transmission
coefficient for a scalar potential barrier vanishes like—2K[a
e ', where iK] is the wave number in the barrier re-
gion and K, =[(m + V, ) E]' is re—al. The Klein
paradox does not apply to scalar potentials.

The discrepancy between the two methods of treating
the 5-function potential can be exhibited by quoting the
relationship between the two- or four-component wave
function on each side of the potential. Solving the Dirac
equation for a general sharply peaked potential and then
taking the 5-function limit of the potential, we obtain'

(t)(0+)=e ' 1()(0—)

for electrostatic type potentials, and

(7)

V.(.)
S'.(.)5«) .

These results are obtained by writing the one-
dimensional Dirac equation in the form ()it)/Bx
= G (x)itr(x) and noting (by analogy with the time-
dependent Schrodinger equation} that it has the formal

P(0+)=e ' ' P(0 —)

for Lorentz scalar potentials. The parameter S,[,) is the
strength of the 6-function potential after the limit is tak-
en:

solution

t/i(x)= 1+ f G(x')dx'

+ f dx' f dx "G(x')G(x")+ . . 1()(xo)
Xp Xp

T

=P, exp f G(x')dx' g(xo),
Xp

(10)

where P is the spatial ordering operator defined by

P„[A (x )B (y) ]= A ( x)B (y)0( x—y)

+B(y)A(x)8(y —x) .

5(x)(9(x)= —,'5(x),

or its equivalent integral form,

f 5(x )f(x )dx = —,
' [f (0+ )+f(0 )], —

(13)

(14)

has been employed by all writers on this subject. One
then obtains

1((0+ )=e ' 'p(0 —),
where

X, =2 tan '(S, /2)

in the electrostatic case, and

it((0+ ) = e ' " P(0 —),

(16)

(17)

where

X, =2 tanh '(S, /2)

in the Lorentz scalar case.
Looking at the scalar potential result in Eqs. (17) and

(18), we are immediately struck by the singularity which
occurs at S, =2, at which point X,~ ao and the
transmission coefficient [which from (17) is (cosh', ) ]
vanishes. For larger values of S„X, becomes complex
and the transmission coefficient remains finite as the
strength of the 5-function potential becomes infinite.

Now suppose that either the electrostatic potential or
the scalar potential (but not both) is very sharply peaked
in the region ( —e, e) around x =0, and apply (10) to
x = +@,xo ———e to obtain

1((e)=P„exp f G (x')dx' P( —e) . (12)
L

For small e, only the strongly peaked potential contrib-
utes significantly to the integral in (12), and this gives a
term proportional to either a or a„P according to the
type of potential that is large. This dominant term com-
mutes at spatially separated points, so we may set P = 1

for this term and, after taking the limits that e goes to
zero and the potential magnitude becomes infinite, we
obtain the results given in (7) and (8).

To directly solve the Dirac equation for a 6-function
potential it is necessary to define the value of the wave
function at a point at which it is discontinuous, or
equivalently to define the product 5(x )0(x ). The
definition'
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Our previous experience has not prepared us for this
Klein paradox type of behavior with a scalar potential.
Moreover, we know of no physical reason for a singular-
ity in the solution at S, =2. Certainly there is no such
singularity when we solve the Dirac equation for a
peaked potential and then take the 6-function limit.

The connection formulas for the wave functions allow
us to obtain the eigenvalue conditions for the Dirac-
Kronig-Penney problem with 6-function potentials. For
electrostatic types of potentials these relations are well
known. They are

cos(irl) =cos(kl)cosS, +—sin(kl)sinS, .
k

The equivalent condition in the Lorentz scalar case is

(19)

cos(~l) =cos(kl)coshS, +—sin(kl)sinhS, .
m

(20)

cos(~l) = —cos(kl)cosh ln
S, +2
S, —2

(21)

and the allowed bands widen as S, increases, there being
no forbidden bands in the limit S,~ ap.

We are now faced with the situation that the results
obtained by the direct solution of the Dirac equation for
the 6-function scalar potential exhibit anomalies, and are
qualitatively different from those obtained by taking the
6-function limit of a sharply peaked potential. The
difference in the results for electrostatic potentials is not
as dramatic, but it still exists. We must therefore decide
which of these methods describes the physical situation
correctly.

Fairbairn, Crlasser, and Steslicka argued that the
solution obtained by solving the Dirac equation with an
explicit 6 function is to be preferred on the grounds that
the amplitude of negative energy components in the
wave function is of order (mao) ' where ao is the dis-
tance in which the particle is localized. They argued

In deriving (19) and (20) Eqs. (7) and (8) were used. To
obtain the Dirac-Kronig-Penney band conditions for
Eqs. (15) and (17), simply replace S,~, I by X, t, I

in Eqs.
(19) and (20). We will refer to the resulting equations as
(19') and (21').

