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The quantum-mechanical many-body problem is studied using the extended coupled-cluster
method (ECCM) as a convenient parametrization of the Hilbert space. A systematic development
of the formalism is given, and the quantum-mechanical problem is cast into the form of a classical
Hamiltonian field theory in a complex symplectic phase space. The equations of motion of the
basic ECCM amplitudes are derived both from a dynamical action principle using the ECCM
average-value functional, and directly from the Schrodinger equation using the ECCM double
similarity transformation. Rules are given for the construction of the Hamiltonian and other ob-
servables as well as their products. In particular, commutators are shown to be mapped into gen-
eralized classical Poisson brackets. The description is interpreted as an exact bosonization of the
quantum theory in which the concept of bosonization is carried to the logical extreme, namely, the
resulting generalized coherent bosons are identifiable with classical fields. The quantum-
mechanical states of the system are points in the ECCM phase space, and their time evolution, or
trajectories, are controlled by a classical Hamiltonian. The bosonization has a perturbation-
theoretical basis in terms of maximally linked generalized tree diagrams. The increased degree of
locality of the basic amplitudes allows applications to topological excitations and cases with spon-
taneous symmetry breaking.

I. INTRODUCTION

The ground state of an interacting many-body system
can be parametrized by an exponential operator (expS)
acting on the noninteracting model state. ' The pertur-
bation expansion of the operator S is composed of linked
terms only, and the expS representation for the ground
state is conceptually comparable to the cumulant expan-
sions in many other problems of probabilistic nature.
Coester and Kummel introduced a similarity transfor-
mation using the linked-cluster operator S as the genera-
tor, and laid down the basis for the theory which since
then has been known as the expS or coupled-cluster
method (CCM). By now, the number of applications
of the method has become very large and they cover a
wide variety of physical problems, for example, in nu-
clear physics, ' quantum chemistry, ' ' theory of
homogeneous electron liquid, " ' and, more recently, in
relativistic field theory. '

The essence of CCM, as contrasted against, e.g. , the
configuration-interaction (CI) method, ' is in the in-
creased degree of locality in the description of many-
body correlation phenomena. The CI method contains
unlinked diagrams for the energy and suffers accordingly
from the size-extensivity problem, '' ' which difhculty
is resolved in the CCM description. Together with the

generalized time-ordering (GTO) properties of the asso-
ciated generalized tree diagrams these features have
proven to be highly useful not only for large systems but
also for systems with only a small number of degrees of
freedom. "' ' ' ' Various theoretical extensions of the
conventional CCM have been introduced, e.g. , for the
purposes of degenerate-perturbation theory, ' excited
states and excitation energies, ' and treatment of sum
rules. ' The method was also generalized into a full
dynamical theory for time-dependent properties by al-
lowing the CCM amplitudes S to depend on time and
imposing the time-dependent Schrodinger equation.

The evaluation of average values of observables other
than the energy makes it necessary to parametrize also
the bra ground state. This can be done in several ways.
The most straightforward method is to use the expS an-
satz also for the bra state, but with the operator S, and
to admit for the average value of the observable only the
connected diagrams. This method as well as the more
advanced methods of Luhrmann or Kummel are in
truncated approximations in conAict with the Feynman-
Hellman theorem, which requires the diagrams for the
average value of an observable to be obtained from those
for the energy by replacing each Hamiltonian vertex in
turn by the observable in question. Subsequently,
Monkhorst gave a novel formulation for the computa-
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tion of average values compatible with the Feynman-
Hellman requirement, without, however, introducing an
explicit average-value functional.

It was later shown by one of the present authors that
it is possible to introduce various parametrizations for
the bra state which are not only compatible with the
Feynman-Hellman theorem, but which also allow the
new amplitudes characterizing the bra state (fl, or S") as
well as the old amplitudes S to be obtained from a varia-
tional principle. The "normal CCM" with its parame-
ters 0 is a straightforward generalization of
Monkhorst's method. Corresponding to the ground
state of the system, the operator 0 was shown to be

composed of unlinked terms and to be expressible in the
form Sl =exp(S" ), where the new amplitudes S" are
linked. By considering the amplitudes S" to be in-
dependent basic variables one then obtains a method
which originally was called the "extended expS
method, " but which we now prefer to call the "extend-
ed coupled-cluster method" or ECCM (this term should
not be confused with a similar one used in some quan-
tum chemistry papers to indicate an approximation
beyond the singles and doubles, i.e., beyond the SUB2
truncation level).

The ECCM parametrization is based on a double simi-
larity transformation rather than a single one, and it can
be shown to lead to a GTO property both forwards and
backwards in time for the corresponding doubly linked
generalized tree diagrams, as far as the ground-state en-
ergy is concerned. The method was also generalized to
time-dependent phenomena using a dynamical varia-
tional principle, and to excited states ' ' through the
linearization of small oscillations around the ground
state. The method was shown to agree at its lowest
truncation level with the mean-field theory or the semi-
classical approximation, which makes it applicable to
cases where, e.g. , spontaneous symmetry breaking may
occur. Comparisons of ECCM at low truncation
levels with other prescriptions for average values have
been done by Pal, who also applied ECCM to a study of
higher-order static-response properties.

In view of the above properties the present paper is
dedicated to a systematic development of the general
formalism of the extended coupled-cluster method. The
basic mathematical objects in this method are subsystem
amplitudes or linked configuration excitation amplitudes,
and therefore we begin in Sec. II with a brief description
of general many-body operator algebra in a Hilbert
space. It will be useful to introduce an effective short-
hand notation for the operators and the amplitudes, and
a notation for compounding the many-body configura-
tion indices. In Sec. III we give a description of the
basic ECCM amplitudes and the general structure of the
average-value functional. Section IV derives connections
between the matrix elements of operators transformed
with the double similarity transformation and the low-
order functional derivatives of the average-value func-
tional. We also derive a fundamental identity concern-
ing the functional derivatives of the average-value func-
tional, and elucidate the consequent recursion relations
between the matrix elements of the average-value func-

tional. This section is quite central to the later develop-
ments. In Sec. V we derive the equations of motion for
the basic amplitudes, first by applying the previously in-
troduced effective-action or dynamical variational princi-
ple, and second by a straightforward application of the
time-dependent Schrodinger equation with the ECCM
parametrization. Both methods are found to lead to the
same result. Section VI gives the rules for calculating
the average values of products of operators. As a special
case of the previous results Sec. VII discusses the com-
mutator of two operators and shows that its average
value is given by a generalized Poisson bracket involving
only the same first-order functional derivatives as in
classical Hamiltonian mechanics. This observation, to-
gether with the fact that the ECCM and all amplitudes
appearing in it correspond to well-defined and highly
linked diagram structures, leads directly to the
identification of the method, made in Sec. VIII, as a spe-
cial kind of bosonization scheme, in which the resulting
generalized coherent boson fields have the extreme quali-
ty of being classical c-number fields. Lastly, we point
out that the ECCM formalism can be given a geometri-
cal interpretation: the basic ECCM amplitudes form a
complex symplectic manifold, which is endowed with a
Hamiltonian vector field of trajectories describing the
temporal flow of the phase-space points. However, only
an invariant submanifold of the phase space is in a one-
to-one correspondence with the possible physical states
of the system.

The ECCM formalism is of very general nature and
can be applied to all quantum-mechanical problems for
which the Schrodinger dynamics is defined. However,
for the purposes of the present paper, we shall hence-
forth restrict ourselves mostly to bosonic systems as far
as concrete examples are concerned, although extensions
to systems of fermions or spin-algebraic systems, etc. ,
are in principle quite straightforward. The formalism is
presented as for a finite Hilbert space, and we according-
ly simply assume convergence in the formal summations
over configuration indices.

The present paper I is succeeded by a paper II,
which gives a discussion of the excited states and of their
connection to the linearized small oscillations around the
ground-state configuration. In a later paper we shall dis-
cuss an application to the zero-temperature hydro-
dynamics of a Bose fluid.

II. OPERATOR ALGEBRA IN THE HILBERT SPACE

It is typical of many quantum-mechanical calculations
that the construction of states belonging to the full Hil-
bert space & is based on some initial or model state

~

&0). This is often chosen to be the ground state that
the system would otherwise be in when (some part of)
the interactions are turned off. We start here with such
a state @),and assume furthermore that the algebra of
all operators in ~ is spanned by the two subalgebras of
creation and destruction operators with respect to the
given model state

~

&0). We assume further that these
two subalgebras and the state

~

N) are cyclic in the
sense that all of the ket states in & can be constructed
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from linear combinations of the states reached by
operating on

~

@) with the elements of the creation-
operator subalgebra, and that this can also be done for
the bra states with respect to the state ( 4

~

.
In what follows we shall assume the state

~

@) to be a
(generalized) vacuum state, examples of which will be
given below. This allows one to speak about
configuration creation and destruction operators in the
standard meaning of the word, and to introduce ortho-
normal bases, which span the subspaces of creation and
destruction operators. Thus, denoting the various
configurations by indices i,j, . . . , we shall assume

(0&
t C;C,

~

0&) =5(i,j ), (2.1)

where 5(i,j) is a Kronecker symbol, and as a conse-
quence of the completeness of the bases the resolution of

I

the identity operator is given by

I=
~

e&(e
~

+g'c, '~ e)(e
~
c,

= g C,'
~

~)(4
~
C, . (2.2)

Here the prime denotes restriction to those C; which
create at least one particle (i&0), the second summation
is a shorthand notation which includes also the projec-
tion operator

~

4& ) ( 0&
~

. The configuration index i =0 is
used to denote the model state itself, and thus
C0 ——C0 ——I. %'e give a few concrete examples.

