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Classical radiation from a relativistic charge accelerated along a brachistochrone
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The power radiated by an accelerated charge as it moves along a brachistochrone is shown in this
paper to be proportional to {1—v /c ). This is quite unlike the behavior described in the literature,
where, for example, the power radiated varies as (1 —U'/c ), in the case of a circular orbit. The
calculations here are a sequel to a recent paper by Goldstein and Bender [J. Math. Phys. 27, 507
(1986)], in which the brachistochrone for a charge falling relativistically in a uniform electric field is

worked out.

Accelerated charges radiate energy. In the synchrotron
for example, ' the power radiated P(t) at time t is propor-
tional to (1—u /c ), so that for extreme relativistic ve-
locities, i.e., v -c, the loss of energy can be very large. In
this paper we examine the power radiated by a charge as
it accelerates along a brachistochrone in a uniform electric
field.

The brachistochrone problem is well known in the cal-
culus of variations. Briefly, consider a particle which falls
from rest in a uniform force field. Then that curve, join-
ing two points 3 and B over which the time of fall of the
particle is a minimum, is the brachistochrone.

The relativistic generalization of this classic problem
has recently been presented by Goldstein and Bender.
While these authors discuss the problem with uniform
electric and uniform gravitational fields, we shall limit our
attention to the former only. Remarkably, the power ra-
diated by the charged particle as it moves along the bra-
chistochrone is now proportional to (1 —u /c ) and not as
mentioned above. It would therefore follow that as v in-
creases towards c, the power radiated becomes less and
less; the particle therefore loses much less energy long the
brachistochrone compared to a circular orbit in a syn-
chrotron. This is the main result of this paper.

The paper is organized as follows. In Sec. I we present
in a concise manner the results of Goldstein and Bender.
This is followed in Sec. II, by a brief presentation of
relevant formulas for the power radiated P(t) at time t,
and the power radiated per unit solid angle P(n, t) in a
given direction n at time t. We find the treatment due to
Schwinger quite useful here. In Sec. III we present our
results and conclude in Sec. IV.

Two points need to be made. First, Goldstein and
Bender have discussed in their paper three separate
curves for the brachistochrone. They differ qualitatively
from each other; however, the expressions, as well as the
discussion for P(t) and P(n, t) given in Sec. III, pertain to
two of these three curves (k & 1) only. The expression
for the third case, namely, k & 1, can be obtained, as will

be indicated, through appropriate replacements. As will
also be seen in Sec. III, P(t) and P(n, t) can be calculated
exactly, without recourse to approximation. This is possi-
ble despite the fact that the brachistochrones for these
cases do not lend themselves readily to expressions in a
closed form. Secondly, for P(n, t) we have for simplicity
chosen to discuss the case of instantaneous circular
motion, wherein the velocity and acceleration vectors are
mutually perpendicular. The more general case is merely
a matter of detail and has hence been ignored.

I. THE RELATIVISTIC BRACHISTOCHRONE

Consider a particle of mass m and charge e which falls
from rest in a uniform electric field E. With the z axis
pointing vertically downwards, in a two-dimensional x-z
coordinate system, the conservation of energy requires
that

mc =mc y —qEz,

with y =1—U /c . Therefore,

u (z) =c [1—1/( 1+az ) ]'r (la)

or, if tz and 3 are taken as zero, we get

ttt = f dz[1+(dx/dz) ]'r'u '(z) .
0

Clearly tz is a functional of the path joining the origin to
B, so that the trajectory over which the time tz would be
minimum would be a solution of the Euler-Lagrange
equation

with a=qE/mc . Note that v is independent of x. Now
if ds is the arc length of a curve joining two points
infinitesimally close to each other, the time of flight along
ds is dt =ds/u(z), so that the total time taken by the par-
ticle to fall from 3 to B would be

ttt —t„= f dt= f dx[1+(dx/dz) ]' u '(z)
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[x'(z)v '(z)(1+x' )
' ]=0,

dz

with x' =dx /dz. Integrating (3) we get

x (z) = f dz kv(z)(1 —k v )
0

k being an integration constant.
With Eq. (la), we can rewrite Eq. (4) as

(4)

2

k 1 ()=g
(1+az) +g

k =1: x(z)=z[(l+az) —1]'

It is now easy to show that

k =1:
i
v

i
=z(l+az),

1/2

(7a)

(7b)

(8a)

x(z)= z dz[k {1+az) —k ]'
o [(1—k')(1+az)'+k']'"

1 + 2

k (1:
i

v
i
=z(1+az)

(1+az) +g

1/2

(8b)

wherein the constant c has been absorbed into k. As
shown in detail in Ref. 2, there are three distinct minimal
curves corresponding to k ( 1, and k ) 1. For k ( 1,
the above can be put into the form

The corresponding formulas for the acceleration vector v
can also be written out. They will be displayed in Sec. III
and we now turn to the expression for the power radiated
P(t) and P(n, t).

