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Noise and compressibility in lattice-gas Auids
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Computations are reported in which the hexagonal lattice gas is used to simulate two-
dimensional Navier-Stokes shear flows. Limitations associated with noise in the initial loading and
compressible eAects associated with a velocity-dependent equation of state arise and interact with
each other. A relatively narrow window in density and flow speed exhibits physical behavior.

The purpose of this paper is to remark upon some po-
tentially nontrivial limitations which may somewhat re-
strict the use of cellular automata as fluid simulation
tools. In particular, we discuss the two-dimensional hex-
agonal lattice gas. This model has recently been pro-
posed as a simulator of two-dimensional Navier-Stokes
flows' and of two-dimensional magnetohydrodynam-
ics. Some related considerations have been remarked
upon by Orszag and Yakhot at a more abstract level.

There are two interacting limitations which we wish
to describe and then illustrate with the Shimomura-
Doolen computer code. The first and more obvious one
concerns the restrictions that must be placed on the den-
sity and fluid velocity in order that the Navier-Stokes
equation itself shall be an accurate approximation to the
macrodynamics of the cellular automaton. Unless the
particle number density n is less than 3 particles per hex-
agon, the equation of motion acquires a strong and un-
physical density dependence through a factor
(3 —n)l(6 —n) in the advective term. ' In addition, the
fluid velocity u must satisfy u «1 (low Mach number)
in order that the conventional criteria ' for incompressi-
ble flow be met. The macroscopic equations of the hex-
agonal lattice gas seem not to be close to any recognized
description of compressible flow when the density gra-
dients become significant ~

The joint requirements of n &3 and u «1 raise sta-
tistical questions connected with the smooth representa-
tion of macroscopic fluid variables from the microscopic
random loading. Even at the level of producing accept-
able initial conditions for the macroscopic velocities and
densities, these can be severe, independently of questions
of time evolution. The random density variations 6n
and velocity variations 6u are essentially governed by
the Poisson distribution. For instance, 6n /n is roughly
N, , ', where N„ is the number of particles per super-
cell. {A supercell is a region of the plane containing
many adjacent hexagons over which the microvariables
are averaged to give fluid variables. ) The largest array
of supercells which will fit comfortably into the core
memory of, say, the CRAY XMP is (64) supercells of
(64) hexagons each. (This resolution can be improved
with currently available solid-state disk memories. )

If n =1 per hexagon is taken as typical of densities
which are less than 3, this implies N,, ' is of the order
of 1.6%. An initial condition which we have studied in-
tensively is the initial shear flow velocity
u = u pE sin(ky ). This initial condition should lead to
simple viscous decay with no distortion of the spatial
profile. We will argue later that the second limitation to
be described restricts u p to be & 0. 1. A

~

5u
~

of the or-
der of 1%, which also results from supercells of (64)
hexagons at a density of n =1 thus implies at least a
10% error in representing the velocity field u(x;t =0),
and more away from its maximum. This would not be
considered acceptable accuracy for, say, a spectral
method computation.

We illustrate by noting what random initialization will
provide for the shear flow initial condition
u(x; t =0)= u pe„siny, with periodic boundary conditions,
at nearly uniform density. At n =0.9 per hexagon, we
obtained 5n in =1.2% with (64) hexagons per supercell,
5n ln =0.8% at (128), and 5n/n =0.6% at (256) . For
u p =0 these three typical loadings led to rms values of
5u, (x-component of macroscopic velocity) of 0.0109,
0.0077, and 0.0054, respectively. These fiuid velocity
fluctuations are of the same typical magnitudes as those
about up=0. 1 «1, for the same n. This implies an er-
ror near the maximum of u of about 10%, 7.7%, and
5.4%, respectively, with larger fractional errors away
from the maxima. Only the (64) case of these three
resolutions is realistic under present circumstances.