(i) Bose system with
~

4&) taken to be the vacuum If.
the one-particle states are labeled by indices p, which
form the index set 2—:[p], one can write

I= /4)(4
/
+ $ lln! g a" az /4)(4/ a az

n =1 Ip, I

Im, I

(p; &p,

1/(m&! m„!)(at )
' (a ) "~ 4)(4

~
(az )

" (az ) (2.3)

in terms of the single-boson creation and destruction
operators a and ap, respectively, which obey the usual
canonical boson commutation relations, [a&,a ]=0,
[a,a ' ]=5 . Hence a typical normalized configuration
operator is

y
m'

, , iiz(a' '
(m'!)

(2.4a)

C;= Qa (x;)&m!, (2.4b)

and the configuration index i is a shorthand notation for
the set i = [mz ~

pE J]= Im~, m~, . . . I. The common
superscript i in the exponents m in Eq. (2.4a) is intend-
ed as a reminder of the configuration index set i to
which the exponents belong. Alternatively, in real space
we may write

and the configuration index is i =(x&,xz, . . . , x ).
(ii) Number conserving -Bose system with a Bose con

densate as the model state,

(2.5)

(N —n )!
cV!

m
a p a0,

p (m p!)
(2.6)

where n =g mz, and again i = Im~ I
= Im'»mz, . . . I.

(iii) Fermi system with
~

&0) a Slater determinant Let.
IpI denote the occupied one-particle states and [p) the
empty ones. We have

Following the notation of example (i), but excluding the
condensate index 0 from the set Ip), the normalized
number-conserving configuration operators are

1/2

N
1 ooI= g, g, g gaz a az a„~&b)(@~a„a„a a

m =0 '
n =0 I@I tpj

(2.7)

and a normalized configuration operator is

ct= ~ (at)
P

g (a„) (2.8)

with the correspondence i =
I n ', m '„) and in terms now

of the single-fermion creation and destruction operators,
which obey the canonical anticom mutation relations.
Due to the exclusion principle, of course, the exponents
n', m„' can take only the values 0 and 1.

(iv) Spin in an irreducible multiplet. We can take

~

e&=
~

JM= —J&,
and for the normalized configuration operators

1/2
(2J —m )!
(2J)!m!

hence

C
~
J, —J)=

~

J, —J+m) .

(2.9)

(2.10)

(2. 11)
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In the case of several similar spins tensorial products of
the above operators are used. An important special case
is the system of spin —,

' particles; the many-body model of
Lipkin, Meshkov, and Glick belongs to this class.

Most of the formalism to be presented is completely
system independent. The few system-dependent features
originate from only one source, which is the explicit
form of the modified Wick theorem (Appendix A). Al-
though we shall mostly work specifically with case (i)

above, i.e., with a Bose system where
~

N & is the vacu-
um, very few changes to the equations appear in other
applications, and these cases will be specially mentioned.
The abbreviated notation introduced above for the
configuration operators is very useful for the formal de-
velopments, which otherwise would be very complex
looking and case dependent.

Using the above notation an arbitrary ket state
~

)1'&

in & can be written as

~(1J&=gg,-c,'~0&&, g, =&4& C, ~(P&; (2.12)

the bra states can be written similarly.
For later purposes we will find it useful to develop a

notation for compounding configuration indices. We
shall denote these by the ordinary symbols of addition
and subtraction, e.g. , (i +j) and (i —j) or
I[(i +j)—k]+1 I, etc. From our prior discussion it is
clear that these expressions cannot possibly be interpret-
ed in the usual arithmetic sense. Bearing in mind that
the configuration indices actually stand for sets of labels
for one-particle states, the compounding operations must
be understood rather in a set-theoretical sense.
Specifically, we define

C;+j =Cj C;, C;+~ =C;C

c,', ~a &=c,c,'~e&, &@~c, , =&+~ c,c,'.
(2.13)

(2.14)

, = & &0
~ C;,

~

qJ & = g fk & &P
~

C, C, Cg
~

4 &, (2.16)
k

Since the operator C; ~
is thus defined to be the creation

part of the full contraction of the product CJC;, it is
clear that it is nonzero only if the index set j is a proper
subset of the index set i.

In a similar way we define compound-expansion
coefficients,

q, +, —
& c

~
c, +, ~

q & = y q„&e
~
c,c,c,'

~

c &, (2. 15)

coefficient is larger than l. Otherwise the use of the
Kronecker symbol is quite straightforward, and we have,
e.g. ,

+6(j,i+k)itJ; = + 5(j k—,i)itJ; =gJ (2.18)

The need for introducing compound configuration in-
dices is intrinsically connected to the nonlinear nature of
the expS method, which splits the full N-body
configuration space of the N-body problem into simpler,
lower-dimensional, nonlinearly coupled manifolds. Oth-
erwise the operations with the configuration operators
and indices would reduce in a trivial way to ordinary
linear matrix algebra.

When operators are arranged in normal order, use can
be made of the following equation, which can be inter-
preted as a modification of the Wick theorem:

C, C; = QZ), (i,j)c; kC,
k

(2.19)

Here Z k(i, j) is a numerical coefficient, which depends
on the system in question. For the vacuum Bose system,
case (i) above, this factor is

Zk(i, j)=1, case (i) (2.20)

III. BASIC ECCM AMPLITUDES
AND THE AVERAGE-VALUE FUNCTIONAL

as proven in Appendix A. For the Bose condensate sys-
tem (ii) the factors Zk(i,j ) differ from 1 by terms which
are O(1/N) in magnitude. These other systems are not
considered more closely in the present article, but we
briefIy mention that, e.g. , in the case of a Fermi system
the configuration indices can be defined such that the
coefficients Zk(i, j) are identically equal to +1 or —1.
The latter value is obtained in the case when both of the
configurations, i and j, are either fermionic or bosonic.
Even if both of the indices i and j were bosonic, the ap-
plication of the Wick theorem would lead to the appear-
ance of fermionic configuration indices. For Fermi sys-
tems it is, therefore, natural to allow for odd fermionic
configurations right from the beginning in the formal-
ism. The odd configurations should be associated with
odd Grassmann ECCM amplitudes. The general
average-value functional for a Fermi system is therefore
a functional of classical even and odd Grassmann ampli-
tudes.

and compound Kronecker symbols, e.g. ,

5(i,j +k)=&4&
~

C;C), CJ
~

N& =6(i —k, j) . (2.17)

The basic formalism of the expS or coupled-cluster
method (CCM) was introduced by Coester and Kiimmel
in their fundamental papers. ' In CCM the ground
state is parametrized as

The reader should be warned that these operations of
addition and subtraction on the configuration indices are
generally neither associative nor commutative, e.g. ,

Q; ~(J k)+g(; ~J) k, although 1; (i +k) ——p(; i, q. The
numerical value of a compound Kronecker symbol is not
always 0 or 1. For example, if in Eq. (2.17) the index i
contains a multiple occupancy of some one-boson state,
and the labels referring to this state are distributed to
both j and k and not just one of them, the resulting

~e, &=e'[a &, (3.1)

a
i
e, &=E,

i
e, &

can thus be written in the form

e He
~

N&=E0
~

&0&,

(3.2)

(3.3)

where 5 is composed of creation operators (with respect
to

~

N &) only. The energy eigenvalue equation
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where a similarity transformation of the energy operator
is introduced. For a true many-body system there are
two major advantages, which make the formulation (3.3)
of the ground-state problem attractive in comparison to
the conventional equation (3.2): the correct amplitudes
S represent sums of linked-cluster diagrams' and are
therefore very convenient in parametrizing

~
+o), and

the resulting energy Eo (together with all the individual
terms contributing to it) accordingly satisfies the size
consistency or size extensivity requirement. ' '

The expS similarity transformation has turned out to
be invaluable in developing simple and finite algorithms
for the evaluation of the ground-state energy. To obtain
a satisfactory and energy-compatible algorithm for the
calculation of the average values of arbitrary operators
diagram analysis suggested the introduction of another
set of linked-cluster amplitudes, S", which generate a
second similarity transformation. The resulting ex-
tended expS formulation is thus based on a double simi-
larity transformation rather than a single one. The am-
plitude S" is composed only of destruction operators
and is again a linked-cluster quantity possessing a well-
defined diagrammatic description. The transform of
the Hamiltonian is defined as

~ S"~ —S~~ S~ —S"
(3.4)

(3.6)

The ground states are accordingly introduced in the
forms

~
e, & =es cI & =e~e —s"

~

e &,

&0,'~ =&@~e' e-',
which satisfy the normalization conditions

(3.7)

(3.8)

&0&
~
+, ) =1, (3.9)

(3.10)

Using the parametrization in terms of the
configuration operators of the previous chapter, we write

S= g'S;C; (3.1 1)

S"=g'S;"C; . (3.12)

It has been pointed out earlier that the set [S,S"
} is

not the most convenient choice for the basic free vari-
ables in the extended CCM. Instead, we make a change
of free variables to a new set [X,S"}—:[X,X},which we
define as follows:

and the ground-state eigenvalue problem can be written
for both the ket and bra eigenstates in a unified way,

(3.5)

o;=&4&~C;e S~4),
o.; =S;" .

