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The dynamical multifractal spectrum of hyperbolic systems is found to be the fundamental
equation in a kind of statistical-mechanics formalism for both permanent and transient chaos. It
is shown that the free energy may appear in an eigenvalue problem, the solution to which provides
a new method for calculating dynamical spectra. Explicit examples are given and the possibility
of extending the method for higher-dimensional systems is discussed.

Fluctuations in the divergence of nearby trajectories is
an essential feature of chaotic motion. DiA'erent quanti-
ties related to these fluctuations have been proposed to
characterize the dynamical properties of chaotic sys-
tems. ' Recently, Eckmann and Procaccia have pointed
out that, in analogy with the static multifractal spec-
trum, ' there exists a spectrum [g(A)] of dynamical
scaling indices (A). It is, therefore, of interest how g(A)
is related to other quantities and how it can be determined
in practice. These questions are relevant also for transient
chaotic phenomena extensively discussed in the litera-
ture.

In this Rapid Communication we first find a link be-
tween g(A) and the statistical-mechanics formalism
worked out in Ref. 3, and some other quantities, for both
permanent and transient chaos. Then it is shown that the
free energy may appear as an eigenvalue of a linear equa-
tion. From the solution to this new eigenvalue problem,
which is found very fast numerically, the dynamical spec-
trum follows.

We shall be mainly interested in one-dimensional (1D)
hyperbolic maps x'=f(x) modeling systems with ex-
tremely strong dissipation. The dynamical scaling index
A is defined by writing the probability of a chaotic trajec-
tory of length n)) 1 (using a finite resolution in space) as
exp( —nA). For 1D maps the scaling index turns out to
be

A=n -'lnIf'"'(xl)
I

—a,
where f t"1 stands for the nth iterate of the map, the prime
denotes the derivative, and x ~ is the starting point of the
trajectory. It seems natural to assume that for long tra-
jectories a is a constant, the escape rate governing the ex-
ponential decay of the transients. ' ' For permanent
chaos a =0.

The number of times the scaling index takes on a value
between A and A+dA is exp[ng(A)]dA, from which a
relation follows between the dynamical spectrum g(A)
and the generalized entropies Eq. ' '

(q —1)Kq =qA(q) —g(A(q) ),
with

Consequently, A(1) =Kl, where for 1D maps Ki =X —a
(Ref. 17) and X denotes the Lyapunov exponent.

The statistical-mechanics formalism of Takahashi and
Oono is an intuitive extension of the statistical formalism
worked out for axiom-A systems. The central quanti-
ty of Ref. 3 is the partition function

exp[ —pin I
f'"'(y) I),z„(p) =

~ p(f( ))

where P(f i"1) denotes the set of fixed points of f i"1 and

p E ( —~, ~) is a free parameter, the inverse tempera-
ture. For large n the free energy F(P) is defined by

Z„(P) =exp[ —PF(P)n] . (5)

Standard thermodynamic relations yield the internal ener-

gy E(p) and the entropy S(p). It has been claimed that
for 1D maps with chaotic attractors

Z„(P) =exp( —aPn)(exp[(1 —P)An]) . (7)

Note that the property Z„(1)—exp( —an) found in Ref.
14 is inherent in this equation.

The average to be taken in (7) can be evaluated as an
integral over A, provided ergodicity holds, since the proba-
bility distribution of A is known:

Z„(P)—exp( —aPn )J exp [ PAn+ ng (A) ]dA —. (8)

For large n, the application of the saddle point method
(used as in Ref. 7) leads to

S(0) =Kp, S(1)=Kl, F(l ) =0, E(1)=X

When connecting this formalism with the g(A) spec-
trum we first observe that for large n Z„(p) appears as an
ensemble average (see also, Ref. 5). The stationary distri-
bution on the invariant set associated with the dynamics is
based in hyperbolic systems on the fixed points of f t"1.

In the case with a chaotic attractor the weighting factor at
the fixed point y is just I f " (y) I

'. For transient chaos
I
f"

I is to be multiplied by the probability that the tra-
jectory has not yet escaped. The weighting factor is,
therefore, exp(an) I f " (y ) I

' in this more general
case. ' Thus, by means of (1) we can write

g'(A(q)) =q . (3) PF(P) =PA(P) —g(A(P))+aP,
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where A(P) A(q P) is given by (3). Thus, we have ob-
tained a direct relation between the spectrum g(A) and
the free energy F(p). As a consequence of Eqs. (9) and
(2) we find in hyperbolic systems

K K(p) p[F(p) a]—
(io)—1

Furthermore, since

E (p)
8 [pF (p) ]

A(p) +

S(P) =P[E(P—) —F(P)]
=g(A(P)) =PA(P)+(i P)K(P—) .

