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We have applied the Wigner —distribution-function formalism for the determination of the quantum
corrections, which appear in the A series expansion of the various "almost classical" properties of a
many-body system. We have calculated the various averages which appear in the quantum correc-
tions by means of molecular-dynamics computer sin&ulation, up to the order A for the case of
Boltzmann particles interacting via a Lennard-Jones potential. Here we report the results of the cal-
culation for the potential and kinetic energies, for the pressure, for the free energy, and for the radial
distribution function g(r) at nine dift'erent thermodynamic points. The application to the case of He,
Ne, Ar, Hp, and D2 are given whenever the A series expansion can be considered convergent. The ad-
vantages and disadvantages of our method are also discussed.

I. INTRODUCTION

The development of fast computer facilities together
with the use of the Monte Carlo and molecular-dynamics
methods have permitted in the last ten years the calcula-
tion of an enormous amount of properties, in almost all
the thermodynamic points of the gas, liquid, and solid
states of X-body systems within the framework of "classi-
cal mechanics. " In particular, once a model is given for
the interaction potential of the N-body system, the results
of the computer simulation can be considered practically
rigorous, within the limitation of the model potential it-
self, for those properties for which the thermodynamic
limit is met by the number of molecules used in the com-
putation. A similar program cannot be carried out as far
in the framework of quantum mechanics, given the
present computer facilities. In fact, neither the deter-
mination of the matrix elements of the statistical operator
p in the canonical ensemble nor the solution of the
Schrodinger equation for an N-body system at finite ther-
modynarnic conditions has been achieved on a rigorous
numerical level. However, recently, three different
methods have been used in order to perform approximate
calculations for quantum-mechanical properties of an X-
body system:

(l) The Wigner-Kirkwood approach of expanding a
quantum property in terms of A, where A=h /2~ and h is
Planck's constant, combined with classical molecular dy-
namics, has been applied to the determination of quantum
corrections to "almost classical" properties

(2) The application of the path-integral method together
with a sophisticated form of the Metropolis Monte Carlo

technique has been used to determinate averages over the
diagonal matrix elements of p of quantum systems at
finite temperature; '

(3) The solution of an approximate Schrodinger equa-
tion for N interacting Gaussian wave packets has been at-
tempted in order to also derive dynamical properties.

The third method, due to the great difhculty of choos-
ing the wave packets which are used instead of point par-
ticles for studying dynamical behavior in an optimal way,
is still at a preliminary level and cannot be applied in a
routine way to the determination of properties of "real"
systems.

The second method is in principle the solution of the
problem. However, it requires approximations which are
not fully tested, as pointed out in Ref. 7(b); moreover, at
present it requires some skill in the use of the modified
Metropolis Monte Carlo method for the production of
the various integration paths in the 3N-dimensional
configuration space. It also requires an approximate form
of the high-temperature N-body off-diagonal matrix ele-
ments of p, the justification of which mostly relies on the
goodness of the final results. With this method Ceperley
and Pollock have been able to calculate the properties of
He even in the neighborhood of the A. transition.

The first method is the one we have recently been using
extensively for the determination of quantum corrections
to the classical behavior for various "almost classical"
properties of N-body systems. The disadvantage of this
method consists in the fact that it is limited to systems and
thermodynamic situations for which the A expansion of
the property under study is found to converge, which is
the meaning we attribute to the words "almost classical. "
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The advantages are at present two: The first is that, when
the A series expansion is convergent, no approximations
are necessary to carry out the calculation; secondly, since
the calculation of quantum corrections is performed
within the classical framework, a number of properties
can be calculated simultaneously with the same set of sta-
tistical points in the 6X-dimensional phase space of the
system. Moreover, since the reduced value of A does not
enter explicitly in the computation, the results can be in-
terpreted as pertaining to diFerent substances as long as
they are described by the same type of potential (e.g. ,
Lennard-Jones). The computation time is comparable to
the one used in method (2) which yields only a few prop-
erties depending on positions only.

In previous papers we have calculated quantum correc-
tions for the moments of interaction-induced spectra and
for the pair distribution function of a system of particles
interacting with a pairwise additive Lennard-Jones poten-
tial. ' Here we report the results of a comprehensive cal-
culation of quantum corrections for the internal energy,
kinetic energy, pressure, and radial distribution function
of the Lennard-Jones system at nine diFerent thermo-
dynamic points. The quantum corrections to the pair dis-
tribution function have been calculated up to the term of
order fz at six thermodynamic points, the other properties
only up to A term.

We have chosen to use the Lennard-Jones pair potential
again, because it is a realistic potential for a large number
of systems, which, even though not very refined, give
qualitative, and often satisfactorily quantitative, agreement
between calculated and experimental values. Moreover,
this potential is simple enough to reduce the very long
computational time of the quantum corrections, and it has
been widely used in classical calculations of any kind of
properties which renders it a reference potential.

In order to derive the explicit functional expressions for
the various quantum corrections which are then used in

the computations, two methods have been used. Section
II of this paper describes the first method in its generality,
which is based on Wigner s original idea of 1932, and
gives the expression of the first three quantum corrections
to the Wigner distribution function in the full classical
phase space. Section IV gives the results of the second
method, which is based on a linked-graph resummation
procedure, developed by Fujiwara, Osborne, and Wilk, '

for the determination of the quantum corrections to the
Wigner distribution function in the configuration sub-
space. In this paper we refer only to particles following
Boltzmann's statistics, even though the method in princi-
ple could be applied to particles following quantum statis-
tics. The main purpose of our eFort here is to show the
possibilities and the limitation of the Wigner-Kirkwood
expansion for the calculation of a wide range of static
properties of an N-body system.

II THE WIGNER DISTRIBUTION FUNCTION:
DEFINITION AND PROPERTIES

In this section, for the sake of completeness and in or-
der to establish notations, we recall a few general expres-
sions" ' concerning the Wigner-Kirkwood approach.

where r and p are the 3N-dimensional variables (c-
numbers) of the classical phase space which correspond to
the quantum operators R and P, and p is the density ma-
trix operator which, for a system in thermodynamic equi-
librium, is defined as

(2.2)

with

Z =Tr(e ~—), (2.3)

while 0 is the Hamiltonian operator of the system.
In the expression (2.1) pw(r, p) is the Wigner distribu-

tion function while Aw(r, p) is the function which corre-
sponds to the operator A and, as proposed by Weyl' and
demonstrated by Moyal, ' is defined as

A w(r, p ) = f dz exp(ip z /fi)

X (r —z/2
~

A(R, P)
~

r+z/2) . (2.4)

Here p z indicates the scalar product between two 3X-
dimensional vectors.