2 I 1/2
x( )=~ du g (1—k )=k

( 2+g2)1/2 ' (6a) II. THE INSTANTANEOUS POWER RADIATED P( t)

Similarly, for k =1 we get

x (z) = —f du(u —1)'
a

(6b)

Since the motion of the particle is assumed to be two di-
mensional, the velocity vector v has two components and
is written as v=xi+zk, with i, k being unit vectors along
x,z directions, respectively, and z,x denote derivatives
with respect to time t. From (6a) and (6b) we obtain

P(t) = d'x —j —p
1. aA ay
c Bt Bt

(9)

The radiation fields A "(x)are given by

We find the treatment due to Schwinger quite con-
venient for our calculations. Only a summary is given
here. In terms of the radiation fields A "(x), the power ra-
diated P(t), by a charge distribution with current and
charge density denoted, respectively, by j(x,t) and p(x, t),
is given by

A "(x)= —,'( A"„„—A",d„)

d 4 '

J ( ')[e(,—,' )n(, —,' —
~

— '
~

) —e(,' —,)fi(,—,'+
~

— '
~
)]

8~c /x —x'/
(10)

From (9) and (10), we get, after using the Fourier integral
representation of the 5 function.

p(t) = — f d'xd x' —j(x) g(x') —pro(x')
8m C

d . dA
X dc' exp( —icvA, ) 4~

sin(cv
~

x —x'
~

) dQ
=CO exp(icon (x —x')),

/

x —x'/ 4m
(12)

where d Q is an element of solid angle associated with the
direction of the unit vector n.

where X=xo —xo —n (x —x') and jo ——cp. In deriving
(11) we have used the result

For a point charge located at the variable position R(t),
we use

j;(x,t ) =ev;(t)5[x —R(t)],
jo{x,t ) =ec5[x—R(t)],

with v(t)=dR(t)/dt to rewrite Eq. (11) as

P(t)= f dfl P(n, t),
with

e c 1 dP(n, t)= f dt' 1 — v(t) v(t') 5(A. ) .
c

(13)

Introducing the variable ~= t ' —t, it is easy to derive,
following Schwinger,

P(n, t)=, P(t) P(t+r) P(t+r) 1 —,v(t) v(t+r)e d 1

dw ds c

with

&=0
(14)
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n v(t)

There is an extra factor of (4m) in (14) because of our definition of the radiation fields in Eq. (10). Equation (14) can
be recast into

2

P(n, t)= [v P (t)+2(n. v)P (t)(v v/c) —(n v) (1—v /c )P (t)] .
16m c

(15)

2

P(n, t)=
16~ m

(16)

Deleted in Eq. (13) is an extra term which is of the form of a total time derivative representing the unwanted acceleration
energy terms. With the usual definition of the relativistic momentum and energy given by p=ymv and E=ymc, Eq.
(15) can be put into the familiar form

2

$3(t)fp 2 E 2/c2

2

P(n, t) =
16 mc

mc
2

U
1 ——cosO

c

'3

In the approximation of the motion being instantaneously
circular, so that v v=O and hence E=O, we obtain with
the direction of v as the z axis

We thus see that the instantaneous acceleration is a de-
creasing function of v (t); of course, v (t) increases as z in-

creases [see (la)]. The acceleration vector for k & 1 is

easily worked out as
T 1/2

(1+az) —1
v =zk+ gz (1+az )2+ (2

X 1—
2

mc sin 8 cos P
E U

~ (1——cos8)
c

(16a)
gaz ( 1+az )(1+g )+ 2 1/2 2 2 3/2[( 1 +az )2 1 ]1/2[( 1 +az )2+ (2]3/2

(19')

2 e EP(t)=-
34~m c mc

E
.

2

c 2
(17)

The integral of Eq. (15) over the solid angle of dQ results
in

Again it is easy to convince oneself that despite the
difference in Eq. (19) and (19'), the modulus

~

v
~

from
(19') still works out to that given in Eq. (20). The magni-
tude of the acceleration vector is thus k independent.

