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Squeezed states and quantum-mechanical parametric amplification
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The relation of a previous paper on the parametric arnplification of a quantum oscillator to
squeezed states is described. In particular, we show that in general the amplification factor is also
the "squeezing factor" of the final state.

I. INTRODUCTION AND REVIEW

Some time ago, the quantum mechanics of a simple
harmonic oscillator with an arbitrary time-dependent
spring constant was worked out. ' In general, this system
is a simple model of a parametric amplifier, and in par-
ticular it may have some relevance to the g-2 experiment
performed at the University of Washington. The
present paper is an addendum to the previous paper, '

whose purpose is to explain how the quantum-
mechanical parametric amplification produces a
"squeezed state. " Although we shall now give a brief
review, this paper is not self-contained, and Ref. 1

should be consulted for further details.
The system under consideration is described by the

equation of motion

This procedure defines a "scattering matrix"

S++ S+
S= (1.6)

which is unitary

S S=1
and symmetrical

and

S+ =S
These restrictions imply that the scattering matrix S may
be parametrized with hyperbolic functions such that

(1.9a)

d q(t) +co(t)'q(t) =0,
dt i

S+
i
=(cosh') (1.9b)

where the time-dependent angular frequency co(t) becomes
constant at remote times,

t ( —T: to( t ) =co

t ) + T: to(t) =io+

(1.2a)

(1.2b)

with, in general, different initial and final frequencies co

and co+. Equation (1.1) is formally akin to the
Schrodinger equation for a one-dimensional scattering
problem. It proves convenient to exploit this analogy.
First one introduces the comparison function P(t) which
is the WKB approximation to a solution of Eq. (1.1),
namely,

$(t) =[2co(t)] ' exp[i'(t)],
in which

Q(t)= J dt'co(t') .
0

(1.3)

(1.4)

and

P*(t)+S P(t), t~ —~
(t)= '

S+ P"(t),
(l.sa)

Then two solutions P+(t) of Eq. (1.1) are defined by the
following boundary conditions:

The usual methods of scattering theory may be used to
construct the S matrix. With this matrix in hand, the
asymptotic behavior of classical oscillator coordinate q„(t)
is determined. For example, given the initial energy E
and phase P' of the oscillator, the final energy is deter-
mined. This final energy depends sensitively on the initial
phase. For example, with an optimum choice of P' one
has the maximum amplification with the final energy
given by

Ef,„=e (to+ /co )E' . (1.10a)

On the other hand, changing this optimal phase by m/2
gives a maximal deamplification, and produces the final
energy

Ef;„=e r(co+/co )E' . (1.10b)

The quantum problem is also solved with the
knowledge of the S matrix. To exhibit this solution, we
define the Heisenberg-picture annihilation operator

1/2 1/2

a(t) = co(t)
2

p(t),1q(t)+i
2co t)

with the creation operator a (t) given by the adjoint equa-
tion that simply replaces i~ —I. Initial and final ground
states are defined by

+(t) = ~

S +P(t),

P(t)+S++ P*(t), (1.5b)
and

a(t, )
~
Ot, ) =0, (l.12a)
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1/2

2

1/2(Ot2
i
a (t2) =0 . (1.12b)

(2.4)
Coherent or classical limit states are built from these ac-
cording to

and zz is a complex eigenvalue of this non-Hermitian
operator. The arbitrary number A, parametrizes a particu-
lar set of states in this family which are then distinguished
by the eigenvalue z& that runs over all complex numbers.
This definition is just that of the coherent or classical limit
states of an harmonic oscillator of frequency co=A, (with
mass m = 1), and Az is the usual destruction operator for
this oscillator. However, as we shall soon see, if the arbi-
trary parameter A, is chosen to differ from the frequency cu

of the oscillator under consideration, then the states
i
S)

are squeezed states for this oscillator.
The detailed properties of the general squeezed states

are easily worked out. Using the usual notation for the
normalized expectation value

i
zt, ) =

exp[zany(t,

)]
i
Ot, ), (1.13a)

and

(ot2
I

exp[z'a(t2)] . (1.13b)

They are eigen states of the annihilation and creation
operators,

a(t))
i
zt) ) =

i
zt) )z (1.14a)

and

t2
l

a (t2)=z*(z*t2
i

(1.14b)

(X) (SiX iS)
&s is&

(2.5)

(z*t,
i

= (z*t,
i
a(t, ) .

az*
(1.15)

it follows immediately from Eq. (2.3) that

For future reference, we note that a(t2) is represented by
the derivative with respect to z *,