Two important properties of the Wigner distribution
pw and of the Weyl-Wigner equivalent (8'-equivalent)
A~, respectively, which will be useful in the following,
are

(1) The integration with respect to the variables P of
h Aw(r, p) gives the diagonal matrix elements of A,
i.e.,

Aw(»)=(1/h)' fdp Aw(», p)=(»
~

A ~») . (2.&)

(2) The W-equivalent of an operator A which depends
only on either R or P is simply the classical variable A (r )

or A (p) itself, i.e.,

If A = A(R), then Aw(r)= A(r);
if A = A(P), then Aw(p)= A(P) .

(2.6a)

(2.6b)

Both properties (1) and (2) can be derived immediately
from Eq. (2.4). These two properties greatly simplify the
calculation of the average value of the operator A(R) and
A(P) with the Wigner method. In fact, for such opera-
tors, we have from Eqs. (2.1), (2.5), and (2.6)

( A(R)) = fdr pw(r)A (r),
(A(P)) =(1/h)' fdr f dPpw(r, P)A (P) .

(2.7a)

(2.7b)

Therefore, the only quantities we have to determine in or-
der to perform the averages (2.7) are pw(r, p) and pw(r).

The quasiprobability distribution function introduced by
Wigner permits us to establish a correspondence between
operators in quantum mechanics and c functions which
are defined in the classical phase space. This correspon-
dence means in practice that if A(R, P) is an operator
corresponding to an observable of an N-body quantum
system (R and P are position and momentum operators in
3N dimensions), its average value can be written as

( A ) =Tr(p A ) =(1/h) fdr f dp pw(» p ) A w(r, P),
(2. 1)
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III. QUANTUM CORRECTIONS TO THE WIGNER
DISTRIBUTION FUNCTION

Let us start from the definition (2.4) of the Weil-Wigner
equivalent. If we take into account the property that the
8'-equivalent of a product of two operators, 3 B, is"

( 3 B)w = 3wexp(fiA/2i)Bw,

where A is the classical Poisson-bracket operator

(3.1)

There exists one method to determine an explicit expres-
sion for pw(r, p) and two methods for pw(r ), once a mod-
el Hamiltonian is given for the system under considera-
tion. The first one is based on the solution of the Bloch
equation for pw(r, p), " successive integration of which
over the p variable then gives pw(r) .The second,
developed by Fujiwara, Osborne, and Wilk, ' gives only
the possibility of calculating the various contribution to
the diagonal and off-diagonal matrix elements of p by
means of a linked-graph resummation procedure. Both
methods ultimately lead to a representation of pw(r) as a
series expansion with respect to A. In the following two
sections we will give a few details about the two methods
since we have used both of them in order to derive the ex-
plicit expression of the coe%cient of A in the fi expansion
of pw(r).

Z =Tr(LI)=(1/h) fdr dp Qw(r, p) . (3.8)

We have derived the expressions for X,(r,P), Xi(r,j), and
X~(r,P) by means of the procedure indicated above. For
the sake of completeness we give here these expressions in
terms of the 3N components p; ofP and of the components
of the gradients of various order of N, defining the com-
ponent of a gradient of nth order (ViVi V„kh as

8 8
~n

(3.9)

where r; is the ii, th component of r (ii, ——1,2, . . . , 3N).
With those notations X,(r,P) is given by

3

X&(»,P) =
24 pip, ~'i, 3P'@i—i+&'+i~'i
24m m

(3.10)

where summations with respect to the repeated indexes
must be performed over the 3N components of p and r.
The rather complicated expressions of X2(r,P) and Xi(r,p )

are given in the Appendix. Both Xi(r,p ) and X2(r,P) are
taken from Ref. 2 while X3(r P) is new. From the
definitions (2.2) and (2.3) and by means of fI w(r, p) we
can now write pw(r, p) as a ratio between two series ex-
pansion in terms of A, i.e.,

A=V V„—V„Vp, (3.2)

then from the Bloch equation for the operator
@=exp( PH) we can w—rite an equation for II w, i.e.,

"
nw(r, p)

pw(r~p)=
(1/h) f dp fdr II w(», P)

or, using Eq. (3.6),

(3.1 1)

a
0w(» p ) = Hwcos(fiA/—2)II w(r, p ), (3.3)

p2
H(R, P)= — +C(g) .

2m

Therefore, from the property (2.6) its W-equivalent is

(3.4)

Hw(r, p ) =H (r,P) = +4(r ),
2m

(3.5)

where m is the mass of the particles and N(r) is the total
interaction potential. In this case Qw(r, p) can be written
as

nw(r, P) =e i'"'" &'X(r,p), — (3.6)

where H~ is the Weyl-Wigner equivalent of the Hamil-
tonian H and the classical operator cos( ) is defined
by means of its series expansion. The solution of Eq.
(3.3), which can be obtained by series expanding Aw(r, p )

with respect to A, gives the possibility of explicitly writing
the function coe%cients of the various powers of A in the
expansion of II w(r, p ).

Here we will consider an N-body system of identical
particles with an Hamiltonian of the form

—PH(P, P )X(w

N.z„(x(",p)), '

where Zq is the classical partition function

Z, =(N!h») 'f dr f-dPe »~" ~~-

(3.12)

(3.13)

g, =(1/N!) fdr e

we then have

(3.14)

pw(») =
3X/2

2vrfi' &w(» )

mkiiT N!g (X(»))
(3.15)

In the last equation ( . ), is the average in the classical
configuration space (subscript c), while, in agreement with
Eq. (2.5),

and ( ) r indicates an average performed with respect
to the distribution function in the classical phase space
(subscript I ). Applying Eq. (2.5) to (3.12), and using the
relation between the classical partition function Zq and
the configuration integral Q, which is defined as

where

X(r,p) =1+6'X,(r,p)+&'X, (r,p )

+A' Xi(r,P)+O(R ),
while from Eq. (2.3) the partition function is

nw(r)=h fdp nw(rP)=(r
~

0
~

r)

is the diagonal matrix element of Q and

(3.7) X(r ) = I +A'X, (r )+R X2(r )+A'Xi(r )+O(iri'),

with X„(r) defined as

(3.16)

(3.17)
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X„(r)=(2m.mksT) f dp e ~'~ 'X„(r,p),
which also ensures that &X„(r) ), = &X„(r,P) ) r. By
means of Eqs. (3.6), (3.7), and (3.16)—(3.18), we also can
write

Z=
' 3N/2

&X(r)),g, .
2~fi

following the Boltzmann statistics, can be written as

(3.21)

Qg (r)=
3N /2

mk~ T
e X(r) .

