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Indirect-path methods for atomic and molecular energies, and new Koopmans theorems
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Staircase and ladder methods are proposed for atomic and molecular total and dissociation en-
ergies. In both methods, the energies are generated by employing indirect paths via information
obtained from eAective potentials. In the staircase method, the energies are determined in steps
by successive alternations of electron and proton removals. Within the Hartree-Fock (HF) stair-
case formulation, the energy for electron removal is taken as the negative of the highest-occupied
orbital energy, and the energy for proton removal is obtained as the diA'erence of conventional HF
total-energy expectation values. The HF staircase total and dissociation energies are significantly
superior to the traditional HF values. In the ladder method, total energies are obtained by sum-
ming successive highest-occupied orbital energies for fixed nuclei. Both methods are useful within
more advanced many-body theories and are exact within exact Kohn-Sham density-functional
theory where the magnitude of the highest-occupied orbital energy equals the experimental ion-
ization energy. Self-interaction-corrected density-functional results are presented. We assert two
new Koopmans theorems: (1) the energy e of the highest-occupied HF orbital would give the ex-
perimental ionization energy I if the exact ground-state wave function were free of single excita-
tions out of this orbital, and (2) e= —I when the exact correlation potential, v, ([n];r), is added to
the Fock potentia1 and self-consistency is achieved in both the HF orbitals and in the density n.

We propose new methods, the staircase and ladder
methods for atomic and molecular total and dissociation
energies. In both methods, total electronic energies are
generated by employing indirect paths via information ob-
tained from eff'ective potentials. ' In the staircase method,
the total electronic energy of an atom or molecule is deter-
mined in steps by means of successive alternations of elec-
tron and proton removals. ' Further, it is the heart of this
method that the energy for electron removal is computed
diA'erently than the energy for proton removal. For in-

stance, within the Hartree-Fock staircase formulation, the
energy for electron removal is taken as —s, the negative
of the highest-occupied orbital energy (Koopmans ioniza-
tion energy), and the energy for proton removal is ob-
tained as the difference of conventional Hartree-Fock
total-energy expectation values. For additional examples,
within the more sophisticated configuration-interaction
(CI) or multiconfiguration self-consistent-field (MC-
SCF) formulations, the extended Koopmans ionization
energy is taken for electron removal, and the energy for
proton removal is obtained as the diff'erence of traditional
CI or traditional MC-SCF expectation values. Any num-
ber of formulations may be used for electron removals and
for proton removals. In the ladder method, total energies
are obtained by summing successive first ionization ener-
gies for fixed nuclei (using, e.g. , successive highest-
occupied orbital energies).

Tables I and II present staircase results for atomic total
energies and for molecular dissociation energies, respec-
tively, as obtained from Hartree-Fock (HF) wave func-
tions. All the Hartree-Fock staircase results in these
tables are significantly superior to the corresponding tra-
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ditional Hartree-Fock values, even though only Hartree-
Fock wave functions are employed for the necessary stair-
case data. In essence, we have obtained approximate
correlation energies from Hartree-Fock information.

To illustrate the staircase method, for the Li atom the
Hartree-Fock staircase energy, E~'F, is given by

EHF GLi+ (EHF EHF ) + eHe+EHF (1)

where E~F refers to the traditional Hartree-Fock expecta-
tion value. Note that since e (AF ~F, it follows that
E~F & E~F, so that E~F is in the right direction compared
with EgF.

For molecules, there are many staircase paths to the to-
tal electronic energy, E~F. The following path appears to
work reasonably well and was used for all the molecules in
Table II: All along the path, an electron is only removed
from a neutral molecule, and a proton is only removed
from the heaviest atom in a molecule with a +1 charge.
Also, a positive ion is fused into the heaviest atom of the
starting neutral molecule of interest when the ion is
isoelectronic with this heaviest atom. This allows atomic
staircase errors to cancel, in part, molecular staircase er-
rors. For instance, E~F' is given by

EL~2
& +(EL4 ELiHe)+ +(ELiHe+ EHeHe)
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TABLE I. Total atomic energies: Hartree-Fock staircase. Energies and energy differences are ex-
pressed in hartrees.