As shown in Ref. 1, the transformation function for this
pair of coherent states, for t2 ) T and t] & —T so that the
initial and final oscillators are not perturbed [with
cg(t2) =ai+ and cu(t, ) =co ], is given by

I /2

2
(q)+t

2i,

1/2

(p) . (2.6)

(z2t2 i z, t, ) =(S+ )' exp ——J dt cu(t)
The squared fluctuations are defined by

(2.7a)

X exp( —,'Z SZ) . (1 16) and

(2.7b)
Here

Z SZ =S++ exp[ —2iQ(t2)]z 2 +S exp[2iQ(t ~ )]z,
Using the canonical commutation relation (2.1) together
with the definition (2.3) of the squeezed states, it is a sim-
ple matter to verify that

+2S+ expI —i[A(t2) —Q(t&)]}zfzt . (1.17)

Since the coherent states provide a generating function
that gives any state, this result provides a complete solu-
tion to the quantum problem as discussed at length in
Ref. 1. In Sec. II we review the notion of squeezed states
and then show in Sec. III how the quantum-mechanical
parametric amplification produces such a state.

O= &(~,—z,*)(~,—z„)&

=—Aq + 5p
1 2 1

2 2A, 2

Similarly, one computes

o= &(w, —z, )'&

(2.8)

II. SQUEEZED VERSUS COHERENT STATES

The canonically conjugate, quantum-mechanical coordi-
nate q and momentum p operators obey the commutation
relation

[q p]=' .

It follows from this commutator that the squared Auctua-
tions Aq and Ap obey the uncertainty relation

IX, Y}=XY+ YX .

The complex conjugate of Eq. (2.9) yields

(2.10)

O= —bq' — bp' —( [q —&q &,p —&p & } & (2.11)
2 2X

=—b,q' — bp'+t( Iq —&q &,p —&p & } &, (2.9)
2 2A,

where the curly brackets denote the anticommutator,

Aq Ap ) —,
' (2.2

which, added to Eq. (2.9), informs us that

As is well known, the minimum uncertainty bqhp = —,
' is

achieved for a family of states I i
S & } defined by

2 Q 2

Comparing this result with Eq. (2.8), we learn that

(2.12)

A2 iS)= is)z2,
where

(2.3)
hp =—2=~

2
(2.13a)
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and
1=

2X
(2.13b)

(zztz z )t () =(z ~ S) . (3.1)

venient to write the transformation function as a
Schrodinger-picture wave function

Aq Ap (2.13c)

confirming that the squeezed state is indeed a state of
minimum uncertainty, Thus

i
S) is the state that is observed by measurements

performed at the final time t2. Correspondingly, we have

z*(z*t, z, t, )=(z* ia'iS), (3.2a)

( [(q —(q ) ), (p —(p ) ) I ) =0 . (2.14)

We should also note that the difference of Eqs. (2.9) and
(2.11) tells us that the coordinate and momentum fluctua-
tions are uncorrelated in the squeezed state:

and

(z*t, iz, t, ) =(z* ia iS),
BZ

(3.2b)

q (t) =q cos(cot)+ (p/co) sin(cot), (2.15a)

Suppose now that the dynamics of the system is that of
an harmonic oscillator of frequency cu. Since the equation
of motion is linear, the quantum Heisenberg operators
satisfy the classical equations,

where here a =a(tz) and a =a(t~). Now, according to
the results (1.16) and (1.17) for the transformation func-
tion,

a —2iA(t~ )—S++e ' zz (zztz iz)t) )
BZ2

and

p (t) =p cos(cot) —q~ sin(a)t ) . Therefore

—i[$2(t~ )
—A(t

I )]=S+ e ' ' z, (zztz z, t, ) . (3.3)

and

1

2X ~2
cos (cot)+ sin (cut)

&p(t)'= ( [p (t) —(p(t) ) ]')

(2. 16a)

Here q =q(0) and p =p(0) are the operators at the con-
ventional initial time t =0, the time we shall assume is re-
ferred to in the states

i
S). Thus the time development of

the expectation values (q(t)) and (p(t)) are given by
equations identical to Eqs. (2.15). Moreover, using the re-
sults of the previous paragraph, it is easy to check that

bq(t)'= ( [q (t) —(q (t) ) ]')
2

=Aq cos (cot)+ sin (cot)
CO

(a —S+ ~e
—2iB((~ ) t

i
)

—([s)( z) —(H(() )]