The inverse transformation to (3.15) is

S, =&e~c,e-'X~+) .

On defining the functionals

co; = co; [o ]—:& 4
~

e C;
~

4 ),
co; =co; [o ]—= & N

~

e C;t
~

N ),
we find

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

o; = g S&coj.
J

S;= g o)ci)J

(3.20)

(3.21)

As explained in Sec. II the subtraction of indices is
defined to mean

co, ;—= &4~e CC, ~4)= co,
6o.;

=&a ~e"C,', ~e& . (3.22)

We can redefine the indices and write, instead of (3.20),

cr; = g g'5(k, j —i)S)cok
k j
g Sk i+~k

k

(3.23)

where use has been made of the rules given in Sec. II.
In expressions (3.20) and (3.21) the indices i and j in

coj; can be identically equal in which case cop=@p= l.
The transformation matrices have the following ortho-
gonality property:

g ~i —k~k —J
= g ~i —k~k —J =&(i J) .

k k

(3.24)

=&@,'i A
i
q, ), (3.25)

and the ground states & +o
~

and
~
%o) are manifestly

normalized according to (3.10). From now on, we shall
use the simple notation

The expS formalism, in particular in the present ex-
tended formulation, is not manifestly Hermitian, since
the similarity transformations, which generate the ket
and bra ground states, are not unitary. As the discus-
sion of excited states in paper II will emphasize, the for-
malism actually turns out to be a biorthogonal formula-
tion of the many-body problem. We can identify the
quantity &N

~

A
~

N) as the general average-value func-
tional for an arbitrary operator 3, since

& cp
~

A
~

q) ) = & Iy
~

e s e sAe s
~

q) )

X= g'o, C, (3.13)
&A)=—&e~ A e) (3.26)

X= g'cr;C;, (3.14)

and consider & A ) to be a functional of either the set
[S,S"

} or the set [X,X}.
We may rewrite Eq. (3.25) in terms of the well-known
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nested commutator expansion, as

(3.27)

where

A [S;OI = A, A I S;n ) =[ A[S;n —1],S], n & I .

(3.28)

Following the notation of Kummel et al. , we write Eq.
(3.27) in the equivalent form,

(3.29)

where the notation I
AS" II means that from each S

there must be at least one link (contraction) to the
operator A. The sum over n extends to a finite limit de-
pending on the operator A. It has been shown earlier
that the structure of the average-value functional in
terms of the new variables X, X can be expressed in the
form

(A )=(&P~e e Ae 4)DL

,
(@

~

e I A X"
I I ~

4)DL,
nI

(3.30)

where the subscript DL (double or definite linking) im-
poses a further restriction on the linking structure;
namely, after expanding in powers of X only such terms
are retained where each X is linked at least to two
different amplitudes X, unless X is linked directly to the
operator A. We can write

yy(,
nm It I I jI

(b) (c)

FIG. 1. (a) Pictorial representation of Eq. (3.31) for the
average value ( A ) of an operator A as a functional of the arn-

plitudes cr and cr. A wavy line denotes a many-body
configuration. (b) —(c) The GTO tree structure of the ampli-
tudes cr and cr at the stationary point. The small bars denote
the vertices of the Hamiltonian operator and the wavy lines are
now free many-body propagators.

(3.31)

where the matrix elements ( A
~

) obey the
above definite linking restrictions. The explicit expres-
sions for the matrix elements are given in Appendix B.
They satisfy a simple but important recursion formula,
also given in Appendix B, which is based on the identity
to be derived in Sec. IV.

Figure 1(a) gives an abbreviated pictorial representa-

tion of the average-value functional ( A ). At this stage
of the analysis, the diagram simply indicates the linked
or connected structure of ( A ). It is only after the
equations of motion have been considered with proper
boundary conditions that these diagrams can be inter-
preted as the usual equilibrium diagrams of perturbation
theory. It is perhaps worth pointing out that the present
approach is quite the converse of the usual
perturbation-theory approach, where the equilibrium is
first assumed and the corresponding diagrams intro-
duced immediately. This latter approach is then difficult
to extend to the case of symmetry breaking or topologi-
cal deformation of the assumed equilibrium; whereas our
own approach retains a greater degree of flexibility.

An anal sis of the linking structure of the average
values (C; ) of the creation operators shows that the
new amplitudes cT; are precisely the linked parts of such
averages. Of particular importance is the energy func-
tional (H ), which determines the dynamics of the am-
plitudes I o, o I and their ground-state equilibrium
values. At the stationary point the values of o. , o.

represent the contributions of definite classes of linked
Goldstone diagrams. These can be classified in a con-
venient way in terms of extended GTO trees, the struc-
tures of which are described in Figs. 1(b) and 1(c). The
precise meaning and examples of the pictorial represen-
tation of the vertices of the Hamiltonian have been dis-
cussed elsewhere. Here we will be satisfied with a brief
recapitulation of the main results of the diagram
analysis.

An extended ground-state GTO diagram [like the ones
in Figs. 1(b) and 1(c)] is composed of two kinds of ele-
ments: the Hamiltonian vertices represented by small
horizontal bars, and the links (wavy lines) connecting the
vertices. The links form tree structures, and therefore
between any pair of vertices there exists a unique route
of links. The links represent static on-energy-shell free
many-body propagators and to each link there thus is as-
sociated an on-energy-shell energy denominator factor.
By definition, the relative lengths of the links are ir-
relevant; only the time directions of the links matter.

Each wavy line or link with a given configuration in-
dex i is thus a set of one-body propagator lines. The
structure of an allowed Hamiltonian vertex can be
specified by requiring that (i) from each link entering the
vertex from below at least one link is directly connected
to the operator H (or V), (ii) from each link emerging up
from the vertex either at least one line is connected
directly to H or, if no lines are so connected, there must
be one-body lines to at least two different wavy links
below the vertex. These limitations are just the DL con-
ditions mentioned above (in Ref. 30 the notation ll limit-
ed linking was used for DL). For a more detailed
description of the vertices, see Sec. V. 3 in Ref. 30.

The ground-state energy shift AE is given by the sum
of all closed extended GTO tree diagrams. Each such
diagram represents the sum of a definite class of Gold-
stone diagrams, in which the relative time orders of the
Hamiltonian vertices of the Goldstone diagrams are al-
lowed to vary in a particular way. The extended GTO
diagrams in fact introduce a summation scheme which is
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in a definite sense intermediate between the Goldstone
diagrams and Feynman diagrams. Cutting a link in a
closed extended GTO diagram gives two open extended
GTO diagrams [cf. Figs. 1(b) and 1(c)], which form pos-
sible contributions to the amplitudes o and o. . Taking
into account the overall connectedness of the closed ex-
tended GTO diagram together with the DL restrictions
at the vertices it is clear that all the diagrams for the
ground-state amplitudes o. and o. are connected.

6
6S;

6
6S;"

6
' 6o-,-

6 ~, 6
i+j 6

+ T'cr;

5f 5f [X,X] 5f 5f [X,X]
6o.; 6o.; -' 6g . 6o .

Using equations (3.16) and (3.18)—(3.21) we find

(4.2)

(4.3)

(4.4)

IV. FUNCTIONAL DERIVATIVES AND MATRIX
ELEMENTS OF TRANSFORMED OPERATORS

There is a close connection between the functional
derivatives of the average value of an operator and the
matrix elements of the transformed operator. To eluci-
date this connection let us define the notation for the
various functional derivatives as follows:

As an application of the use of these expressions we cal-
culate the matrix element (i&0)

(e
~

C, W
~

e)=(a
~

C, e "e Ae
~

@)

6S;" &@[a ]e&

(4.5)
5f 5f [S,S"

1

6S; 6S;
5f 5f[S,S"]

6S;" 6S;"
(4. 1)

The next example is the element (i&0)

(Ni Ac; id&)=(@ie e Ae (I)e C; id&)

=(&)B;+g'co;,(4~e e Ae C, ~4)

=(A)co++ co; jt(C&)e e [AC ]e [N)+(&b)e Cje (I)e e Ae )@)I
J

= ( 3 )co;+ g ci);

J
+ ( ~ )~, + g' ( e

t

e' C,'e -'"Ck
~

e ) ( e
~

C„~
~

a )
J k

(4.6)

Above we have inserted the resolution of identity (2.2)
into the places which are denoted by (I). The final step
is to use the results (4.3), (3.24), and (4.5) to obtain

~j +khaki

L;, =g(4~e C e C, ~@)(@~Ce C, @)
k

= g g 1/n! ( N
~

[(S")"Cj, ] L Cj
~

N )
k n

(4.7)
x&e

~

c„e-"c,'~ e&, (4.9)

where we define (for i &0&j ) the new amplitude

ij =Lji = g ~i;+i~i i ~j —i-
k, l

= y & e
~

e "c„'c,'
~

e & & c
~
c„e-'"c,'

~

e &

k I

(4.8)

where the obvious generalization of the notation of Ref.
4, Eq. (3.29), this time signifies that from each S" there
must be a link to the operator Ck. We find the follow-
1ng:

(i) Every line of the group Cj is connected to some S"
amplitude, arising from the factor e, and

(ii) from every such S" amplitude arising from the fac-
tor es there is a link to the ~roup Cj, , which link propa-
gates directly to the group C; .