Atom (X)

He (2)
Be (4)
C (6)
O (8)

Ne (10)
Mg (12)
Si (14)
S (16)

Ar (18)

Experimental '
EGs

—2.904
—14.667
—37.845
—75.067

—128.94
—200.06
—289.37
—398.14
—527.60

Traditional
Hartree-Fock error

EHF —Er.s

0.042
0.094
0.157
0,258
0.39
0.44
0.52
0.63
0.79

Staircase error
EHF EGS

—0.014
0.024
0.031

—0.117
—0.26
—0.21
—0.17
—0.18
—0.15

'Hartree-Fock data taken from E. Clementi and C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974).
The number shown is the Hartree-Fock energy plus the correlation energy.
bCorrelation energies from A. Veillard and E. Clementi, J, Chem. Phys. 49, 2415 (1968), but with the

sign of the Lamb-shift correction reversed [H. Stall and A. Savin (private communication)l.

We call our method the "staircase method" for the fol-
lowing reasons. For any atom or molecule of interest, con-
sider the total number of electrons as the ordinate of a
graph and the total number of protons as the abscissa.

TABLE II. Molecular dissociation energies: Hartree-Fock
staircase. Dissociation energies (energy to split the molecule
completely into atoms) are expressed in hartrees. All dissocia-
tion energies were computed at the experimental geometries.

Molecule

Traditional'
Hartree-Fock

DHF

Experimental
D

Staircase'
DHF

H2
Li2
Bp

C2
N2

H20
NH3
CH4

0.132
0.007
0.052
0.117
0.174
0.242
0.313
0.521

0.175
0.038
0, 1 1

0.228
0.364
0.371
0.473
0.669

0.164
0.030
0.070
0.160
0.269
0.418
0.495
0.669

'A 6-311G** (as described in Ref. 5) Gaussian basis set was

employed and unrestricted antisymmetric product calculations
were performed for all species. Near Hartree-Fock quality was

always achieved. All the molecules listed in this table were tak-
en to be spin singlets, except for the triplet B2.
bThe experimental dissociation energies (and geometries) for
the dimers were taken from G. S. Painter and F. W. Averill,
Phys. Rev. B 26, 1781 (1982). Experimental dissociation ener-
gies for the polyatomic molecules were taken from W. J. Hehre,
L. Radom, P. Schleyer, and J. A. Pople, Ab Initio Molecular
Orbital Theory (Wiley, New York, 1986). The geometries of
the polyatomics were taken from pages F-217 and F-218 in

Handbook of Chemistry and Physics, 57th ed (CRC Pre.ss,
Cleveland, 1976).

The corresponding dissociation energy, DHF, is then ob-
tained from

DHF 2+HF+ +HF +HF
—H20 —

H
—O

—H20

The removal of an electron at constant proton number is
thus a vertical transition down a step, while the removal of
a proton at constant electron number is a horizontal tran-
sition along a step. (The HF "ladder method" corre-
sponds to the removal of only electrons, not protons; only
e's are employed, not AEHF's. Thus far, we have found
the HF ladder method to be not quite as generally
effective as the HF staircase method. )

In the construction of Table II, a 6-3116**basis and
a completely unrestricted antisymmetric product (Slater
determinant) were used for each species along a staircase.
Also, the experimental geometry of the starting molecule
of interest was employed for each intermediate species
and consistency in spin multiplicity was maintained all
along a staircase. For example, if removal of the highest-
occupied orbital from a neutral species yielded a triplet
for the "frozen" remaining antisymmetric product, then
the subtraction of two Hartree-Fock triplet energies was
used for the removal of the next proton, and the next elec-
tron was removed from a triplet even if the triplet was not
the multiplicity of the ground state.

Why does the staircase method work as well as it does
with only Hartree-Fock-quality wave functions'? First of
all, most of the removal energy along the staircase is asso-
ciated with the horizontal parts; in the absence of certain
zero-order degeneracies ' these isoelectronic energy
changes are given exactly through second order by
Hartree-Fock wave functions. For the vertical parts, a
given

~ s~ typically deviates from the corresponding ex-
perimental ionization energy, I, by about 10%. That the
error is not typically higher is usually explained by the
partial cancellation of relaxation eA'ects and correlation
eA'ects. An additional explanation will now be presented.