2~%
(3.19)

IV. FUJIWARA, OSBORNE, AND WILE
RESUMMATION QF THE WIGNER EXPANSION

OF & r
~

0
~
r ) (REF. 10)

p14 (r)=
X.g, &X(-.) ),

(3.20)

Finally, using (3.8), (3.16), (3.19), and (3.14) and dividing
by iV!, we have that the partition function Z, for particles

Therefore, from Eqs. (3.15) and (3.19) the diagonal matrix
elements of p becomes

An alternative way of deriving the various terms in the
iri expansion of pii (r) is to apply the result of the linked-
graph method developed in Ref. 10, which permits us to
write the diagonal matrix elements of 0 as an exponen-
tiated series expansion with respect to A. From the paper
of Fujiwara et ai. we have, using the expansion parameter
q =R /2m,

&r [n/r)=
3N /2

p@(~) [qSl(r)+q S2(r)+q S&(r)+O(q )]
e 'e

27TA2

3N /2
mkg T

e ~ '"'[1+qS1(r)+q [S2(r)+ —,'Si(r)]+q [S3(r)+Si(r)S2(r)+ —,'Si(r)]+O(q )I

Therefore, comparing Eq. (3.19) with (4.1), we find

Xi(r)= Si(r),
2m

(4.2)

X2(r ) = [S2(r )+ —,'S 1 (r )],
4m

(4.3)

X3(r ) = [S3(r)+Si(r )S2(r )+ —,'S', (r )] .
Sm

Here the functions S„(r) are given as linear-path integrals of the form

Si(r)= —p f 'dgici+(ri)+p f 'dpi f '
dg 2b12@(r 1)+(r 2),

0 0 0

s, (".)= ,'p' f'dg, cia(—r, —) +p" f'dpi f-dg (b212+c2b )142( r)4i( r)2
0 0 0

', p f 'd&1 f '—d(2 f 'd(3(b12b13+b12b23+b13b23)+(ri)+(r2)e(r3),
0 0 0

and"

(4.4)

(4.5)

(4.6)

S3(r)=—
5 23 22

3! of dpi cia(ri)+ f dpi f d/2 b12+ b12c—2+ —b12c2 4(r1)C—&(r2)
2! o 0 3! 2! 2!

6

f dpi f dk2 f dk[4(bi2b13+b12b23+b13b23) +4(b12b13+b12b23+b13b23)
0 0 0

+4(b12b13 +b12b23 +b13b23 )c2 +2 (b12b13b23 )] +(r 1 )+(r2 )@(r3 )

+, f 'dpi f d(2 f d(3 f dg42' (b i2'b 23'b 3'4'b i4'b i'3'b 24' ) 4 (r i )0 (r 2 )0 (r 3 )4 (r 4 ) .

(4.7)

The summation in the last term of Eq. (4.7) must be per-
formed over all possible combinations of the integer
powers I;~, with the restrictions that the sum of all I;j is 3
while 1;j itself can be either 0 or 1.

Moreover, in Eqs. (4.5)—(4.7) the quantities c; and b;~

are classical operators defined as

c;= g (1—g, )g, V, ,

b& ——g&(1 —g) )V;.V, ,
(4.8)

where the symbols & and & stand for the smaller and
greater, respectively, of the indexes i and j. Note that i
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and j are not particle indices, but identifiers denoting on
which variable each differential operator is supposed to
act. Thus 7'„ is a full 3N-dimensional gradient operator
acting only on r„, and after this operation r„ is set equal
to r in Eqs. (4.5)—(4.7). By means of these equations we
have derived the explicit expressions for SI, S2, and 53.
For the sake of completeness we report here all three ex-
pressions, the first two of which have already been given
in Ref. 11 while the third is new. We have then

& A (P ) ) = & 3 (p ) ) r+ fi & A (P ) ) ~ + fi & 3 (P ) ) p

+~'& ~(p) &, + (5.7)

& '4 (p) &2 —
& ~ (p)+2(rp ) & r —

& ~ (p ) & r&&i(r~p) & r

where

& &(p)) i = & &(p)Xi(r&p) &r —& ~ (p) &r&Xi(rp) &r

(5.8)

Si (r ) = —,', p 4;4&; ——,
' p @;;,

+2 ( r ) — p @'k @' +k +P ( 3 @'kk + ' + g()
@k + 'k )

(4.9) —
& ~ (p)), &X,(-r,p)), , (5.9)

(p))3 —& 3 (p)X3(r,p))r —
& & (p))r&L3(r p)&r

6II p cikik' (4.10)

V. QUANTUNI CORRECTIONS
TO MANY-BODY PROPERTIES

From the results of Secs. III and IV we readily obtain
expressions for the quantum corrections to the various
properties of the system which we are interested in. In
particular for operators A (R) depending only on R we
have, by means of Eqs. (2.7a) and (3.20)

& & (r)X(r)),
A(R)

&x(-. ) &,
(5.1)

Using Eq. (3.17), the series expansion of (5.1), up to order
A, can be written as

& A (R ) ) = & A ( r ) ), + iii & A ( r ) ) i + iii & A ( r ) ) i

+e"& ~ (r)),+ (5.2)

where

& 3 (r ) ) i = & 3 (r )Xi(r ) ), —
& 3 (r ) ), &Xi(r ) &, ,

& A(r))i=& A(r)Yi(r)), —
& & (r)), &Y(r)),

—
& ~(-. ) &, &x, (-. ) &, ,

& & (r) )3= & & (r)X3(r)), —
& & (r)), &X3(r)),

—
& ~(-.)),&x,(-.)),—& ~(-.)),&x, (-«) &, .

(5.3)

(5.4)

Similarly, for operators which depend only on P variable,
i.e., A = A(P), from Eqs. (2.7b) and (3.12) we have

& A (p)X(r,p) ) r
A(P)

&r(-. ,p) ), (5.6)

Using now Eq. (3.7) the series expansion of Eq. (5.6), up
to order A, can be written as

with the convention of summation over repeated indexes
(now denoting the 3N components of r ) The .more com-
plicated expression for S3 (r ) is given in the Appendix.