Consequently,

(i2)

the special scaling index A(q) of Eq. (3) turns out to be,
up to an additive constant, the internal energy taken at the
temperature I/q. Finally, for the entropy, we have

The results (9)-(12) for a=0 are generalizations of
Eq. (6). They are, however, valid also for a &0, where
they contradict the conjectures S(Dp) =K~ and
E(Dp) =k formulated in Ref. 3 and in the addendum of
Ref. 5, respectively. It seems that the discrepancy origi-
nates from another choice of the weighting factor when
writing the partition function as an average. A simple ex-
ample below illustrates that this choice may lead to incon-
sistencies.

It is to be mentioned that the formula for Kq obtained
by the method of Ref. 8 can be shown for everywhere-
expanding maps to be equivalent to Eq. (10) for a =0. An
extension of the calculation for transient chaos would lead
to results which are in accord with Eq. (10) for a & 0.

After finding the link between g(A) and the free ener-
gy, it is now shown that F(p) may appear as an eigenval-
ue in a class of equations. By extending the ideas of Ref.
19, let us consider the recursion

g(A) =S(E)
~ E „+.-. (i3) (is)

g(A(P) ) PA(P) = (—i —P) (~ —a)
+ g (1 —P)'Q/l!,

I(& 1)
(i4)

where the 1th cumulant has been denoted by Q~n, Q~ =A, .
QI thus appears as the lth derivative of ( —1)'+'pF(p)
taken at p l.

Furthermore, since the partition function is expect-
ed'3' 2 to tend toward a constant for p =Dp where Dp is
the fractal dimension of the strange invariant set (repell-
er), the well-known relation' '

a g (1 Dp)'Q(/l!—
1()0)

is recovered.
The second cumulant Q2 has a special meaning since it

can be interpreted as a diffusion coefficient. ' From (14)

The dynamical spectrum g(A) is, thus, essentially the fun-
damental equation S(E) of the statistical formalism.

Other important relations follow from (7) by consider-
ing ln

~

f"
~

as a random variable. Its cumulants were
shown to be linear in n. Provided that the cumulant ex-
pansion converges, one finds

where p E ( —~,~) and R(p) is positive. We have inves-
tigated Eq. (15) for single humped maps beyond crisis, 's