It is well known, from Brillouin's theorem, that singly
excited antisymmetric products (determinants) make very
small contributions to the exact ground-state wave func-
tion. This is so because any linear combination of the
Hartree-Fock determinant with a singly-excited deter-
minant yields no more than a single determinant, and we
know that the Hartree-Fock wave function is itself the
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best possible single determinant. The major corrections to
the Hartree-Fock wave function thus arise from double or
multiple excitations. With this in mind, the relative suc-
cess of the e's follows, in part, from one of our new Koop-
mans theorem which we now state.

Unless prohibited by symmetry, i e! would equal I if
the exact ground-state wave function were to contain no
antisymmetric product obtained by replacement of the
highest-occupied orbital in the Hartree-Fock ground state
(that is, if the ground-state wave function were free of sin-
gle excitations out of the highest-occupied Hartree-Fock
orbital) .

To outline the proof of the theorem, consider the Li+
ground-state wave function, +L;+(xi,x2). It can be
shown that, with r3

VL;+(xi, x2) =B(r3) [AyiH"(xi)yP"(x2)l
I I

xexp[[(2I) ' —(2 i
s'! ) ' ]r3j+ (5)

where B(r3) does not behave exponentially, A is an an-
tisymmetrizer, iI)i

" and p2
" are the two lowest occupied

spin orbitals of the Hartree-Fock wave function for neu-
tral Li, I is the ionization energy of Li, and e is the energy
of the highest-occupied spin orbital of Li, p3 ". The term
shown on the right-hand side of Eq. (5) is part of a com-
plete configuration-interaction expansion for O'L;+ (xi,
x2). We start with the complete CI expansion for the
ground state of neutral Li, +L;(xi,x2, x3). We choose one
of the terms in the expansion to be the Hartree-Fock
ground state of Li, A&i "(xi)&2 "(x2)$3 "(x3). As im-
plied by previous studies, ' to form +L;+(xi,x2) from
%L'(xi x2 x3), we then take r3 ~ in each CI term of
% Li (x i x 2 x 3 ) and multiply the resultant function by
D(r3) exp[(2I) ' r3], r3 ~, the inverse of the form of
the asymptotic decay ' of the square-root of the electron
density of Li, where D(r3) does not behave exponentially.
Finally, the factor exp[ —(2!s! ) 'i r3] in the term shown
on the right-hand side of Eq. (5) arises from the asymp-
totic decay' of iI)3 "(x3).

Now, assume that +L; contains no singly-excited an-
tisymmetric products with respect to replacement of p3 ".
Then the term shown in Eq. (5) would be the only one

containing A/i "(xi)$2 "(x2), so that there would be no
possibility of the cancellation of this shown term as
r3 ~. This means that +L;+(xi,x2) would blow up if
! e i ( I, which is absurd. On the other hand,

Api "(x i )pz "(xz) would make absolutely no contribution
to +L;+(xi,xq) if ! si ) I, which is also absurd [unless
dpi "(xi)&2 "(xz) happens to be of different symmetry
than +L;+(xi,x2)]. Hence, ! s! =I, and B(r3 ~)
=const.

As a further test of the staircase method, we have deter-
mined the H2 dissociation energy from a two-
configurational MC-SCF wave function. ' The total
staircase (or ladder) Hz energy is obtained simply by add-
ing the electron removal energy, as computed from the
MC-SCF wave function by the extended Koopmans ap-
proach, to the total energy' of H2+. The resultant
MC-SCF staircase dissociation energy turns out to be in
error by only +0.007 a.u. This is significantly superior to
—0.022 a.u. , the error obtained by the traditional MC-
SCF expectation value. As a generalization of our first
new Koopmans theorem, it can be shown that if the exact
ground-state wave function were free of single excitations
out of the MC-SCF wave function then the extended
Koopmans ionization energy would equal the experimen-
tal ionization energy.