By means of (4.2) —(4.4) and of (4.9), (4.10), and
(A30)—(A34) we can now easily derive X,(r ), Xz(r ), and
X3(r ). We have verified that these expressions are identi-
cal to those that can be derived from Eqs. (3.10) and
(Al) —(A12) by averaging over the p variables [see Eq.
(3.18)]. This check is of particular importance for +3(r )

which is quite complex.

—
& & (p)) ~&Xi(r,p) &r

—
& & (p) &i&Xi(r,p)) r . (5.10)

We recall that the subscript I implies an average over all
6N dimensions of the classical phase space.

On the basis of Eqs. (5.2)—(5.10) we have calculated, for
the Lennard-Jones system, quantum corrections for vari-
ous thermodynamic properties such as the total and kinet-
ic energies, the free energy, and the pressure, and also for
the pair distribution function g(r), at various thermo-
dynamic points, performing the classical averages by
means of molecular-dynamics simulations. The expres-
sions of &X„(r,p ))r ——&X„(r)), which we have used in
the calculation are also reported in the Appendix. The re-
sults of these calculations are given in the following sec-
tions.

VI. MOLECULAR-DYNAMICS SIMULATIONS
AND THERMODYNAMIC STATES

As mentioned before, all classical averages which are
needed for the calculation of quantum corrections have
been obtained by means of molecular-dynamics computer
simulations, at various thermodynamic points, of an N-

body system described by a pairwise additive Lennard-
Jones potential. The computer simulations have been per-
formed with the Verlet algorithm with a reduced time step
At* ranging from 0.005 to 0.001 depending on tempera-
ture. Runs of several 100000 time steps had to be made
to ensure satisfactory convergence of the results. Usually
we have worked with 108 particles and cubic boundary
conditions with a force cutoff r, equal to half the box
length. Since the calculation of the fi correction to g(r),
i.e. , gi(x), is very time consuming, a rhombic dodecahed-
ron was chosen as the basic cell in most of these simula-
tions because it allows one to work with a smaller number
of particles while still maintaining a minimum interaction
cutoff of 2.5 particle diameters. This leads to considerable
saving in computer time since the calculation of the
correction term g3(x), involving three-body sums, is pro-
portional to % .

Table I gives the details of the calculations at various
thermodynamic points. In order to gain information
about temperature and density dependence, some of the
runs were made either at the same density or at the same
temperature. The point T*= 5, p* =0.365 has been
chosen in order to compare our results with Pollock and
Ceperley's PIMC (path-integral Monte Carlo) simula-
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TABLE I. Details of various molecular-dynamics runs. T* and p* are reduced temperature and den-
sity, respectively. N is the number of atoms in the simulation. The boundary conditions (BC) were either
cubic (C) or rhombic dodecahedral (RHD). T,* is the critical temperature, which for a classical I.-J sys-
tem is 1.35.

la
1b
2
3a
3b
4a
4b
5

6a
6b
7a
7b
7c
8a
8b
9a
9b

0.52 1.005

1.35
0.75

0.964
0.833

1.35
1.15

0.694
0.61

1.7 0.35

3.0 0.35

5.0 0.365

0.98 0.694

108
256
108
108
74
64

108
108
108
64

256
108
32

108
44
64
32

Time

2.5 ~10'
8.0 ~104
7.0 X10'
1.25 ~ 10'
2.5 ~10'
2.9 &&10'

5.0 &&10'

5.0 &&10'

2.0 ~10'
1.1 &&10'

2.0 X10'
2.5 ~10'
1.4 &&10'

6.0 &&10'

2.5 &&10'

1.0 ~10'
2.5 ~10'

BC

C
C
C
C
RD
RD
C
C
C
RD
C
C
RD
C
RD
RD
RD

Comments

solid

liquid in coexistence with solid
liquid at triple point

liquid in coexistence with gas

liquid
liquid in coexistence with gas

critical density, T*=1.3T,*

critical density, T =2.3T,

as thermodynamic point as
Pollock and Ceperley for helium (Ref. 6)

tions for helium. The results pertaining to the pair corre-
lation function at T*=0.98 and p*=0.694 have been
partly used in a recent comparison of the Wigner-
Kirkwood corrected g (r) with the experimental results for
neon. In order to generate sufficient statistics, the typical
length of the runs had to be of the order of several hun-

oo

4J
IK

CK oo
IL
K
LU

CD
LU

C3
LIJ

7

2 ~ a

~,
~ 3

4 4
I

0. 00 0. 40 o. eo
REOU&EO GENS I TT

FICx. 1. Phase diagram for a classical Lennard-Jones system.
Small dots indicate the liquid-gas coexistence line and were ob-
tained from the equation of state given in Ref. 16. The melting
lines are drawn through the data of Ref. 17 (triangles). The hor-
izontal line marks the triple point temperature. The large dots
illustrate the positions of our simulations in the phase diagram.

VII. RESULTS FOR THE QUANTUM CORRECTIONS
OF THERMODYNAMIC PROPERTIES

We have used expressions (5.2) —(5.5) and (5.7) —(5.10)
for the calculation of the quantum corrections to the total
energy U, kinetic energy IC, pressure p, and Eq. (3.21) for
the free energy F of an N-body system at various thermo-
dynamic conditions up to order A . This has been done
by calculating, in the molecular-dynamics simulations, the
classical averages which appear in these expressions to-
gether with, and much in the same way as, the classical
values of U, E, and p. The N-body interaction potential
used in the computer simulations is the pairwise additive
(6-12) Lennard-Jones potential:

cV N

+(r)= g g P(r;, ),
i =1 j=i +1

where r;~ is the distance between particles i and j, and

(7.1)

dred thousand time steps. Moreover, since the corrections
to the pair distribution function turned out to be quite
affected by statistical noise, we have often performed runs
with different numbers of particles to average out spurious
structures at long range.

The thermodynamic points were chosen such as to cov-
er a wide range of thermodynamic states. Figure 1 shows
the phase diagram for a classical Lennard-Jones system
calculated from the equation of state of Nicholas et al. '

and the column of comments in Table I refers to this clas-
sical diagram.

The simulations were performed on various computers
located either in Wien (VAX 11/750 at the
Prozessrechenanlage Physik) or Firenze (VAX 11/750 at
the Astronomy Department, GOULD/S. E.L. MPX-32 at
the Physics Department). One run (No. 6b) was per-
formed on CINECA's CRAY/XMP at Bologna in order
to establish some comparison in execution speed.
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P(rv ) =4e[(o /r 1 )
' —(cr/r J ) ] .