It will be instructive to analyze the diagrammatic
meaning of the matrix L;J. By summing over the
configurations 1 and using the closure relation (2.2) we
find

As a consequence we find that every line rising up from
the group C is linked to the group C; through some
such S," amplitude. If the sum over k is performed first
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in the expression (4.8), we ~et the reciprocal statement:
every line of the group C; is linked to the group C~-

through an S" amplitude arising from the factor e
The result is that all possible amplitudes ( —S") aris-

ing from the exponential exp( —S") cancel against other
similar more weakly linked diagrams, and the final out-
come can be cast in the form

indices m =i —k, n =j —l, hence

~ij P P ~(i —m)+(j —n)~m~n

If we now ignored what was said after Eq. (2.17) in Sec.
II and assumed co(i —m)+(j —n) ~i —m+j —n ~i +j —m —n ~

we would get

I-„=(e "c,"c
= g I /n!(4&

~

I(X)"C;C ]DL ~

N) . (4. 10)

I."'"'= g g (@
~

es"C C

x(C
~

-'"C."
~

~)(~
~

-"C„' ~)
The DL symbol again signifies strong linking, namely,
that every X appearing must be linked both to C; and to
Cj.

As a warning to the reader we perform also an errone-
ous analysis of the expression (4.8). Let us choose new

=(cI) ~e C;C, ~@)=co; ,+

on using again the closure relation.
Next we calculate the matrix element (for i~0&j )

(&P C;Acj
~

4) =(&9 C;e e Ae (I)e C
~

&0)

=(cI)
~

C;3
~

4)co)+ g'(4&
~

C;e e Ae Ck
~

cI))co,

I
@)~j+g ~j —kI&+

I

ce"e-'[A, ck']e'I @)

+g g(N[!Ce CkCi [N)(4[C(e C g&)(C&[c e e Ae [cp)I
I m

S'( A ) f(A)
=(4&

~

C;A
~

4&)B)+ g'coj k + g +co(k+i);co i 5(m, 0)( A )+
k 6Sk 6Si I m

6S"

(4.11)

By applying the rules (4.3) and (4.4) and the orthogonality relations (3.24) we readily get (for i &0&j )

&C C, AC, ), e)=(A)S(i,j)+ + g' g'~k+, L»+ g' Lk + g' ~k+, +S(A), S(A). . . S(A), , S'(A) S'(A)
6g —i k ~k I k 60 k k ~j 0 k 60;667

(4.12)

where the coefTicient is defined as

Ljk Lkj g g ~(l+m) —i ~j —l~k —m

I m

n'(A ) -, S(A )
6S;"6S~" 6S +j

which leads to the following important identity:

(4. 1 5)

=g g(&b~e CCC cI))(@ e CC, ~4)
I m

x&e~e-"c c,"~ e) . (4.13)

Another way to derive the matrix element (4.12) is to
observe that

S'( A ) , u'( A )+
5cr; Acr, k Acr k oo, .

S'( A )+
6o;6o.k

(c
i
c, Ac,'

i
e) = (e Ac, c," i

a )

(C ~Act @)

S'( A )+g g ~i+k
g c ~l+j

k I 60 kuo I
(4.16)

(4.14)

and to use the result (4.7) and Eq. (4.4). In simplifying
the emerging expressions use must be made of the fact
that

This basic identity will be frequently needed in simpli-
fying functional-derivative expressions, e.g. , in connec-
tion with the study of excited states (paper II). It leads
to a recursion formula between the matrix elements of
the average-value functional, which is spelled out in Ap-
pendix B.
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The final step in simplifying the right-hand side of
(4.14) makes use of the identification

)
I

i(A

L'k ——
J

6Lp,
+L~ k;+L

5o.,
(4.17)

which can be directly verified by comparing the
definitions (4.8) and (4.13).

By using the modified Wick theorem (2.19) it is possi-
ble to write down the coeScient L~I, entirely in terms of
the L& matrices,

(b) (c) (d) (e)
FIG. 3. Pictorial representation of the functional derivatives

(a) 5( A )/5o';, (b) 5( A )/5o;, {c) 5'( A )/5cr;5o, (d)
5'( A )/5o;5o, , and (e) 5'(A )/5o;5o. , A tail on the dot,
which represents ( A ) as in Fig. I, denotes a functional deriva-
tive.

L,'k = QLJ ( k 5(l+m, i) . (4.18)

The proof of this result is given in Appendix A. The
above result is valid for the vacuum Bose system only
and will be modified by extra factors in the case of other
systems. The result is easy to understand, because the
matrices L;~ are exponential forms of 0 in spite of the
double-linking requirements; therefore the functional
derivatives reduce to similar exponential forms.

We give in Fig. 2 a pictorial presentation of the ampli-
tudes L~k and L~j, . The diagrammatic content of L~k is
most easy to see from Eq. (4.17). The first term is the
result when an o.; amplitude is erased from L~q,

' the
configuration group i therefore has links both to j and to
k, and the remaining o. amplitudes are also strongly
linked. The second and the third terms correspond to
cases when the whole i group is taken from either j or k.

The main results of the present section are the expres-
sions (4.5), (4.7), and (4.12) for the matrix elements of A,
as well as the identity (4.16). We also shall illustrate
these results by diagrammatical representation. Let the
functional derivatives of the average value ( A ) with
respect to o.; and o.; be denoted as in Fig. 3 by loose
ends signifying the erased amplitudes. Then we get Figs.
4—6 for the matrix elements and Fig. 7 for the identity
(4.16).

The ground state is defined by the condition that the
first-order functional derivatives of (H ) with respect to
the amplitudes o. , o. must be zero. Applied to the iden-
tity (4.16) this requirement yields a condition on the
second-order functional derivatives of the Hamiltonian,
which is similar in form to the random-phase approxi-
mation (RPA) of the standard CCM." Just as in the
standard RPA case, the present equation can be iterated
to give a resolution of o.;+~ with a compound index in
terms of an expansion in the second-order derivatives of
(H ). This is shown in Fig. 8.

FIG. 4. Representation of matrix element (+
~
C; A

~

4) of
Eq. (4.5) in terms of functional derivatives.

FIG. 5. Representation of matrix element (4
~

AC;
~

4) of
Eq. (4.7) in terms of functional derivatives.

FIG. 6. Representation of matrix element (4&
~
C; ACJ"

~

+)
in terms of functional derivatives. The diagrams correspond
term by term with those in Eq. (4.12).

FIG. 7. Representation of the identity in Eq. (4.16) concern-
ing the functional derivatives.

=V + 0 ~ 0 +

j i

(a) (bj

FIG. 2. Diagrammatic description of (a) L,k from Eq. (4.10)
and (b) L,'I, from Eq. (4.17).

FIG. 8. The diagrammatic structure of o.;+i in the ground
state. The dots with tails are the second-order functional
derivatives of (H ), as in Fig. 3, and their time levels must pre-
cede the uppermost open end level, where the horizontal
dashed line signifies the presence of the energy-denominator
factor. Compare this with the structure of cr given in Fig. 1(b).
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V. EQUATIONS OF MOTION B. Time-dependent Schrodinger equation

A. Dynamical variational principle

The equations of motion for the ECCM amplitudes
are obtained from a variational principle by requiring
the actionlike functional

We can arrive at the same equations of motion in a
straightforward manner by using an ECCM parametriza-
tion for the time-development operators in the
Schrodinger picture. These are assumed to be given in
the form

W= f dt(4~e "'e "[iB/Bt H(—t))e '"~@) (5.1)
U ( r )

b(t) s(()e —s "(t)
7 +(r)) = U(t)

~

C ), (5.5)

U(t)=e ~'e "e '" ((I)'(t)
~

=(&0 U(t), (5.6)

to be stationary against small variations of the ampli-
tudes. In the time-independent case the stationary
conditions yield the eigenvalue equations (3.5) —(3.8), as-
suming the states &9 ) and ( N to be cyclic with
respect to the creation- and annihilation-operator
subalgebras. In the general case the stationary condi-
tions lead to the dynamical evolution equations for the
amplitudes [S,S"

I or [X,XL.
In terms of the pair [X,XI the action functional be-

comes

i
~

4(t)) =H P(t)),
at

(5.7)

i —( 0)'(r)
~

= ( 0 '(t) ( H,
at

the following intermediate results are derived:

iP
~

+ &+ie "S
~

@& =II
~

@&,

(5.8)

(5.9)

where P and P are c numbers. From the Schrodinger
equations for the ket and bra states,

~ = f «[i&@
I

XX @&—&+ IH
I
+&1 i')(N

~

i (@—
~

S"+i (&b e Se =((I) H . (5.10)

dt i o&o —H We wish to substitute for the amplitudes S the new X,
and by using Eqs. (3.19) and (3.21) we obtain

dt —i N XX N —N H

dt —i o&o
&
—H (5.2)

Sk = g rr(~( —(
—g o( g (rm~(m k) (. — —

1 m

(5.1 1)

On substituting this expression into Eq. (5.9) and taking
the scalar product with the state (&0 C, one finally gets
the result

The stationary conditions then yield the pair of equa-
tions of motion,

lo a
n&H& S&H)

cr +b l 0'(, +
b

6o.b

(5.12)

6( I(i)H
i
@)

6o.
~

lo . =—
J

6(@ H ~4)
6o.