where chaotic transients are present, and in crisis (or fully
developed chaos ') cases, where a chaotic attractor shows
up; however, the properties discussed below may be valid
in more general cases too. These studies suggest (in
another context, see Ref. 24) that for any p there exists
one single prefactor R*(p) so that iteration (15) leads
to a unique nontrivial limit solution Q

~~~ (x )
=lim„g„(x) for smooth positive initial functions
Qq~~~(x). In cases with a chaotic attractor, Eq. (15) for
P =1 [R*(P)=1] is the well-known Frobenius-Perron
equation. ' For transient chaos, R *(Dp) = 1 and
Q

' (x) is the invariant density on the coarse grained re-(D,)

peller, ' while Q~'~(x) represents the density of the condi-
tionally invariant measure' and R*(l ) =exp(a). '

Since the limit solution is independent of the initial
function we choose the latter to be unity. Then, the itera-
tion of (15) yields

g„'P'(x') =R"(P)V„(P,x'),
where

g, = —A'(P = i) - —i/g "(A(i )), v„(p,x') = exp[ P ln If '"'(x ) I ] .

i.e., Q2 is the specific heat taken at p 1 in the statistical
formalism. In a local parabolic approximation around the
maximum of the spectrum the half-width I =A(0)—A(1) turns out to be Q2 which equals 2(Kp K~) in
this approximation.

It is worth noting that a slightly diff'erent dynamical
spectrum has been introduced and investigated by Fujisa-
ka' and Benzi, Paladin, Parisi, and Vulpiani for per-
manent chaos. They both considered n 'ln(~ f t"~

~
~),

n»1 which they denoted by qX~ and L(q), respectively.
It is obvious from our considerations that

qX~ L (q) =g(A(1 —q)) + (q —1)A(l —q) + aq,
including the case of transient chaos as well.

and

R*(P) =exp[PF(P)]

g '~'(x') =V„(p,x')/Z„(p) .

(Is)

With the eigenvalue R*(p) we have for large n,

V, (P,x') =[R*(P)] "g ~ (x') .

It is reasonable to assume that the nth preimages of x'
form an ensemble which is as representative as the set of
fixed points off ~"~ if n && 1. By accepting the equivalence,
we have V„(P,x') —Z„(P) and Q ~ (x') plays the role of
an x'-dependent normalization constant. Thus we obtain
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In fact, the results of Refs. 19 and 21 have shown, in
comparison with the properties F(D()) =0 and F(1) a,
that Eq. (18) is valid for P Do and P =1, respectively.

As an example in fully developed chaotic state of
nonhyperbolic systems let us shortly consider the case
f(x) =1 —2x . The slope of all fixed points of f(") is then
2" with the exception of x = —1, where the slope is 4".
Thus, one finds from (4) and (5) that PF(P) =(P —1)ln2
if P~ —1, but, since the leftmost fixed point becomes
dominating for P & —1, F(P) =ln4 in this range. A
direct solution of Eq. (15) yields the same result for
lnR*(P) illustrating that relation (18) can hold also for
nonhyperbolic systems. [The deviation from a uniform
distribution in IC(P) =PF(P)/(—P —1) seems to be the ana-
log of the deviation from unity in the spectrum of gen-
eralized dimensions. ] Note that Kq-t)&E(P) in this
case.

Since the iterative solution of Eq. (15) converges ex-
ponentially fast, a numerical determination of the eigen-
value R (P) may provide a powerful method, via Eq.
(15), for calculating the free energy. Further quantities
like IC~ and g(A) can then be derived in hyperbolic cases
through relations (10), (12), and (13). This method may
be of special importance for transient chaotic phenomena
with relatively large values of a when it is difficult to find
long trajectories in the vicinity of the repeller [and a direct
calculation of Z„(P) is also cumbersome].

We have also investigated the quadratic map
f(x) =1 —ax for a & 2. By considering R(P) as a free
parameter at fixed P, Eq. (15) was iterated with a con-
stant initial function. The rapid convergence was used to
find an approximate value for R*(P) as the value where

~
gss (x) —Qp (x)

~
& e with a small e and arbitrary x.

Figure 1 exhibits the results obtained for a =2.1 by calcu-
lating F(P) in this way and by using the general formulas.

The map defined by f(x) =1 —aix for x ~ 0 and
f(x) =1+a2x for x & 0 provides an exactly solvable ex-
ample in the range a~ '+a2 ' ~ 1. The validity of rela-
tions (9)-(13) can now be checked in an analytic way and
we can see that the results contradict the conjectures
S(Dp) =K) and E(Dp) =X. The dynamical spectra E~ or
g(A) calculated via Eq. (18) coincide with the results of
Ref. 8. Instead of citing them explicitly, we mention that
there is a nontrivial connection in this system between the
dynamical and static spectra. Namely,

P[F(P) —a] I t)-, —.(&)

=[PA(P) —g(A(P))]
~ p- —,( ) -ar(q), (19)

where

r(q) =(q —1)D, =qa(q) —f(a(q))
(see Ref. 10), and D~ has been given in Ref. 24. This
shows that certain features of the f(a) spectrum may con-
tain information about the dynamics as claimed in Ref.
34. Of course, the dynamical spectrum is the more gen-
eral one from which r(q) follows. In the permanent chaos

K(0)
(a) b)

1.0

; 1.0

-)n2

0.5
5

I 0
1.G A

FI(J. 1. (a) The spectrum K(p) p[F(p) —F(1)]/(p —1)
obtained via Eq. (18) for f(x ) 1 —2. 1x 2 in the range
—5 ~ p ~ 5. (b) The spectrum g(A) determined through Eqs.
(11)-(13)and (18). S(p) seems to reach a finite constant for
P) 3 inducing a left end point in g(A). The range of investiga-
tion was

~ P (
~ 10.

case a) '+a2 ' 1, g(A) is nontrivial but all generalized
dimensions are unity in this example.

Finally, it is mentioned that the eigenvalue problem
(15) can be generalized' ' ' for invertible maps of the
plane x' T(x'). The derivative f'(x) is to be replaced
then by X)(x), the local coefficient of expansion along
the unstable direction, and it is convenient to formulate
the recursions in terms of certain measures p ~ . They
read

(p,'t'))'=R(P)T(pJ(p) () i(x, ) ~

' t'), (20)

where p~~) stands for the P measure of a tiny region
around x~, and the induced map in the space of measures
has been denoted by T too. It was argued in Ref. 24 that
a nontrivial limiting measure can be reached only at a
unique choice R*(P) of the ~refactor at any fixed P.
[R*(1)=exp(a) ' and R*(Do' ) 0 (Ref. 19), where
D(%') is the fractal dimension along the unstable direction. ]
The definition pF(p) =lnR (p) may then provide an ex-
tension of the statistical formalism of Ref. 3 for higher di-
mensional systems but the relation to g(A) remains to be
clarified.

Note added in proof After submit. ting this paper the
author became aware of the manuscript by Bohr and
Rand dealing with similar aspects from a diH'erent point
of view. The quantity a of Ref. 36 plays the role of the
energy E, and their S(a) is analogous with our S(E).
Further related papers are Refs. 37 and 38, where certain
dynamical spectra of higher dimensional chaotic attrac-
tors are considered.
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A. Csordas for useful remarks. This work was supported
by grants provided by the Hungarian Academy of Sci-
ences (Grants No. AKA 283.161 and No. OTKA 819).
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