This has been used in the reduced form

(7.2) a» = (& *(x)X&(x)), —(+*(x)&, (Xf(x) ),
—N)(Xf(x)), . (7.7)

N N

P*(x~) ),
i =1 j=i+1

where

P*(x;, ) = P(r;, /—cr) .

(7.3)
Here X~ and Xq are still given by Eqs. (4.2) and (4.3) and
(4.9) and (4. 10), but now all the quantities are taken in re-
duced units.

Similarly, from Eqs. (5.7)—(5.9) we have, for K*/N,
2 4

&oN-N+ 2. N+ 2.
All quantities have been calculated in reduced units and
the extensive quantities are given per particle; therefore,
the calculation gives E*/N =E/Ne, E*/N =E/Ne,
p* =pa /e, and F*/N =F/Ne as functions of
T*=k&T/e, p =pa. , and A /2m=k/o&em. From
Eqs. (5.2) —(5.4) the reduced potential energy per particles
is, up to order A,

where Ko = (3N/2) T* and

K) =mo' X((r,p) — ka T(Xi(rp)) r2m 1 2

(7.9)

where

+o A*

2n

2
A*

2n

4

N
(7.4)

Kz —m cr E X&(r,P) — kz T(X&(r,p ) &V
4 p 3N

2m p 2

K1
(Xi( rp)) r

mo
(7.10)

e.= &~*(-)), ,

e, = (e*(x)X*,(x) ),—(~*(x)),(Xf(x) &, ,

(7.5)

(7.6)
If the integration over the p variables is carried out, ex-
pressions (7.9) and (7.10) reduce to

, &e,*(x)e,*(x)&, ,24T* (7.1 1)

Kp =
~

—,', ( @,*;~~ (x ) ), — [—', ( 4,*;(x )&b,*, (x ) ), + —,', ( &P~j (x )@,'j (x ) ), + —,', ( 4,*(x )4&,*,) (x ) ), ]

+,(+,*;(x)@,*(x)+,*(x)), —K)(Xt(x)), .9+42 (7.12)

N N
=—(Ko+ C'o)+ 2'

4

1—(K)+4()
N

1—(Kp+@p) .
N

From Eqs. (7.4) and (7.8) we also have
2

(7.13)

W, =& W*(x)), ,

W =(W*(")Xi(")),—(W*( )), (X*(")&, ,

Wp —( W (x)Xf(x)) ( W (x)) (Xp(x))
—W&(X)(x)), .

(7.17)

(7.18)

(7.19)

By means of the virial theorem the pressure can be writ-
ten as

Therefore, from Eqs. (7.14), (7.16), and (7.8) the expan-
sion for the reduced pressure is

~ K*, , 8'*
3P N 3P

where the reduced virial W' is

Ne BR
R 4R)

Also 8 * can be written as a
similarly to Eq. (7.4) since the
sponds is a function only of R.

2~o
N N 2~ N

(7.14)

(7.15)

series expansion up to A

operator to which it corre-
In particular we have

4

+ (7.16)
2w

I

p*= ( —'Ko ——'Wo)+ ( —'K, ——'Wi )N
4

( 3K' —
—,
' Wg)—

2 4
A* A*

=Po+
2

P1+ 2 P2 .
277 2~

(7.20)

The reduced free energy per particle F /N is given by

where
= ——T*lnZ .

N
(7.21)
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TABLE II. Quantum corrections to the kinetic energy. Kp/N is the classical value, while Ki/IV
and K2/N are the first and second corrections, respectively. In the last columns those value of
(A*/2~) are given for which the second correction amounts to 30% and 50% of the first.

0.52
1.35
0.75
0.98
1.35
1.15
1.728
3.035
5.0

1.005
0.964
0.833
0.694
0.694
0.61
0.35
0.35
0.365

Kp/N

0.780
2.026
1.125
1.468
2.026
1.726
2.592
4.552
7.455

K 1 /N

81.72
49.44
43.84
25.36
21.84
18.53
6.97
5.30
4.61

K2/N

2005
2106

373
229

—14
—4.1

[(A" /2n) ]3p%

0.0074
0.0062
0.0204
0.0286

0.149
0.388

[(A* /277 ) ]gp%

0.0123
0.0104
0.0340
0.0477

0.249
0.646

By means of Eq. (3.21) this can also be written in the
form

FQ

N
Fo A*

N 2~

2
F1 A*

+
4

F2

N
(7.22)

where

Fo 1= ——T*ln
N

3N /2
mkg T
2~2 Q, (7.23)

F]
N N

= ——r*(x*,(-) ), ,

F = ——r*[(x,*(x)), —
—,'(x f(x) ),'] .

(7.24)

(7.25)

The quantum corrections to the kinetic energy up to A

have been calculated by means of Eqs. (7.8)—(7.12) and
the results are reported in Table II. In order to evaluate
the quantum-corrected quantity for a particular substance
one has to evaluate A*/2~ and make use of Eq. (7.8).
The last column of Table II gives that value of (A*/2')
for which the second correction becomes equal to 30%
and 50%%uo of the first. This should give an idea of the
range of A* values for which the Wigner-Kirkwood ex-
pansion for the kinetic energy can be used safely up to the
second order. We have evaluated some corrections for
various substances by making use of the entries of Table
II and the parameters given in Table III. The results are
illustrated in Fig. 2 and shaw that the corrections may be-
come quite large as compared to the classical values. The
arrows in Fig. 2 show the shift in kinetic energy for argon
(label a), neon (label n), deuterium (label d), hydrogen (la-

bel h), and helium (label he) provided the substance meets
the convergence criterion explained above.

Table IV shows the results for the potential energy as
calculated by Eqs. (7.4) —(7.7). The meaning of the sym-
bols is similar to Table II. It is seen that, whenever the
series is converging, the corrections are very small even
for genuine quantum systems like H2 and D2.