~

(5.3)

(5.4)

where use has been made of the orthogonality of the ma-
trices co and 2, Eq. (3.24), as well as Eq. (4.5).

In the same way we take the scalar product of Eq.
(5.10) with the state Ct

~

N), and use Eqs. (5.11) and
(4.7) —(4.8) to obtain the result

S(H), S(H)—lo +g Lb lob-6o. b
'

6o b

|'(H )—g ~b+c 'trc+
C

6o.,
=0. (5.13)

The expression multiplying L,b above is identically
zero due to Eq. (5.12). What remains in Eq. (5.13) is the
same equation of motion as in Eq. (5.4). Inserting this
into Eq. (5.12), where it multiplies o., +b, the other equa-
tion of motion (5.3) follows.

It is also of interest to calculate the equations of
motion for P and P which give the size factors e~ and
e ~. They can be found by taking scalar products of
Eq. (5.9) and (5.10) with (@

~

and
~

4&), respectively.
By now the technique should be quite standard, and we
just state the results

i/= (H ) + g' co, + (S, —o, ), (5.14)

(5.15)

Therefore the scalar product

(4'(t)
~

(II(t) & =exp[P(t) —P(t)] (5.16)

remains constant in time, and proper normalization is
obtained by setting (t =(().

VI. AVERAGE VALUES OF OPERATOR PRODUCTS

An arbitrary product of operators transforms under
the double similarity transformation into the corre-
sponding product of transformed operators. Thus, if
R = ABC. . . , then
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S SR—:e e ABC . . e e =AB(.'

The average value of the product is therefore

(ABC )=(4 ABC l4).

(6.1)

(6.2)

individual factors, with coefficients that are functionals
of X and X. The functional derivatives appearing in
such expressions are at most of second order.

The most important case is the product of two opera-
tors,

&AB&=&A &&B&+ g'&+l AC,"l~'&&+ lCB
On inserting the resolution of the identity operator (2.2)
between each entry, and using the results of Sec. IV, it is
possible to express the average value of a product in
terms of functional derivatives of the average values of Using the results (4.5) and (4.7) we find

(6.3)

6(A) 6&B),, 5(A) 5(B), 6(A) 5(B), 5(A) 6(B&+ (6.4)

where the coefficients are given by

11 11 I I
Xij Xji tri+j + g g ~i +k ~l l~ I +j

k I

X,,' =5(ij )+ g'rr;+kLk, ,
k

21
Xij = Q ~ik+k+j

k

(6.5)

(6.6)

(6.7)

P; =—( —,
' )'"(rr;+tr; ), (7.3)

and where we have now used the bar to indicate the
average-value functional, ( A ) =—A =—A [o,o ], in order
to simplify the notation.

This result can be made even more suggestive by
choosing as new basic variables the generalized fields P,
and their canonically conjugate generalized momentum
densities w;, defined as

~22 ~22
1J Jl IJ (6.8)

rr;
—=i( ,')' (rr—;—o;) . (7.4)

The terms for the average value of the product are
presented diagrammatically in Fig. 9. For our present
purposes we need not study the more complicated cases
of products of more than two operators, or the average
values of functions of operators.

VII. COMMUTATORS AND GENERALIZED
POISSON BRACKETS

{A, B I
= g' 6B 6A

6(f j 5~,
(7.5)

In terms of the new amplitudes the equations of motion
(5.3) and (5.4) are thereby recast into the form

In this way we can redefine the average values ( A ) as
functionals of tt and n, in terms of which Eq. (7.2) be-
comes

As a particularly important application of the results
of Sec. VI we now consider the expectation value of the
commutator of two operators. In view of the high de-
gree of symmetry exhibited in Eqs. (6.5) —(6.8) by the X
coefficients, there is a considerable consequent
simplification in this regard. We find

d;

~i ={~;,HI =—

(7.6)

(7.7)

(+o
l

( AB BA)
l

Oo—) —= ( [ A, B]) =i {A, B], (7.1)

where the generalized Poisson bracket { A, B ] is defined

by

Finally, for an arbitrary, intrinsically time-dependent
operator A (t), it is straightforward to show, using Eqs.
(7.5)—(7.7), that the equation of motion for its average-
value functional A [tt, rr;t] is

i{A,B]—= g'
J 6oJ go . &o, 6o-,

(7.2) A= +{A,H],d — ()2
dt at

(7.8)

Ao A A 8 A A~ eB+B+ + ~B+ B+4 B

FIG. 9. Crraphical representation of the average value
( AB & from Eq. (6.4) in terms of functional derivatives.

d&A& aA
dt Bt i

(7.9)

The consistency of the classical and quantum formula-

which is the well-known classical equation of motion in
the canonical formalism. Using the definition in Eq.
(7.1) of the Poisson bracket, Eq. (7.8) is found to give the
proper quantum-mechanical equation of motion for the
average value,
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tions can be understood as a manifestation of the
correspondence principle in a suitable generalized form.

We are thus led to the important result that the whole
of our quantum many-body problem has formally been
exactly mapped onto the classical Hamiltonian mechan-
ics for the (c number) quasilocal fields P; and ~; which
are themselves functions in the many-body configuration
space labeled by the indices i. In this way we can take
over (or suitably extend) the whole of the classical for-
malism to describe (exactly, in principle, if no trunca-
tions are made) the quantum many-body system. In par-
ticular we can make easy contact with such things as
conservation laws and the associated sum rules. These
aspects will be discussed in a future paper.

VIII. EXACT BOSONIZATION AND THE ECCM
PHASE SPACE

Among the most important degrees of freedom
describing a complex many-body system are the slow,
long-wavelength modes which traditionally are
parametrized in terms of collective coordinates. We
have seen how our basic ECCM amplitudes achieve a
natural interpretation as classical quasilocal fields obey-
ing a classical Hamiltonian mechanics. In this light, it is
very natural to expect the ECCM fields to have a close
connection with generalized collective coordinates. The
extraction of the proper collective variables from the
basic microscopic theory has been of great interest espe-
cially in nuclear physics. One way towards this goal has
proceeded through various bosonization methods.

There is a long tradition in the bosonization of spin-
algebraic or fermionic systems. As examples of the
genre we mention the methods of Holstein and Pri-
makoff, Dyson, Schwinger and others' ' and
refer the reader to the review by Garbaczewski. ' The
basic philosophy in these methods has been to map the
original Hilbert space of the system A' into a boson Hil-
bert space & . The boson images of suitably chosen
pairs of fermion operators (or spin operators) are con-
structed in such a fashion that the Lie-algebra structure
of the original operators in & and of the image opera-
tors in & is identical. In all the approaches referred to
above the boson Hilbert space & turns out to be too
large in the sense that physically realizable states in the
original space map into a subspace of & . Thus the dy-
namics in & reflects faithfully the original dynamics in
& only if one restricts oneself to this physical subspace
of +e. A further point to notice is that depending on
the details of the chosen mapping of A' into &, the bo-
son Hamiltonian H can be either Hermitian or non-
Hermitian. ' In some cases one can also oAer a di-
agrammatic meaning to the bosonization. An example
of this kind is the treatment of the electron gas as a col-
lection of interacting Sawada bosons, i.e., electron-hole
pair excitations. This Dyson-type bosonization scheme
leads to a non-Hermitian Hamiltonian H, and one can
regard the Sawada bosons appearing in the bosonic per-
turbation diagrams as corresponding to approximate ex-
cited linked configurations of the original fermionic sys-
tem.

where the generator G is

G= f d x[P(x)a (x) —P*(x)a(x)]=—G" (8.2)

and P(x) and its complex conjugate P*(x) are scalar (i.e.,
c-number) fields, and with

~

@) the vacuum,
a (x)

~

N) =0, as before. It is straightforward to show
that

a(x)e
~

4&) =P(x)e
~

4),
(@ e a (x)=P*(x)(d&

~

e

(8.3)

(8.4)

The expectation value of a normal-ordered arbitrary
operator A =:A [a,a ]: in these coherent states is just
given by replacing the field operators a (x) and a (x) in
the functional by their c-number coherent-state expecta-
tion values P(x) and P*(x), respectively,

( A ) =(@
~

e GA[aat] e
~

4&) =A[/, (b*] . (85)

In particular we can calculate the dynamics of the sys-
tern at this SUB1 level from the coherent-state action
functional

A = f dr[i f d xP*(x)P(x)—H[Q, P*]], (8.6)

where H[P, P*] is the Hamiltonian functional of the sys-
tem in the SUB1 approximation.

