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Persistence of the Ivantsov continuum despite the existence of a length scale

Douglas A. Kurtze
Department of Physics and Institute for Nonlinear Studies, Clarkson University, Potsdam, New York 13676

(Received 16 April 1987)

We show that the continuous family of steadily advancing, shape-preserving solutions of the
Ivantsov problem for dendritic crystal growth is not necessarily broken down to a discrete set by the
introduction into the model of an eA'ect which defines a natural length scale for the problem.
Specifically, we give an exact solution of a model which includes a special anisotropic heat-loss term
in the liquid phase, which can be used to define length and velocity scales for the problem. The re-

sulting needle-crystal solutions for a given undercooling of the liquid form a continuous family.
There is a definite relation between tip curvature and growth velocity for these solutions, but the
latter is allowed to take any value above a finite lower limit.

The starting point for most studies of dendritic crystal
growth is the solution by Ivantsov' of the problem of a
solid "needle crystal" growing at a constant speed into an
undercooled melt, with the solidification front being iso-
thermal. For any given undercooling, this model admits a
continuous family of solutions whose members are related
by a simultaneous rescaling of length and time; the under-
cooling determines only the product of the growth veloci-
ty and, say, the radius of the needle crystal's tip (or any
other length characteristic of the shape of the
solidification front). The existence of this continuum of
possible steady states is often attributed to the fact that
the parameters appearing in the model cannot be com-
bined so as to produce a length or a velocity, so that the
dimensional information needed to define a unique growth
velocity or a unique tip radius is lacking. Thus one might
expect that introducing any effect into the model which
provides this information would break this continuous
family down to a unique solution, or at most a discrete set
of solutions, for each undercooling. Indeed, it has recent-
ly been found that including the effect of surface tension
on the temperature at the solidification front does this, '-

although if the surface tension is isotropic, it produces the
drastic but disappointing result of destroying all of the
steady solutions. Some effect like surface tension (or more
general interface kinetics) is needed, at any rate, to stabi-
lize the solutions against short-wavelength perturbations.

In this paper we show that the lack of a length scale is
not solely responsible for the existence of the continuous
infinity of solutions of the Ivantsov model; some effects
which define length scales for the problem still lead to
continuous families of solutions. We do this by giving an
exact solution of a problem in which a heat-loss term is
included in the liquid phase, and showing that this prob-
lem also admits a continuous family of steady states. Un-
fortunately, in order to obtain this exact solution, we are
forced to give the extra term a special dependence on the
angle between the isotherms and the direction in which
the dendrite is growing; however, the required angular
dependence does not seem too unnatural, and it may even
be possible to find a physical system for which this "rnod-
el" is realistic. That the mere introduction of a length

scale into the problem does not necessarily break up the
Ivantsov continuum is also suggested by a recent result of
Lemieux, Liu, and Kotliar, who showed by a singular
perturbation calculation that isotropic linear interface ki-
netics preserve the continuum.

In the one-dimensional problem of the thermally con-
trolled solidification of an undercooled melt, it is well
known that the solidification front generally advances at a
rate which decreases as t ' . Solutions in which the
front moves with a constant velocity exist only when the
undercooling is equal to L /c, where L is the latent heat of
solidification and c is the specific heat of the liquid. At
this undercooling, however, solutions exist for all front ve-
locities. This is actually not very surprising, since a liquid
at an undercooling of L /c will have its temperature raised
exactly to the melting temperature T~ by the latent heat
released when it solidifies, and so will not tend to melt
back. The indeterminacy of the front velocity follows
from this, together with the fact that the model only al-
lows a single solid-liquid interface„' it is also indicated by
the fact that the problem has no natural length, time, or
velocity scales, since only the diffusion coeScient D has
units which include length and time. Since the nonex-
istence of constant-velocity solutions for undercoolings of
less than L/c is a consequence of energy conservation,
one should expect that adding a heat-loss term to the
model (which would define length and time scales) would
remedy this problem. If one includes such a term in the
diR'usion equation, say —I (T —T ) where T is the
temperature of the undercooled liquid far from the front,
then it is easy to show that for each undercooling between
zero and L /c there is a unique steady solution describing
a front advancing at a speed

v =v, (b, )=A/(l —b, )' '

in units of (DI )'~, where the dimensionless undercooling
6 is given by

b, =c(TM —T )/L .

In a two-dimensional problem with the same isotropic
heat-loss term, any needle-crystal solution advancing at
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velocity v in the x direction would have to be asymptoti-
cally Oat far from the tip, with its normal making an an-
gle cos '[U~(b, )/U] with the x direction in order for the
normal velocity of the front to be U~(b. ) far from the tip.
Thus the velocity of the (putative) needle crystal must be
greater than v, (b, ). In a previous paper we have shown
that the method used by Ivantsov to solve the problem
without heat loss fails to yield solutions when an isotropic
(linear or nonlinear) heat-loss term is included. However,
a solution is possible if the heat-loss term has a special an-
isotropy, as we now show.