Corrections to the pressure were calculated by means of
Eqs. (7.16)—(7.20) and the results of the kinetic energy of
Table II. The quantities so obtained are given in Table V
while Fig. 3 shows, similarly to Fig. 2, how the pressure
for various substances difters from the respective classical
value. The continuous curves in Fig. 3 give the isotherms
as derived from Ref. 16. Table VI reports the results for
the free energy as calculated from Eqs. (7.24) and (7.25)
while the values of the classical free energy Fo/N have
been calculated from the equation of state given in Ref.
16.

g(r)=Tr[p I (R)]=(I (R)), (8.1)

where r is the generic three-dimensional space vector and
the operator I (R ) (not to be confused with the symbol I
denoting classical phase space in the previous sections) is
defined as

N N

I (R)= g g 5(R+R —R )

i =1 j=1
(j&ij

(8.2)

VIII. QUANTUM CORRECTIONS TO THE RADIAL
DISTRIBUTION FUNCTION

The quantum-mechanical expression for the pair distri-
bution function g (r ) is

TABLE III. Reduction parameters and reduced values of h for various simple systems. (A*/2m) is the coefficient which appears
in the series expansions. N~ is Avogadro's number and A* =h /+emo. .

e/kp(K) (Ref. 21)
o (A) (Ref. 21)
M =mN, (g)

'2

27T

He

10.2
2.556
4.0
2.680

0.182

H2

36.7
2.959
2.0
1.726

0.0755

D2

36.7
2.959
4.0
1.221

0.0377

Ne

35.8
2.75

20.2
0.592

0.008 87

Ar

119.8
3.405

39.9
0.186

0.000 875

166.7
3.68

83.8
0.101

0.000 256

Xe

225.3
4.07

131.3
0.062

0.000 099



2448 FABRIZIO BAROCCHI, MARTIN NEUMANN, AND MARCO ZOPPI

h while the radial distribution function is

CD
LA

d"
n i g(r)=

N N

, J dr p~(r) y y 5(» r/)—, (8.4)
4nr

(j&i)

CD
Lll

LLI

4J

CD
LA

C4

Cl
4J

0. 00

het
I
I
I
I

h

d I I

dC
I

Qd
II
II
II
II
II
II

ni, l

I

a, .l
I

I

yn
I

I

I

I

0. 40 0. 80
REOUCED DENS IT Y

) h

I

I

I

4J
CL

I—
CK

LU
0C3

'CD W

CD
4J

C)
4J

C3
C3

2 4
A*

g (x)=go(x)+ g& (x)+ gz(x)
277 2~
6

A*
+ g3(x),2' (8.5)

where

1 1
go(x) =

Np* 4~x

1 1
g~(x) =

Xp' 4~x

( g g 5(x —x,, ))

(j+i)
N N

g g 5(x —x,, )y*, (x)
i=1 j=l C

(8.6)

where r =
~

r
~

. Using Eqs. (5.2)—(5.5) and (8.4) we thus
have in reduced units (x =r/rr )

FIG. 2. Quantum corrections to the kinetic energy for various
systems. The arrows show the change in reduced kinetic energy
if corrections up to second order in A are taken into i -.count.
Solid arrows indicate that the convergence criterion (i.e., the
second correction is smaller than 30%%uo of the first) is fully
satisfied, while broken arrows indicate that the second correction
exceeds this limit but is still less than 50%%uo of the first. The la-
bels have the following meanings: a, argon; n, neon; d, deuteri-
um; h, hydrogen; he, helium.

N N

g2(x) = g g 5(x —x; )Xq (x )
iVp 4' C

—go(x)(Xp (x ) ), —gt(x)(X] (x ) ), ,

(8.7)

(8.8)

and R is a generic three-dimensional space-vector opera-
tor. R; and R j are the position operators of particles i
and j, respectively.

Since I is an operator which is a function only of space
variables, Eq. (8.1) can be calculated by means of Eq.
(2.7a) as

N N

g(r)= Jdr p~(r) g g 5(r +r; —r, '),
X I=1 j=l

(j &i)

N N

g3(x)=, , g g 5(x —x;, )X3 (x )
Xp* 4~x C

—g~(x)(Xf(x)), . (8.9)

The quantities (8.6)—(8.9) have been calculated for all the
thermodynamic points reported in Table I, from the same

TABLE IV. Quantum corrections to the potential energy. 4o/N is the classical value, while 4~/N
and czar~/N are the first and second corrections, respectively. In the last columns those values of
(A*/2w) are given for which the second correction amounts to 30% and 50% of the first.

0.52
1.35
0.75
0.98
1.35
1.15
1.728
3.035
5.0

1.005
0.964
0.833
0.694
0.694
0.61
0.35
0.36
0.365

Clio/N

(Ref. 22)

—7.716
—5.851
—5.990
—4.850
—4.618
—4.179
—2.282
—2.014
—1.767

CIl I /N

14.61
12.95
8.84
7.32
6.90
3.85
2.06

42/N

—479
—782
—317
—155

—42
—7.0

[(A*/277) ]3p%

0.0092
0.0050
0.0084
0.0142

0.0275
0.0883

[(A*/2rr) ]gp~

0.0153
0.0083
0.0139
0.0236

0.0458
0.147
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TABLE V. Quantum corrections to the pressure. po is the classical value, while p~ and pq are the
first and second corrections, respectively. In the last columns those values of (A*/2~ ) are given for
which the second correction amounts to 30% and 50%%uo of the first.

0.50
1.35
0.75
0.98
1.35
1 ~ 151
1.728
3.035
5.0

1.005
0.964
0.833
0.694
0.694
0.61
0.35
0.35
0.365

po
(Ref. 22)

—0.0792
8.195
0.0967

—0.0914
1.087
0.061
0.403
1.268
2.481

p&

87.8
56.8
21.5
21.8
13.0
2.49
2.27

—563
—835
—626
—280

—20
—5.8

[(A*/277) ]30%

0.0468
0.0204
0.0103
0.0234

0.0374
0.117

[(A*/2~)']50%

0.0780
0.0340
0.0172
0.0389

0.0623
0.196

simulations that were used for the thermodynamic proper-
ties, while the correction (8.7) has been obtained only for
six of them, due to the excessive computer time needed in
this case. These six points are the ones marked "RD"
(rhombic-dodecahedral boundary conditions) in Table I.

The behavior of g~(x), gq(x), and g3(x) at all the ther-
modynamic points investigated is similar to that already
reported in Refs. 4 and 5 and, for the sake of simplicity, it
will not be displayed here again. ' Instead we will give
examples, at the various thermodynamic points, for the
kind of convergence that can be obtained for various sub-
stances. In particular we report in the following figures
the comparison between the classical and quantum

4J

N
CA

LA~a'
0
C3
LLL

C3
4J
lK

lD
LA

C)
I

mechanically corrected g(x) up to the order fi, showing
the cases with the highest value of A' for which the series
expansion (8.3) converges. The convergence criterion is
equal to the one adopted previously for the thermodynam-
ic properties.