Although the preceding treatment of the boson sys-
tem, using Cslauber coherent states, is clearly an approxi-
rnation, we could go a step further and apply the fact
that the coherent states

~ g ) form an over-complete set
of states and express the exact ground state of the sys-
tem as a superposition of these states

~ g ) and effectively
transform the exact Schrodinger equation (3.2) into an

As emphasized earlier, one of the main goals in apply-
ing a bosonization method is to find such a description
of the original fermionic system that the chosen boson
operators in &, at least for the low-lying collective ex-
citations, can be treated almost as noninteracting ideal
bosons. In a general case, however, there exist nontrivi-
al, residual, quantal interactions between the bosons, and
the boson-expansion method is a mathematically compli-
cated theory of mutually interacting bosons in a project-
ed subspace of & .

The ECCM theory discussed in the present paper is,
when truncated at its lowest level of approximation, the
so-called SUB1 approximation where in the expansions
(3.13) and (3.14) for the amplitudes X and X the sums
over configurations are restricted to one-body
configurations i only, precisely equal to the mean field
theory or semiclassical approximation. For the boson-
ic systems, which have mainly been emphasized here,
this is precisely the ordinary coherent-state approxima-
tion, while for fermionic systems it would correspond to
the Hartree-Fock approximation. In the case of bosons
this approximation can be expressed in terms of the
(classical) coherent states of Glauber. ' Using the
complete set of our original single-boson creation and
destruction operators a t(x) and a (x) [see discussion
after Eq. (2.3)], we define the Glauber coherent state as

(8. 1)
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integral equation. The solution of this Hill-Wheeler
equation would then give us the exact ground-state wave
function and energy. Here we do not pursue this idea
any further, but instead show how the exact, nontruncat-
ed ECCM approach can be formulated as a generalized
mean field theory.

We now formalize the idea& discussed above by intro-
ducing ideal bosonic annihilation and creation operators
a;, cz; associated with each configuration i, such that
they satisfy the canonical commutation relations

[a;,a, ]=[a;,a, ]=0, [a, ,a, ]=5(i,j) . (8.7)

We postulate the existence of the vacuum states
I @ii )

and (N'ii by requiring

a; iI&ii ) =0, (Nii a; —=0, (8.8)

and assume these states to be cyclic with respect to the
algebra of the operators [a,a]. Thus an entire boson
Hilbert space & can be constructed by successive
operations on the vacuum states with the canonical
operators.

For every operator 2 in & we then associate its boson
image 3 in A, defined as

3~= g g'g'(i, i A Ij, j )
mn '

Ii I I j I

XO!; ' ' A; 0!j (8.9)

We readily find that the average values of the basic
canonical operators in a bicoherent state are

(8.11a)

(a, )—:(+a le-'a, e' e (8.11b)

and for an arbitrary boson image of the form (8.9) one
obtains

(A )—= (@ii Ie "3 [a a]e I@ii)=A [cr o]. (812)

But this expression is identical to the previously con-
sidered ECCM average-value functional ( A ) of Eq.
(3.31), when the coupled-cluster operators S and S" are
parametrized by the amplitudes o, o. .

It is then natural to introduce the generalized
coherent-state action functional A, defined in the boson
space & to be

(8.13)

By making use of the result

where the matrix element is exactly as specified previ-
ously in Eq. (3.31) or in Appendix B.

The coherent (or bicoherent) states in A can be given
in the form e

I
@ii ), (@'ti

I

e ", where the generator is

(8.10)

1+ —,

I+—g' [cr;a; —o;a;+ —,'(c'r;c7; —cr;cr; )],
j

(8.14)

which follows from Eqs. (8.7) and (8.10), we finally find
the result that A has a form identical to our earlier re-
sult in Eq. (5.2),

A = f dt i g'o&o. , H—[cr, o ] (8.15)

Hence, a variational principle applied to the action A
exactly reproduces our earlier (exact) equations of
motion (5.3) and (5.4) for the ECCM amplitudes cr, cr.

We therefore come to the conclusion that the totality
of the original ECCM states e

I
@),(&P

I
e e can be

mapped onto the subset of coherent states
e'

I
@ii ), (Nii

I

e " in an ideal boson Hilbert space.
The mapping is one to one and allows straightforward
introduction of the rules for the average-value functional
as well as for the dynamical behavior. Thus, in a very
definite sense, the present generalized coherent bosoniza-
tion as described above, is an exact bosonization of the
original system, in contrast, for example, to the usual
(Glauber) coherent states, which only give an approxi-
mation to the state of a system.

It is of interest to discuss the general features of the
present exact bosonization scheme in particular with
reference to other conventional bosonization methods.
In the present case we have a well-defined diagrammati-
cal interpretation for the Bose fields in terms of maxi-
mally linked diagram structures, and the consequent
quasilocality property. In this respect the method
resembles the Sawada bosonization of a Fermi system, or
the Dyson bosonization of a (pseudo)spin-algebraic sys-
tern. We could go so far as to claim that the present bo-
sonization is a generalization of the Dyson scheme. In
both cases the mapping to the Bose space is non-
Hermitian and the diagram structures at the vertices
have common features.

The essential difference to all the other methods is
that in our case the concept of bosonization is taken to
the logical extreme, namely, the boson fields obtained
are classical c numbers and accordingly no longer pos-
sess quantum-mechanical interactions. The only interac-
tions which appear are classical nonlinear couplings be-
tween the fields. But this property can, indeed, be un-
derstood to be the ultimate goal of the bosonization
methods. For increasingly complicated configuration in-
dices i the field amplitudes o.;,o.; may loosely be viewed
as a sequence of collective coordinates of increasing
complexity, which eventually yield an exact description
for all collective degrees of freedom, at least when prop-
erly diagonalized. This point is elaborated further in pa-
per II.

As a further di8'erence to standard methods the
present scheme can be applied to a11 quantum-
mechanical problems in a unified fashion, and not only
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where the first commutator between the original opera-
tors 2 ] and 32 is calculated in &, and the second com-
mutator of the boson images, of the form given by Eq.
(8.9), is calculated in & . However, the Lie algebra is
exactly preserved, if the full boson commutators are re-
stricted to the tree level to be specified below. We there-
fore have

([A, , A2]) =[A, , A, ],„„. (8.17)

The tree level of a commutator is defined to be a re-
striction to such contractions where no closed loops are
allowed. The tree commutator is thus obtained in & by
allowing only one pair of a;,aj to be contracted at a
time, and arranging the remaining boson operators in
normal order.

As an example, consider the operators 3
&

——a&a2a3,
3 2 ——n4a5a6. The full commutator can be written, after
arranging into normal order, as

[A t, A 2 ]=:[ata2aga4a5a6+ata2a3(x4a5a6
I i

++ ]+P+3+4+5+6++ ]+P+3+4 5+6
I

+0,' ] (X2(X 30,' 40.'5 &6 +Ct ]a 2& 3+40' 5+6
I I I

—O. 4CZ5a&a ]aZa3 (8.18)

where the contraction a;a~ above is naturally defined to

be 5(i,j). At the tree level we omit the first two terms,
which contain double contractions between the vertices
of 3

&
and Az leading to closed loops. The remaining

terms are

[ A 1 &
A 2 ]tree

—
~ [a ia2a3a4a5a6+ a ia2a 3a4a5a6+ a ta2a3a4a5a6

I I

+ (x ta2a3(x4(x5(x6 (x4(x5(x6(x i(x2(x3 ] ~

l I

These results are illustrated in Figs. 10(a) and 10(b), re-
spectively.

Evidently, these peculiar rules for the commutators in
the bosonized picture follow from the expressions for the
matrix elements (i, . i A, A2

~ j, j„) of the
product of operators and of their commutators, as ex-

(8.19)

to fermion or spin-algebraic systems. Thus, for example,
boson systems can also be bosonized in our scheme.
Since the resulting exact bosonized description is a clas-
sical field theory, it cannot be bosonized any further.

Since the physical states in the ideal boson space are
coherent states, and a superposition of two or more
coherent states is generally not a coherent state, the
physical bosonized states do not form a subspace in & .
Accordingly, the superposition principle does not apply
between the physical states & . This, of course, is con-
nected to the fact that the bosonized description is no
longer a genuine quantum theory, but instead a classical,
effective field theory.