First we note that as S,~0 and S,~0, and E~m,
both Eqs. (19) and (20) approach the classic Kronig-
Penney result as they should. So do (19') and (20').

However, for large S the band structure described by
these equations is quite diAerent. For massless particles,
Eqs. (19) and (19') do not have forbidden bands, whereas
Eq. (20) has narrow allowed bands centered on
k =(2n + 1)(n/21) which collapse to the central points
as S,~ oo. This difference between Eqs. (19) and (20) is
another manifestation of the Klein paradox —the elec-
trostatic potential does not confine the particles even
when the 5 function has infinite strength, whereas the
very strong scalar potential confines the particles to indi-
vidual cells in the lattice. Equation (20) exhibits quite
anomalous behavior. For massless particles, at S, =2
the allowed bands become degenerate at the points
k =(2n + 1)(vr/21), but for S, & 2 the band equation (20')
becomes

that when solving the Dirac equation for a well (or bar-
rier) of width b the particle is localized within b, and if b
becomes smaller than m ', pairs will be created. They
then asserted that if the Dirac equation is solved for the
explicit 6-function potential no localization is implied.
However, it can be readily seen that both Eqs. (19) and
(19') yield the Klein-paradox result that there are no for-
bidden bands. Thus the Klein paradox is not avoided by
the device advocated in Ref. 3 and this argument does
not provide a reason for preferring one method of han-
dling the 6 function to the other.

To clarify the relationship between the two methods
of handling the 6-function potential, we consider a sim-
ple example, the one-component, one-dimensional equa-
tion generated by the electrostatic potential in the mass-
less case

(22)

We write P(x)=e' P(x) so that P(x) satisfies

ay i V—(x)P( x) . (23)

We eventually want to solve Eq. (23) for the case

V, (x) =S,6(x), (24)

but as a first step we convert it to an integral equation

P(x) =P(xo) i f d—x'V, (x')P(x'),

which has the Neumann series solution

(h(x) =exp i f —V, (x')dx' P(xo) .
Xo

(25)

(26)

Now we can substitute (24) in (26) without having to
invoke (13) or (14) to define 6(x)0(x), to obtain

P(x)=e ' P( —oo ), (27)

which is readily shown by substitution to satisfy (23).
It is easily seen that Eq. (27) reproduces the massless

limit of Eq. (7), but its importance lies in the fact that it
is a formal solution to the differential equation (23) for
the 6-function potential which does not depend on the
suspect definition of 5(x)0(x).

However, we could expand the exponential in (27) and
use the relation

0"(x)=0(x), for any integer n & 0,
to rewrite (27) as

(28)

P(x ) = [1+(e ' —1 )0(x )]P( —oo ) . (29)

If we now use (13) we see that (29) does not satisfy (23),
but that if we replace S, by X, in (29) it does satisfy the
differential equation (23). We call this new solution Eq.
(29').

Clearly the assumptions of (13) [or, equivalently, the
assumption of the validity of differentiation of (28)] are
the critical step which generates the discrepancy be-
tween (27) and (29'), both of which purport to be solu-
tions of the fundamental equation (23). The difficulty
lies in the attempt to define 5(x)0(x), which does not ex-
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ist in a strict distribution-theory sense. ' While (13) or
(14) seem plausible, consider the effect of using them
when solving the initial-value problem posed by Eq. (23)
starting from x =xo &0. We could imagine doing this
on a computer in such a way that one mesh point is at
0—e, and the next at 0+E. To generate P(0+@) the
differential equation tells us to add S,P(0) to the value
P(0 —e). This destroys the initial-value character of the
solution, in that P(0) depends on both P(0 —e) and
P(0+e).

To summarize, we have shown that the use of (13)
changes the character of the Dirac equation, that (13) is
not well established in distribution theory, that (13) is
not needed to generate a solution of the Dirac equation
[given in (7) and (8)] for a 5 function which is manifestly
independent of the representation of the 5 function, and
that the results obtained by using (13) are counterinitia-
tive, especially for scalar potentials. To us, this -is

overwhelming evidence that the solutions (15) and (17)
for the Dirac equation, and (19') and (20') for the Dirac-
Kronig-Penney problem, which are based on (13), should
be discarded as unphysical, and that the correct solu-
,tions are (7) and (8) for the 5-function barrier and (19)
and (20) for the Dirac-Kronig-Penney problem.
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