It should be observed that the staircase and ladder
methods would yield exact total energies within the exact
Kohn-Sham density-functional theory. ' This observation
follows from the ionization potential theorem: "
The magnitude of the highest-occupied orbital energy in
this theory equals the first ionization energy. From just
the exact Kohn-Sham one-electron potentials, the exact
ground-state energy could be constructed by moving down
the ladder. Whether or not this method yields accurate
total energies from approximate density functionals de-
pends sensitively upon whether or not the approximate
Kohn-Sham potential has the correct long-range behavior;
poor results for atoms are obtained with the local-spin-
density approximation, ' but good ones with the self-
interaction correction (SIC). Table III gives staircase
and ladder SIC results, including the particularly accu-
rate staircase SIC-HF energies. Almost all of the indirect
SIC results are superior to the corresponding direct SIC

TABLE III. Total atomic energies: SIC density functional. Consult Ref. 22 for the SIC formula-

tion. The error, in hartrees, is the calculated value minus the experimental value as given in Table I. In

the last column, highest-occupied SIC eigenvalues are taken for electron removals and Hartree-Fock ex-

pectation values are taken for proton removals.

Atom (N)

He (2)
Be (4)
C (6)
0 (8)

Ne (10)
Mg (12)
Si (14)
S (16)

Ai (18)

Direct
error (SIC)

—0.015
—0.027
—0.085
—0.187
—0.34
—0.47
—0.59
—0.70
—0.82

Ladder
error (SIC)

—0.044
—0.033
—0.010

0.006
—0.04

0.13
0.32
0.53
0.78

Staircase
error (SIC)

—0.044
—0.045
—0.065
—0.160
—0.35
—0.46
—0.54
—0.62
—0.71

Staircase
error (SIC-HF)

—0.044
—0.024
—0.006
—0.034
—0.12
—0.11
—0.04

0.02
0.09
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results. Furthermore, the indirect-path energies, obtained
from the exchange-correlation potentials, v„„must match
the traditional direct energies obtained from the corre-
sponding exchange-correlation energies, E„„if the density
functionals are extremely accurate. Hence, we recognize
a severe test upon and a way to improve upon approximate
density functionals. In any case, the ladder construction
should be especially useful with certain accurate direct
approximations to v„, (Refs. 22 and 23) which are not de-
rived from any approximate E„.

One actually need not know the whole local Kohn-
Sham potential to obtain the exact first ionization energy.
As a corrollary of the formalisms of Kohn and Sham (Sec.
II B), ' and of Baroni and Tuncel, only knowledge of the
exact correlation potential is necessary. This brings us to
our second new Koopmans theorem.

e= —I when e is obtained from a Hartree-Fock calcula-
tion where the external potential is modified so as to con-
sist of the ordinary Coulomb potential of interest, v(r),
plus the exact correlation potential, v, ([nos];r), where

nGs is the true interacting ground-state density for v(r).
In other words, s= —I when v, ([n];r) =BE,/6n(r) is
added to the Fock potential and self-consistency is
achieved in both the HF orbitals and in n.

This new Koopmans theorem follows directly from the
fact that Baroni and Tuncel have shown that n~s is
yielded by that single determinant which minimizes

we already know that I controls the long-range behavior
of nGs.

For most practical purposes, a first-order correction,
fv, ([nHF];r) ~ &HF(r) ~

dr, to the ordinary Koopmans ion-
ization energy would su%ce if v, were known accurately
enough, where pHF is the highest-occupied HF orbital of
v(r). (For most closed-shell systems, the correct v, must
have a positive piece. In contrast, the v, of the local-
spin-density approximation' is negative everywhere, so
that its first-order correction would often be in the wrong
direction. )

Baroni and Tuncel do not quite use the standard
density-functional definition of E,. To employ the stan-
dard definition, simply perform iterative modified
Talman-like calculations. That is, minimize

until self-consistency is achieved in n, with the constraint
that each trial N is an eigenstate for some local potential.
The optimizing local potential gives I because the minim-
izing @ is the exact Kohn-Sham determinant for the in-
teracting system of interest.
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