Figure 4 shows the classical go(x) in the solid at
p'=1.005, T*=0.5. At this point a satisfactory conver-
gence of g (x) was obtained only for the case of argon and
it has not been reported in the figure because it does not
dier appreciably from go(x). Figure 5 shows the results
for Ne at p*=0.833, T*=0.75 and p*=0.61, T*=1.15
while Fig. 6 still gives a comparison, again for Ne, of ther-
modynamic points which have either T* or p* in com-
mon, i.e., p* =0.964, T*= 1.35, p* =0.694, T*= 1.35;
and p* =0.694, T*=0.98.

Figures 7 and 8 report the behavior of g (x) for Dq and
H2 at the thermodynamic points p* =0.35, T = 1.7;
p*=0.35, T*=3; and p*=0.365, T*=5. The g(x) for
D2 at T*=1.7 and for Hq at T*=1.7 and T* =3 were
terminated at small x when the convergence of Eq. (8.3)
was not satisfactory.

Figure 9, which we think is of particular interest, gives
the g(x) for He at T* =5 and p' =0.365, compared with
the classical behavior and with the result of the calcula-
tion performed for the same system by Pollock and
Ceperley with the path-integral Monte Carlo method.
The agreement between the two different methods of cal-
culation is very good over the entire x region where the A

series expansion converges satisfactorily and a comparison
can be performed.

In the cases of He and Hq, at T*=5, H2 and D2 at
T*= 3, and at T*= 1.7, the convergence of the series (8.3)
in the low x region has been improved by means of a (3,2)
Pade approximant.

IX. CONCLUSIONS

O. Oa o. 2O O. aa 0. 6O

REDUCEO OENS IT Y

0.80 P

FICs. 3. Quantum corrections to the pressure for various sys-
tems. Solid lines show the classical values which were calculated
from the equation of state given in Ref. 16. The reduced temper-
atures are, from top to bottom, 3.035, 1.728, 1.35, 0.98, and
0.75. The arrows again indicate the magnitude of the quantum
corrections and have the same meaning and labels as in Fig. 2.

We have calculated, by means of conventional
molecular-dynamics computer simulations, for an 1V-body
system of Boltzmann particles, the classical averages
which determine the quantum corrections for a number of
static properties. The particles were assumed to interact
via a pairwise additive L-J potential. Simulations have
been performed at nine different thermodynamic points in
order to test the validity of the method over a wide range
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TABLE VI. Quantum corrections to the free energy. Fp/X is the classical value, calculated from
the equation of state of Ref. 16, while F] /N and F&/N are the first and second corrections, respective-
ly. In the last columns those values of (A /2~) are given for which the second correction becomes
30%%uo and 50% of the first.

0.50
1.35
0.75
0.98
1.35
1.15
1.728
3.035
5.0

1.005
0.964
0.833
0.694
0.694
0.61
0.35
0.35
0.365

Fp/N

—2.28
—4.32
—3.95
—3.62
—3.83
—4.43
—6.13
—8.58

F] /N

81.72
49.44
43.84
25.36
21.84
18.53
6.97
5.30
4.61

F2 /N

374
—100
—199
—92.0
—52.9
—58.0
—18.8
—6.43
—3.00

[(A*/2') ]3p%

0.0655
0.148
0.0661
0.0827
0.124
0.096
0.111
0.247
0.461

[(A /2rr) ]5p%

0.109
0.247
0.110
0.138
0.206
0.160
0.185
0.412
0.768

of physical situations. Since quantum corrections calcu-
lated in this way are essentially fluctuations, carrying out
such a program necessitated performing a total of approx-
imately six million time steps, for systems with a number
of particles ranging between 32 and 256. This has been
possible because we had the opportunity of using freely„
over a period of several months, the computer facilities of
the Department of Physics of the University of Florence
and of the Prozessrechenanlage Physik of the University
of Vienna, during the unutilized time. Apart from elim-
inating spurious structures from g (r), the use of different
numbers of particles in the computation at most thermo-
dynamic points has also demonstrated the independence
of all the results on this variable.

The calculations of the quantum corrections to thermo-
dynamical properties have shown that relatively large

changes from the classical behavior can be computed with
the Wigner-Kirkwood method within the convergence of
the A expansion. The example of the quantum correction
to the pressure is particularly striking. In fact, for Ne and
D2 at the reduced temperatures T*=0.75, T*=0.98, and
T' = 1.35 the difference between the classical and the
quantum-corrected behavior is quite large. It is also in-
teresting to compare the predictions of our calculations
with available experimental results for the equation of
state. Table VII gives the comparison between the classi-
cal, quantum-corrected, and experimental values for the
pressure of Ne at p'=0.69, T'=0.98 and for H2 at
p*=0.35, T*=3. The experimental results for Ne and
Hq are taken from Refs. 19 and 20, respectively. Even
though in both cases the agreement between the calcula-
tion and the experimental results is still unsatisfactory, the

g&x)
' g(xj

0. 5 1.5 0. 8 1.2 ].g X

REDUCED 0 ISTRNCE

FIG. 4. Classical pair distribution function of a solid
Lennard-Jones system at p*=1.005, T*=0.52. The quantum-
corrected series is converging only for argon and the resulting
g(x) would be indistinguishable from the classical one on this
scale.

REDUCED 0 ISTRNCE

FIG. 5. Quantum corrections to the pair distribution function
of Ne at T*=0.75, p =0.833 (upper curves), and at T =1.15,
p*=0.61 (lower curves). The dashed lines are the classical re-
sults and the solid lines are the quantum-corrected ones up to
the order A'.
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I
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I
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C3

0. 8
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I

C3

1.2 1.6 x

REDUCED DISTANCE

FICx. 6. Quantum corrections to the pair distribution function
of Ne at T*=1.35, p*=0.964 (upper curves), at T*=1.35,
p* =0.694 (middle curves), and at T*=0.978, p* =0.694 (lower
curves). The dashed lines are the classical results and the solid
lines are the quantum-corrected ones up to the order A'. Note
that the first and the second are pertaining to the same tempera-
ture, while the second and third third are relative to the same
density.