So long as tz ~ T, where T is the time at which cu(t)
has ceased to vary, and co(t)=tv, the time tz may be
chosen arbitrarily, for the time development for the later
times t2 & T is a simple harmonic motion with frequency
co+. We shall soon see that choosing t2 appropriately
makes

i
S) a squeezed state with a minimum uncertain-

ty b, qAp = —,'. As we just saw in Sec. II [Eq. (2.17)], a
squeezed state is a minimum uncertainty state only at
certain specific times. It is convenient to define the state
at one of these times and then describe the system at
other times by the Heisenberg operators q(t), p(t) re-

ferred to that standard time. Thus we choose t2 such
that

= bp cos (a)t )+ b, q cu sin (~t) —2i$2, (t& )

S++e ' = —iS (3.5)

2 M
2

2
cos (~t)+ sin (~t)

A.
2

(2.16b)

If A=co so that
i
S) is the coherent state for the oscilla-

tor, then hq(t) =Aq = I/(2') and Ap(t) =Ap =co/2
are both constant in time, and the uncertainty is always
minimal, b,q(t)bp(t)= —,'. On the other hand, if A, &au,
t) q(t) becomes small at the times cot=0 (mod ~) and
Ap (t) becomes small at the time a)t =~/2 (mod rr), while
for k ~ cu the reverse holds. Note that in general

2

t) q(t) 4p (t)'= — 1+— ——— sin'(2cot), (2. 17)
4 2 co

q+ie p (3.7)

which is just the annihilation operator for a harmonic os-
cillator with frequency

k=e "~u+ .

such that the time-dependent phase cancels the phase of
S++. Thus we have

a+
i S++ i

a =( cashed) (3.6)

Recalling Eqs. (1.9a) and (1.11), we see that this defines
1/2 ' 1/2

so that the uncertainty is minimal for the oscillator start-
ing out in a squeezed state only at the times cot =0 (mod
rr!2).

III. FINAL SQUEEZED STATE

To examine the nature of the final quantum state pro-
duced in the parametric amplification process, it is con-

Since, in view of Eq. (1.9b),

S+ ——( coshX) 'e'

we now have

A iS)= iS)z
in which

(3.9)

(3.10)
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i [a—Sl(t~)+El(E] )]
z~ ——e Z J

=e' /z, [
(3.1 1)

&q&=e
2

iz& i
cosO,

Therefore
~

S & is indeed a squeezed state: An initial clas-
sical limit, coherent state

~

z
~ t, & is changed into a

squeezed state by any arbitrary parametric amplification
process with a time-dependent angular frequency ra(t).

At our selected time t2, the squeezed state gives the
coordinate and momentum expectation values

1/2

&H &f= & —,
'p'-'+

—,
'~' q'&

=-,'(&p &'+&p')+-,' ', (&q &'+~q')

=ca+[e r( ~z,
~

sin 9+ —,')

+e ( ~z,
~

cos'|)+ —,')) . (3.14)

& H &'= ca (
i
z,

i

'+ —,
'

) .

Hence

&H& =(ca+/ca )(e sin 9+e ' cos 8)&H&'

(3.15)

On the other hand, the energy of the initial coherent state
is given by

&p & =e'(2ca+)'"
~
z,

~

sine .

The corresponding uncertainties are given by

aq'= e
—'~,1

2' +

and

(3.12b)

(3.13a)

+ —,'ca+ sinh(2X) cos(20) . (3.16)

&H &f,„=(ca /ca )e r&H &' ——,'ca+ sinhY, (3.17a)

while choosing 0=0 gives a maximum deamplification,

Thus, if the phase of the initial oscillation is chosen so as
to make 0=~/2, there is a maximal amplification, with

&H &f;„=(ra+/ca )e r&H &'+ —,'ca+ sinh(2X) . (3.17b)

ap'= e" .
2

(3.13b)

Thus the parametric amplification has "squeezed" the un-
certainty in Aq by the factor e ~ relative to the uncertain-
ty in Aq produced by a coherent, classical limit state for
an oscillator of frequency co+. At the same time the cor-
responding uncertainty in Ap is increased by the factor e
According to Eqs. (2.16), if we increase the time t2 with

ra+t2~ra+t2+a/2 (mod sr), then instead Ap is squeezed
by the factor e ' and Aq increased by e

The final energy is given by

Except for the zero-point energy additions, these are just
the classical results displayed in Eqs. (1.10). One sees
that the energy amplification factor is just the squeezing
factor.
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