The second class of difficulties arise from the fact that
a kinetic theory derivation of the pressure tensor leads
to the expression

p= —I(1—u /2)—71 2 Pl uu
2 2

The tensor part of the u dependence can be absorbed in
the advective term of the equation of motion and its dis-
torting effects neutralized by a rescaling of the time, un-
der some circumstances. ' However, the u /2 in the sca-
lar part of the pressure cannot be made to disappear.
Even when the conventional tests for incompressibility '

are met, the u dependence can lead to unphysical
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compressible behavior. Particularly for the case of shear
fIows with nearly uniform density and small u-V'u, the
force due to the scalar pressure is

Equation (2) can represent an unbalanced volume force
which is the largest one in the problem. Even for rather
modest values of u this force, which is mainly prependic-
ular to u, can launch compressible oscillations which are
the most prominent feature of the behavior. An ac-
celeration is produced which accelerates mass toward
the crests of u until enough density is built up for it to
be repelled. The resulting oscillations superficially
resemble sound waves, but have a diA'erent physical ori-
gin in the velocity-dependent pressure. They are unre-
lated to the Navier-Stokes equation or processes occur-
ring in a real Quid. To the extent that n is uniform and
cancels out, Eq. (2) remains as a rather severe constraint
on allowable velocity fields.

Initial conditions of the previously alluded to profile,
uoe siny and uniform density, are allowed to evolve us-
ing the code. Figure 1(a) shows the space-averaged com-
puted values of nu as a function of time for uo=0. 3,
0.2, and 0.1, all normalized to the total initial space-

0.964

h

(a)

0.952
0

I

500
I

F000

TIME

I

l500 2000

CO
II

~ pg2&-

0.020
g752-

0.0i5—

C3
LU

~o.o~o-
C) 5204

0

R

0.005—
t.
' RI

CL

0'

0
I

500 OOOO

TIME

I

1500 2000

5.34 0
FIG. 1. (a) Streamwise component of the volume-averaged

total kinetic energy vs time. Particle density is 1.2, hexagon,
with u 0

——0. 1 (crosses), u 0 ——0.2 (open circles), and u 0 ——0.3
(black squares). Energy is expressed as a fraction of the total
fluid kinetic energy in both directions. (b) Cross-stream com-
ponent of kinetic energy for the same three situations as in (a) ~

This quantity should be zero for the Navier-Stokes equation,
compressible or incompressible. (Normalization is to the total
initial fluid energy. )

FICz. 2. (a) Density variations due to random loading for
p=1.2 per hexagon and uo ——0.3. Supercell mass density p is
plotted as a function of x and y. (b) Density variations which
have developed from the situation shown in (a) as a result of
pseudosoundwaves; time is 500 integer time steps. This is the
same run that is depicted with black squares in Figs. 1(a) and
1(b).
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averaged nu . A simple exponential decay is predicted
for this quantity from both the compressible and in-
compressible Na vier-Stokes equations, since periodic
boundary conditions are imposed. The three curves of
Fig. 1(a) display the oscillations which arise, even in this
global quantity, when the amplitude uo exceeds about
0.1. Figure 1(b) shows the space-averaged nu~ versus t
for the same runs: a quantity which is analytically pre-
dicted to remain zero, for velocity-independent equations
of state. Figure 2 shows three-dimensional perspective
plots of the density as a function of x and y for the rath-
er extreme case of uo=0. 3. Figure 2(a) shows the initial
conditions for which the average percentage variation of
6n /n is about 1% but with a min-to-max variation of
about 7.4%. Figure 2(b) shows on /n at t =500 during
the resulting evolution, with a 6n/n about 2.2'7o and a
min-to-max variation of about 12.5%. [A similar oscilla-
tion has been obtained with a compressible spectral
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FIG. 3. (a) Contours of u (x,y)=const for uo ——0.2. Con-
tours, evaluated at t =0 are not straight, but could possibly be
said to represent the velocity field desired. Density is 0.9 per
hexagon at (32) supercells and (64) hexagons per supercell.
(b) Everything is identical with (a) except that now, uo ——0.05.
The flow pattern is essentially lost in the noise.