Another manifestation of this particular aspect is the
fact that the Lie algebra of operators is not exactly
preserved in the present bosonization scheme. Thus, in
general, we have the inequality

(8.16)

FIG. 10. Pictorial representation of (a) the tree-level com-
mutator of the operators ala&a3 and +4'&a6 in Eq. (8.19) and
(b) the extra loop terms in their full commutator, given by the
first two terms of Eq. (8.18).

plained in Secs. VI and VII, respectively. The subse-
quent nonappearance of closed-loop diagrams is a fur-
ther reflection of the fact that we have succeeded in ex-
actly reformulating the original quantum-mechanical
many-body system as a classical generalized mean-field
theory.

As was briefly mentioned in Sec. II, the most con-
sistent way to introduce the ECCM parametrization for
the fermion systems allows also fermionic configurations
comprising an odd number of particles and the odd
Grassmann amplitudes o. , o. associated with such
configurations. In the ground state or any collectively
excited state satisfying the superselection rule, which
forbids even and odd configurations in the same wave
function, such odd Grassmann amplitudes are then zero.
As was pointed out earlier and will be described more
thoroughly in paper II, the small fluctuations of the even
amplitudes are connected with even fermionic collective
excitations. Correspondingly, the small fluctuations of
the odd amplitudes will be related to the odd fermionic
(e.g. , single-particle) excitations, for which reason it is vi-

tal to allow for infinitesimal breakings of the superselec-
tion rule. Generalizing to larger virtual breakings, we
actually are led to speak not only of exact coherent bo-
sonization, but also of exact coherent fermionization
The general bosonized and fermionized Hamiltonian, or
its average value in the generalized coherent state, is a
classical effective Hamiltonian composed of even and
odd classical Grassmann fields.

One final aspect of the ECCM deserves to be men-
tioned. As has been thoroughly discussed above, the
method transforms an arbitrary quantum theory in a
Hilbert space into a classical field theory in a classical
ECCM phase space. The coordinates in this phase space
are the fields (r;, cr;, or the canonical fields tt; and mo-
menta ~;, Eqs. (7.3) and (7.4). The phase space can be
more precisely characterized by observing that in the
modern terminology of classical mechanics it is a sym-
plectic differentiable manifold. The differentiability is
a consequence of the fact that the numerical values of



36 EXTENDED COUPLED-CLUSTER METHOD. I. 2533

the fields P;, ~; are continuous complex numbers, and
one is accordingly allowed to take (functional) deriva-
tives with respect to the fields. The property of being
symplectic is a consequence of the existence of the Pois-
son bracket, i.e., a skew-symmetric bilinear form, which
can be used to define a Hamiltonian vector field in the
tangent space of the manifold. In more ordinary
language, the equations of motion define a set of trajec-
tories, which fill the whole dynamically allowed region
of the phase space.

The requirement that the physical states in the origi-
nal Hilbert space should satisfy the Hermiticity condi-
tion

(N~e e cc(e 0&)) =(C&~e (8.20)

IX. SUMMARY AND DISCUSSION

We first briefly summarize the main results of the
preceding sections and then offer a more detailed discus-
sion on some separate points of interest.

We have shown how the ECCM parametrization of
the Hilbert space may in principle be applied to all such
systems for which a Schrodinger dynamics is defined.
Effectively, this parametrization can be viewed as an ex-
act mapping of the original quantum-mechanical prob-
lem onto a well-defined nonlocal classical field theory in
the syrnplectic ECCM phase space; i.e., "quantum
theory is made classical. " The coordinates of this
ECCM phase space are quasilocal complex c-number
fields o;,o;, which, for example in the case of a Bose

leads to a constraint among the amplitudes u;, o.;. The
observable physical phase space is thereby only a sub-
manifold in the full ECCM symplectic phase space. It is
an invariant submanifold in the sense that it is formed of
entire trajectories; either none or all of the points of a
trajectory belong to the physical submanifold, assuming
the Hamiltonian to be Hermitian. Time development
thus leaves this submanifold invariant. Even within this
submanifold the amplitudes o. ; and o. ; are not complex
conjugates of each other, because the ECCM similarity
transformations are not unitary. Only by performing a
suitable complex canonical transformation can one re-
cover a description in terms of real coordinates P,', n,

' in-
stead of complex ones.

It almost goes without saying that the geometrical or
topological properties of the full ECCM phase space are
immensely more complicated than in the usual classical
mechanics of continuous media. Roughly speaking, the
neighborhood of an arbitrary point in the phase space
reveals the same complexity as the full original Hilbert
space. Nevertheless, due to the quasilocal nature of the
ECCM pararnetrization, one might realistically hope
that only a small part of the full phase space turns out to
be relevant; i.e., that there occurs "compactification"
into a simpler, physically relevant submanifold. In a
favorable case there may exist a suitable infrared scale
compared to which the description looks completely lo-
cal and not more complicated than the usual classical
mechanics of continuous fields. We shall, however, not
expand on this subject in the present article.

system in coordinate space, are n-point functions of the
position vectors (x&, xz, . . . , x„), with n =1,2, . . . . The
lowest-order linked-cluster amplitudes cr, ( x) and cr, (x)
are clearly local by definition, being just average values
of the single-particle operators a (x) and a (x) at posi-
tion x, whereas quasilocality for the higher-order fields
follows from the maximal connectivity built into the
ECCM theory. At the stationary point of the system
these amplitudes o.;,o. ; can be endowed with a diagram-
matic interpretation in terms of maximally linked GTO
tree diagrams. However, in contrast to the usual di-
agrammatic approaches based on the assumption of an

equilibrium state, we have here developed a more flexible
theory that incorporates a more direct means to discuss
broken symmetries, topological excitations, and possibly
even systems that possess no equilibrium states.

The average values of various physically important
operators and products of them are expressible as func-
tionals of the basic amplitudes o.;,o;, and arbitrary ma-
trix elements of such operators can be evaluated as func-
tional derivatives of the corresponding average-value
functional in a straightforward manner. The dynamics
of the system again is determined by the Hamiltonian
functional via the equations of motion for the basic fields
o.;,o.;. Especially useful in view of the structure of
ECCM is the observation that the commutator of two
quantum-mechanical operators is mapped into a general-
ized Poisson bracket of the average-value functionals of
the respective operators. It is precisely this feature that
endows the ECCM phase space with its syrnplectic
structure.

In Sec. VIII we present the ECCM theory formally as
an exact generalized mean-field approach, where the
original system is described in terms of generalized
coherent bosons a; and o.;, whose expectation values
equal the c-number fields o.;,o.;. These fields o. ; and o;
can, loosely speaking, be interpreted as collective coordi-
nates of the system, as will become clearer in the forth-
coming paper II.

It is of interest to compare our ECCM approach with
the well-known density-functional theory of Hohenberg,
Kohn, and Sham. ' This latter approach attempts to
construct the total energy as a functional of a local pa-
rameter, namely, the particle number density p(x). In
its simplest forms (e.g. , the Thomas-Fermi approxima-
tion), density-functional theory gives the total energy as
a completely local functional of p(x). Much of the later
effort in this field has gone into the construction of suit-
able nonlocal extensions to these simple local approxi-
mations. In this light the ECCM may be viewed as a
rather different framework for incorporating these non-
local corrections in a completely well-defined manner.

Although the ECCM is in principle exact, approxima-
tions or truncations will naturally need to be made in
practice, and here again the "maximal connectivity"
feature of the basic building blocks leads to many advan-
tages. For purposes of illustration it is interesting to
compare the ECCM with both the normal CCM (Refs.
2 —6) and the CI method. ' Each of the three methods
can be formulated in terms of suitable sets of classical
configuration-space fields o; and o.;, which obey
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Hamilton's equations of motion as we have discussed for
the ECCM here. Only in the ECCM, however, are both
entire sets quasilocal in the sense of obeying the cluster
property. In the normal CCM each member of one set
of fields (namely, the amplitudes S; associated with the
single similarity transformation operator S, which
parametrizes the ket ground state as

~
40) =e

~

4& ) ) is
connected; but the other set 0; (associated with the bra
ground-state parametrization as ( %0 ——( N

~

Ae ) is
not connected. (We note that for an evaluation of the
ground-state energy only the amplitudes S; are needed
since one may utilize the Schrodinger equation to avoid
use of the bra state ( +0; but both sets S; and 0; are
needed to evaluate the ground-state expectation value of
an arbitrary operator. ) Finally, in the CI method neither
the creation nor the destruction amplitudes are connect-
ed; and we note that it is just this feature which leads to
the size-extensivity problem. '' ''

These various connectivity features of the basic ampli-
tudes are intimately associated with the generalized
time-ordering (GTO) properties of each method when re-
stricted to time-independent perturbation theory and the
associated Goldstone diagrams. Thus, the normal CCM
can be shown to generate generalized tree diagram struc-
tures with GTO in the "past" (backward-going) direc-
tion only, whereas the ECCM also contains GTO into
the "future" (forward-going) direction. By contrast,
the CI method has no GTO properties. Now, when any
of the methods is truncated, as each must be in practice,
these GTO properties assume considerable importance.
A typical truncation scheme might be the so-called
SUBn approximation wherein the configuration-space in-
dices (i ] are restricted to involve at most n particles (or
particle-hole pairs). In a CI calculation the truncation
index n would typically need to be quite large for good
accuracy (i.e., the limbs of the associated CI tree dia-
grams would need to be quite "thick"), unless the in-
teraction is so weak that low-order perturbation theory
is sufficient. By contrast, both the normal CCM and
ECCM usually achieve comparable accuracy with much
lower values of n, and the limbs of their respective tree
diagrams need not be so thick (i.e., need not contain so
many particles). In the ECCM, the SUB1 approxima-
tion is just classical mean field theory (namely, the
coherent-state approximation for bosons or Hartree-

Fock theory for fermions), whereas the SUB2 approxi-
mation for bosons is equivalent to the Gaussian approxi-
mation of quantum field theory.