We also record below a few other formulas that are
useful.

which is the relativistically invariant version of Larmor s

formula. In terms of the velocity and acceleration vectors
v and v, respectively, Eq. (17), for example, can be
reworked as

V dv
k =1- —X

c dt
=az v (21a)

2 e EP(t)=—
3 4mc mc

~ 2v
v—Xv
C

L

2

(18)
k (1: —X

V dV

c dt
az g(1+/ )

[(I+az)2+$2]3/2
(21b)

We use Eq. (18) extensively below with the expressions for
v and v derived from Sec. I.

With Eqs. (19) and (21a), the power radiated can be easily
arrived at for k = 1, from Eq. (18). We obtain

III. RESULTS FOR THE BRACHISTOCHRONE CASE
2ea

1
v(t)

4~ 2

v (t)
c 2 (22)

From Eq. (17) of Sec. II, it is clear that the power radi-
ated depends on (p —1/E /c ), so that if these quanti-
ties can be computed from kinematical considerations as,
for example, in the case of circular orbits, the power radi-
ated is known easily. We discuss this below.

The acceleration vector v=xi+zk, so that using Eq.
(7b), we can write for the case when k 2= 1,

It is thus clear that as v(t) increases towards c the power
radiated P(t) would decrease. Of course, central to this
result is Eq. (20) which shows that the acceleration is a de-
creasing function of v(t). Equation (22) is true for a gen-
eral orbit; however, for the case where the orbit is instan-
taneously circular, so that v.v =0, it is easy to show that
(since E =0)

2( 1v=zk+ z[(1+az) —1]'/+, i . (19)
[(1+az)'—1]'"

Using Eqs. (la) and (7a), we arrive at

2ea v(t)
3 4~ c2

(22a)

2

~v(t)~= =ac (1—v /c )
(1+az)

(20)
The corresponding formulas for k & 1 are also easily

derived frotn Eqs. (19') and (21b). We obtain for a general
orbit, i.e., v.v&0,
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2 e cx UP(t)= — c 1—c'
u (1+az) +g+/+1 c 1+/

(22b)

k =1: v v=c ua(1 —u /c ) (23a)

k &1: vv=c Ua

1/2
(1+az) +k (1,2~ z)~

+$2

Clearly, as g~ ~ (k ~1), we recover P(r) given by Eq.
(22). For the case with k & 1, the relevant formulas are
obtained through the replacements (g +1) - (1—g )

and [g + ( 1+az ) ]—=- [(1+az ) —g ]. Equation (22b)
also shows the characteristic decrease of P(t) as u (t) in-
creases.

A word about P(n, t) before we conclude this section.
For the two-dimensional motion that we have considered
here, one can put /=0 in Eq. (16). The maximum value
of P(n, t) for the case of instantaneously circular motion
can then be worked out. Since the acceleration

~

v
~

is the
same for k = 1 and k & 1 (hence k & 1), P(n, t) as given
by Eq. (16) will be the same for all these cases. It is easy
to see that 0=0 is the favored angle for a maximum of
P(n, t). It is also clear that the acceleration and velocity
vector are aligned such that

(23b)
Thus as U~c, the motion of the charge becomes increas-
ingly similar to the instantaneously circular path. The re-
marks made above for P(n, t) are therefore of relevance in
this limit (u~c).

IV. CONCLUSION

We have examined in this paper the power radiated by
a relativistic, charged particle as it is accelerated along a
brachistochrone. It is seen that the velocity

~

v
~

and ac-
celeration

~

v
~

are independent of the nature of the bra-
chistochrone. The instantaneous power radiated in each
case decreases with an increase in the velocity u(t), and
this is quite unlike the behavior described in the litera-
ture. '

'See J. D. Jackson, Classical Electrodynamics (Wiley, New York,
1975), pp. 661 and 662.

2H. F. Goldstein and C. M. Bender, J. Math. Phys. 27, 507
(1986).

3J. Schwinger, Phys. Rev. 75, 1912 (1949).
4Goldstein and Bender (Ref. 2) also discuss a fourth, namely, the

proper-time brachistochrone in their paper. We have ignored
it here,

5As noted by Schwinger (Ref. 3), there are unwanted accelera-
tion energy terms in Eq. (9) ~ These will be discarded, as indi-

cated in Eq. (15).