FIG. 4. Arrow plots of the velocity field at three different
times in the presence of three-body symmetry scattering only.
uo ——0.5, density is 1.2 per hexagon. Times are (a) t =0; (b)
t =850; (c) t = 1750. A totally unphysical oscillation is ob-
served in u
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method code, and a pressure tensor given by Eq. (1), in-
dependently. ] Even if the 6n /n variation may damp
somewhat after several sound-wave transit times, the u-
dependent density variations remain important ~

Figure 3 returns to the question of a satisfactory rep-
resentation of laminar initial conditions for fluid vari-
ables. They illustrate the dangers of attempting to
achieve nearly imcompressible flows by going to low
enough flow speeds uo. They show contours of constant
u, which should be straight lines, for uo ——0.2 and 0.05
at t =0. The noise associated with the finite-size super-
cell virtually destroys the flow in the latter case.

A final remark concerns still another inequality that
needs to be satisfied for the desired fluid behavior to
emerge: that the collision mean free path k, be much
less than a supercell dimension. At low densities, the
mean free path for two-body collisions is of the order of
k, —6/n. At the densities described here, this is about
six hexagon dimensions, safely less than the dimensions
of a 32&32 supercell. We illustrate the effects of a too-
long A,, by artificially suppressing the two-body col-
lisions, and allowing whatever relaxation occurs to occur
as a consequence of three-body symmetric (3S) collisions
only. What is shown is the rather extreme case of
u 0

——0. 5 with 1.2 particles per hexagon and (32)-
hexagon supercells. The mean free path A, , and mean
collision time can be inferred directly from the computa-
tion by counting the collisions that occur and knowing
the number of particles. For this case, A., =64. An un-
physical oscillation in the sign of the velocity field re-
sults, as can be seen from Fig. 4. This effect is reminis-
cent of echo phenomena, but its origin is not understood
in detail; it may be typical of interesting but unphysical
regularities to be expected when thermal relaxation is in-
complete in the presence of such a high degree of micro-
scopic symmetry.

What appears to have emerged, for the two-
dimensional hexagonal lattice gas, is at present a rather
narrow window in density and velocity around n =1 and
u =0. 1 in which the behavior can seem to be said to be
that of an incompressible Navier-Stokes fluid. The need
seems to be for substantially larger arrays than are now
available with in-core memory simulations, since the uni-
formly distributed random noise in u can easily be
greater than the u being simulated, away from the maxi-
ma of u. We do not see any easy or early resolution of

these limitations, either for hydrodynamics or magne-
tohydrodynamics. The discussion echos debates of 20
years ago between the random loading and "quiet start"
schools of electrostatic particle-in-cell (PIC) plasma
simulators. ' A fully satisfactory resolution to those
difficulties has never emerged, in the sense that noise
remains a stubborn problem in simulating laminar phe-
nomena such as plasma oscillations.

The resolution of the question of the utility of the lat-
tice gas method for solving the Navier-Stokes equations
depends on the computer technology available. To
resolve low velocity fields requires a large number of
cells, and the current technology dictates the number of
cells one can afford to run.

For example, in the two-dimensional hexagonal model
the information completely describing ten 2/3 cells can
be stored in one 64-bit CRAY word, and independent
logical operations on each of the 64 bits can be complet-
ed each clock cycle. Because each of the four heads on a
CRAY XMP contains two logical vector units, bit logic
can be done at the rate of about 10" bits/sec. Because
the solid-state disc memory for the CRAY XMP can
store 512 000 000 words, about 5 & 10 cells can be
modeled. Hence problems with 100000 & 50 000 cells
can be run at the rate of three universe updates per sec,
enabling effects which range over 5 orders of magnitude
in space to be run in a reasonable time.

In a three-dimensional hydrodynamic model, 24 bits
are required per cell. About two cells can be packed in
each 64-bit word, allowing 1000000000 cells to fit into
CRAY's solid-state disk. Using table look up for the
scattering rules and a clever moving algorithm written
by Shimomura (private communication), about
50000000 cells can be updated each second.

Special-purpose computers constructed with present
technology can be made to go to orders of magnitude
faster than the serial processors described above. Hence
we will probably be unable to determine precisely the
utility of the lattice-gas method for some time to come.
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