We consider a pure two-dimensional liquid which is ini-
tially undercooled, and which solidifies due to heat
diffusion without convection. We include in the diffusion
equation —in the liquid only —an anisotropic term
describing heat loss to the substrate, which has the special
form —I [(BT/Bx)/

~

V'T
~ ] (T —T„). The quantity in

brackets is the cosine of the angle between the x direction
and the normal to the isotherm through the point in space
at which the term is being evaluated. The coefficient I in
this term has the dimensions of reciprocal time, and so
can be used to define natural units of length, (D/I )'~,
and velocity, (DI )' . In terms of the resulting dimen-
sionless length and time and the dimensionless tempera-
ture,

u =c(T —T„)/L,
the steady-state diffusion equation reads

O=V u+v Bu

Bx
Bu

(3x
iVu[ u,

where n is the unit vector normal to the front and direct-
ed into the liquid, v„ is the local normal velocity of the
front, and the gradient is evaluated on the liquid side of
the front. We have used the fact that the entire solid re-
gion is at the melting temperature to eliminate the gra-
dient on the solid side of the front. We are now interest-
ed in finding a steady-state solution of this model, which
would then describe a needle crystal growing with velocity
v in the x direction while keeping its shape fixed.

Using the methods of Ref. 9, with a constant diffusion
coefficient (and a change of notation), this problem can be
reduced to that of solving the equation

0=1+ —2 +v —p'u p,p

p

where p(u)/2 is the value of x at which the isotherm at
temperature T = T +I u /c crosses the x axis. As in
Ref. 9, an angle-dependent term would generally appear
added to the p outside the parentheses; however, this
would then be the only angle-dependent term in the equa-

where v is the velocity of our frame of reference in natural
units (DI )'~ . The solidification front is taken to be at
the equilibrium melting temperature, u =A. Since the
new term in the diffusion equation depends only on u and
on angles, which are continuous at the front, the Stefan
boundary condition at the front is unchanged,

v„= —Q Vu

tion, so that it would have to be constant in order for the
equation to hold for all angles. As shown previously,
this implies that the isotherms are parabolas, and setting
this constant to zero places the origin at the common
focus of these parabolas. The variable p(u) can then be
interpreted as the radius of curvature of the isotherm at
its tip, where it crosses the x axis. The fact that the iso-
therms are parabolas is not inconsistent with the fact that,
for isotropic heat loss, the isotherms must be straight lines
far from the tip of the needle crystal, because in this an-
isotropic situation the heat-loss term vanishes as the iso-
therms become asymptotically perpendicular to the
growth direction far from the tip.

If we change variables in Eq. (6) from u to p, we arrive
at the linear equation

2u" + v +—u' ——=0,
p 2

(7)

2G'+2G + v + —G —
—,
' =0 .2 1

p
(9)

We then obtain the asymptotic result

G~G„=—[v +(v'+4)' ]/4 (10)

for large p. Note that G is negative.
From Eq. (9) we see that G(p) increases with p for

G„&G(p) & Go(p)= —I(U+p ')+[(U+p ')'+4]' 'J/4,
and decreases for G(p) & Go(p). Thus in order to reach
G as phoo, G(p) must always stay between G and
Go(p); if G(p) ever leaves this range it can never reenter
it. In addition, we see from (9) that G must diverge as
—p

' for small p. Thus 6 must increase monotonically
from —oo as P~O to G as phoo. In other words, 6
takes on every value below 6 for some positive p. This
implies that the condition on G at the solidification front
will be satisfied for some p provided we have v /2A
&

~

G
~

. Rearranging this inequality, we find that
steady-state needle crystals exist in this model which grow
with all velocities satisfying

U&U~(b, ) .

The lower limit represents the one-dimensional solution
discussed above, which is also a solution to the present
problem. Curved needle crystals, which bulge into the

where primes now denote derivatives with respect to p
rather than with respect to u as above. The boundary
conditions on this equation are, first, that u (p) must van-
ish at infinity, and, second, that we must have u =6 and
du/dp= —v/2 at some positive value of p, which then
represents the position of the tip of the needle crystal.
Since the equation is linear, these last two conditions are
equivalent to the condition that the logarithmic derivative
of u,

d (Inu)

dp

must take on the value —v/2A for some positive value of
p. DifFerentiating G(p) and using (7), we find that G
obeys the first-order equation
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liquid, advance with faster velocities; the monotonicity of
G(p) implies that the growth velocity of a dendrite in-
creases as its tip curvature increases.

As a result of this calculation, we see that introducing a
length scale into the Ivantsov problem by means of this
peculiar anisotropic heat-loss term does not break the con-
tinuous family of needle-crystal solutions to a discrete set
whose velocities and tip radii are given by definite multi-
ples of the natural velocity and length scales in the prob-
lem. Rather, these scales have a far weaker effect: they
merely set a nonzero lower limit on the band of allowed
velocities of needle crystals. They do not even set limits
on the radii of the tips. Note that the original Ivantsov
problem, which lacks a velocity scale entirely, is, of
course, incapable even of setting finite limits on this band.

To see how the lower limit on the growth velocity disap-
pears when the heat-loss term is taken away, it suffices to
notice that the inequality (9) gives the minimum growth
velocity in units of (Dl )'~, which vanishes for I 0.
Thus we see that the continuous family of needle crystals
predicted by the Ivantsov model of dendritic growth is a
bit more robust than is often supposed; although it can be
broken by the "right" physical effects, the simple intro-
duction of a length scale into the problem does not neces-
sarily produce discrete steady states.
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