We also note that the maximum incorporation of the
cluster property for all its basic amplitudes, which is the
hallmark of the ECCM, should particularly facilitate its
applicability to a description of such topological excita-
tions as the vortex lines in liquid He. Such excitations
are created by appropriate topological boundary condi-
tions for the basic amplitudes o.; and o.;, which prevent
their decay by any quasilocal processes. In such cases,
the boundary conditions can only be properly imposed in
a theory where the cluster property is exactly obeyed by
all of the relevant amplitudes. Typically the boundary
condition is imposed at some sufficiently large distance
(e.g. , from the vortex core in the case of a vortex line),
and then since the amplitudes o „(x&, . . . , x„) and
o.„(x~, . . . , x„) contain no contributions from large in-
terparticle separations for n & 1, the physics must ulti-
mately be dominated by the amplitudes o.

&
and o. &.

The discussion in this paper has focused mainly on the
ground state of the quantal system under consideration.
It is quite possible to extend the ground-state ECCM to
include excited states in analogy to the way Emrich '

has developed the normal CCM. This extension is the
main topic in paper II, where we show explicitly the inti-
mate connection of the excited states with small oscilla-
tions around the ground-state configurations obtained by
the formalism discussed here. Paper II thus contains an
exact theory of linear response within the ECCM.
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APPENDIX A: THE MODIFIED WICK THEOREM

Wick's theorem gives the rules for arranging products
of operators into normal order. If the operators 3; are
linear and homogeneous in the basic canonical single-
particle creation and destruction operators, the theorem
gives the standard rule

+:3) A2A3A4

+:3) 323334 Aq Aq

(A 1)

where the pairwise contractions are defined as
A, Az ——(4&

~
A, Az

~

N), and:: denotes normal order-
ing.

We shall show that for the case of boson algebra we
can recast the theorem in the following simple form for
the product of two configuration operators:

C;C)~= g C, kC;
k

in the notation of Sec. II ~

As the first step we prove (A2) for one single quantum
state p. To avoid confusion we write for the normalized
operators (m = 1,2, . . . )

C = I /&m!(a )[m] =
P

Thus C =C~ ~, C =C~ ~, but for combined indices,
due to definition (2.14), we have
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c c„'io&=c„' io&
1/2

nt

1/2
n

t)n —m ~0)
(n —m )!

(A4)

gC, «C;
k k

k k

1/2

C(q —k)C)i —k)

1/2

(A6)

I
'j
k k (i k)!(j k)!

Here C~„) is the normalized operator corresponding
to the index l =n —m, where n —m is just an arithmetic
expression rather than a set-theoretical notation.

The rule for combined indices is therefore
1/2

n

whereas the left-hand side is

C;CJ =1/&i!j!(a )'(a )' . (A7)

Cn —m
=

The right-hand side of Eq. (A2) is thus

(A5) We show expressions (A6) and (A7) to be equal by ap-
plying them to an arbitrary state

~

n ). Expression (A6)
gives

I j 1

k k (i —k)!(j —k)!

1/2
n!(n i +j)!—

(n i +k)—!(n i +k—)!

1/2

~

n i +j—)

1/2
lj!n!= ~n —i+j& i!(n i +j)!—

n —i+j

jfn I= In —i+i) i!(n i +j—)!

1/2 n+j
(AS)

where in the last step use was made of Eq. 0.1561 of Ref. 50. Expression (A7) gives

CC~ ~n)=
Q&' Ij!

1/2
(n +g)!(n +g)! n+j —ip .
n!(n i +j)!— (A9)

Comparison of the coefficients in (AS) and (A9) shows that they are equal, which proves the Wick theorem (A2) for
the single quantum state.

The general case of many quantum states is proven in a straightforward manner by observing Eq. (2.4a), which
gives

C;C = + [C;(p)C, (p)],
P

where

C (p)= (ap)
1

&m!

(A 10)

(A 1 1)

Notice that the configuration index i in this case is equivalent to the set Imz )
= Im', m', . . . I. Each factor nowPz'

gives, according to (A2),

C;(p)C, (p)= g C, «(p)C, «(p),
P

m

(A12)

and the whole product may be rewritten as

C;C =g gc, (p)C; (p)

=QC, «C;
k

(A13)

as was required.
Finally we note that theorem (A2) may be repeatedly applied to products of arbitrarily many configuration opera-

tors. As an application we prove Eq. (4.18) from the definition (4.13). We have
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(NIe ccic @)=g(4Ie c,' „c, „c' Ie&

n Cm —(i nI I

~'& (A 14)

Redefining 1~l +n, m ~m +(i —n), we get from (4. 13)

LJ'g ——g (&PI e Cic @)(@Ie C, C„C,
I
4)(C&I e C C(; „)Ck 4)

I, m, n

= y (+Ie"c,"c.' e)(+ Ie-"c,c," „ Ie&(+Ie-'"c c„' „„IIe&
I, m, n

Lj —n, k —(i —n) (A15)

according to the definition (4.8) of L;i. This completes the proof of Eq. (4.18).

APPENDIX B: MATRIX ELEMENTS AND RECURSION FORMULA
FOR THE AVERAGE-VALUE FUNCTIONAL

Here we shall derive the explicit formal expression for the matrix elements of the average-value functional for an ar-
bitrary operator. On the basis of Eqs. (3.25) —(3.29) one obviously can expand

',
,
(e

I

[s",[s", . . . , [. . . [[w,s],s], . . . , s]. . . ]] I
+), (B1)

wherein the amplitude S" is repeated m times, and the amplitude S is repeated n times. On the other hand, the
defining equation (3.31) for the matrix elements directly gives

$0, $y-, 5o ' 5o

We shall use this definition together with (Bl) where now S and S" must be expressed as functionals of o and o.
We shorten the notation by defining

547; 50 . ~~k ~~1

and use Eqs. (3.11), (3.21), and an equation analogous to (3.22) to obtain, at the point cr =O' =0,

S( )
——Cj

(B2)

(B3)

(B4)

'1 n
( 1)nCt

(J) J' —i n
(B5)

all the other derivatives of S being zero. In the same way one gets at the points o. =m=0

other derivatives of S" being zero.
We apply these results to the intermediate expression

(B6)

(i| i
I

A j, j„)= g, (@
I

[S",[S",. . . , [ . [[A,s„,],S„,], . . . , S„,] ]] I
4),

6o . . 5c. M M!
I l 'm

(B7)

where the factor S" appears M times and where now the limit o. =o =0 is not yet taken. The I derivatives with
respect to the amplitudes o. , must be distributed in all possible permutations among the amplitudes S" and S(J) in

(B7). The final outcome can be cast in the form

I~ Ij& 1

m„=0 P Ii Iml ——0
=X X X(—')' ~ m„

M!

&&(e
I [c„;. [c,"»[ [c„„„[ [[w c,', , ],c,'. ..] . c,'„„]] 1]] I

e&

(B8)
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where P Ii I denotes permutations over the set Ii I, M is the integer number

M =m —m1 —mq —.. . —m„)0,
and I denote the index sums

I =k + . . +k1 1

1 1 ml

(B9)

I.=k'+ . +k" (B10)

and the index set I
k~ p = 1, . . . , n + 1; v= I, . . . , m„j (with m„+ &

=—M) is a permutation of the set (i &, . . . , i ). An
index sum I may also be an empty set.

It is obvious that the matrix element (B2) is symmetric with respect to internal permutations of the indices Ii] or
Ij ]. This is compatible with the fact that expressions of the form

„=[ [[A,K, ],Kq], . . . , K„] (B1 1)

are symmetric in the indices 12 . n, if the operators IK; ) form a commuting algebra.
Formula (4.16) in Sec. IV gives an identity between the functional derivatives of an average value. It can be recast

in the form of a condition on the matrix elements of the operator. By using the defining equation (3.31) we readily
derive the following recursion formula:

+ g (J '1'''' A IJ& (Ji —') J
1=1

+ g +'(i i, i
~

A j, . . . , (j& j), . . . j)"—
(=1

n n

+ & & (ii '''i lA lji (jt, i) (jt j) j )"
I& =1 1=1

(l~k)

(B12)

where the superscripts on the bra and ket states are an added reminder of the number of configuration indices in the
states. This recursion equation is derivable also from the explicit expression (B8).
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