REDUCED 0 I STANCE

FICx. 8. Quantum corrections to the pair distribution function
of H2 at T*=5.0, p* =0.365 (upper curves), at T*=3.0,
p* =0.35 (middle curves), and at T*= 1.7, p* =0.35 (lower
curves). The dashed lines are the classical results and the solid
lines are the quantum-corrected ones up to the order fi. The
two lowest quantum-corrected curves have been terminated, at
short distances, where the series expansion is not converging sat-
isfactorily.

g(x j
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I
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1.2 X

I
I
I
I
I

I
I
I
I
I
I

I

I
C3 ~ I
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REDUCED 0 I STANCE 0. 5 1.5
FICx. 7. Quantum corrections to the pair distribution function

of D2 at T*=5.0, p =0.365 (upper curves), at T =3.0,
p =0.35 (middle curves), and at T = 1.7, p* =0.35 (lower
curves). The dashed lines are the classical results and the solid
lines are the quantum-corrected ones up to the order fi . The
lowest quantum-corrected curve has been terminated, at short
distances, where the series expansion is not converging satisfacto-
rily. The reduced density of 0.35 corresponds to the critical den-
sity for a classical Lennard-Jones system.

REDUCED DISTANCE

FIG. 9. Quantum corrections to the pair distribution function
of He at T*=5.0, p*=0.365. The dashed line is the classical
behavior while the solid line is the quantum-corrected one up to

This line has been terminated at short distances, where the
series expansion is not converging any more. The dots are the
path-integral Monte Carlo results of Pollock and Ceperley for
the same thermodynamic state. The agreement is excellent.
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TABLE VII. Comparison of the calculated and experimen-
tal values of the pressure for Ne and H2. po is the classical re-
sult, pq, is the quantum-corrected value up to the second order
in A. The experimental values are from Refs. 18 and 19. All
pressures are given in atmospheres.

T )fc

P 70 Pqe j| exP

Ne 0.98
3.035

0.694
0.35

—19.7
248

-+ 10.8
275

21.4
287

improvement of the quantum-corrected values with
respect to the classical ones can nevertheless be considered
very good. This is particularly apparent f'or the case of
Ne, for which the classical calculation gives an unstable
situation while inclusion of' some degree of quantum be-
havior greatly improves the result toward reality. Since
the value of the pressure in dense systems is known to be
very sensitive to the exact form of the interaction poten-
tial, most of the remaining disagreement between our cal-
culation and the experimental results can be attributed to
the use of the L-J potential instead of a more realistic po-
tential.

The calculation of the quantum corrections to the radi-
al distribution function has shown that the %'igner-

Kirkwood method gives good results for Ne for all values
of x at any thermodynamic point in the fluid. In a previ-
ous paper these results have also been found to compare
favorably with the available experimental data. For the
case of more strongly quantum-mechanical systems like
0, H, or He, the method offers the possibility of at least
giving g (x) down to values of x = 1, even when the
difference from the classical behavior is quite large, al-
though it is not possible to go below T*= 5 for He and
below T*=1.7 for H and D. Finally, the agreement of
the two methods of calculation shown in Fig. 9 for the
case of He at T*=5.0 strongly supports the validity of
both.

APPENDIX

Here, in this Appendix, we will give the detailed ex-
pressions of the functions X2(r,p) and X (3r,p ). The
method is the same as the one used to derive XI(r,p) (Eq.
3.10). The functions will be expressed as polynomials in

f3; therefore, we have

6

X2(I',p)=, g p'X3'(r, p),
64m

where the coefficients of the various powers of f3 are

(r «P ) =
2 +Iijj

1
Xz"I( r, p ) = —„' &9,;@ + —,

' Nj 4j + =', 4;4; + pjpk 4;;jk

(A2)

(A3)

X2 '(r, p ) = —
—,', [(1/2m )ppzpkpl&P&kl+(5lm)pzpk&;;4&k+(4lm)pipk+z Pjk

+ ( 2 Im )p, p k 4&; 4;jk + 5 &9;;&0,@,+4+;4;, 4) ],
X'3"(~,P) =

—,', I(1»~ )P;Pjpkpl+„@ki+(2»II )P'kpl+ @ @ki+@@ +j@ji
Similarly,

9

X,(r,j)=, g /3'X, ' (r,p),
64m

where

(A4)

(A5)

(A6)

X,"(r,P ) = —
—,'„e,,jjkk,

Xi3~ ( P) ( i48 )P pj @jkl II + + i@jjkk+ + j@j'kk + @jk+jk + +''jj+ kk + +j'jkk@i

X3"( &,P ) = ——.
' [( 1 i m ')p p,'p'kp( ( —,'. @;kl „)

+ ( I ™PPj i g +ijkl @kl + j +ikkl @Ij+ & +ij kk @II+ y +Ij @kkll + ip @ijk+kll + ig +ikl @jkl + ip @ijkkl I )

+ z +ij +ij +kk + 15 +ij+jk +ik + 7)+ii+jj +kk + 3 +ijk +ij +k + 2 +iij j kk

+ ', +„,+,k@k+ —,'+„,, @k+—k+ —,'+ jkk@ +j)i
X'~' ( r,P ) = -,'l( 1j™)P,p,pkpip P. ( „'.~'„kI .)

(A7)

(A8)

(A9)

+ ( j )PiPjPkPI ( gg +Ijkm +ml + pgg +ijkl @mm + pp +ijmm @kl + i2p @ijklm @m + 72 @jim klm )

+( jlrI)p Pj ( +j @kl+kl+ o'+ kc kl@lj + o@ k@kj @II+ @j+kk+II

+ ~
I ikl+jk +I + 6p +ijk @k@II+ 36 +Ij+k +kll + ~~ +ijk +kl+I + 72 +Ijkk @l@l+ 3p @ijkl+k @I )

+ ( 72 C Ij ~ Ij +k C k + gg +lie jj @k@k+ 3p +Ii+j @jk+k + 36 @ijj ~ I @k@k + I 5 @Ijk C I @j@k + gg @ik +kj @I@j ) l

(A10)
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X'3"(r.P) = (—,')(-(1/m'}p;Pjpkplp p. (,'. ~';, @ki .}

+( 1/ }PiPjPkPI( gg @ij@km+Im + is @ij @kl+mm + gg +ijm @m +kl + pp +ijkl+m @m }

+ ( 1/m )Pipj ( @'k@kj@I@I+ @j+k '@k@II

+ .', @j—@kC'kl O'I + .', +,j—k@k@I+I }+(,
', @;;—@,I'j@k~'k + .', .+;,—+,+,@k+k }],

X3 '(r,P)=( —,')[(1/m )Pipjpkplp~p„(, ~~C'ijc'klc'~„)+(1/m )p;pipkpl(4II @ij+kI~'~ P~ )

+( 1/m }Pipj ( g +ij@k+k+I+I }+,44@i@'+j@j@k@k 1

(Al 1)

(A12)

(A13)

Here we give also the functions X;(r) obtained averag-
ing the X;(r,P) over the momentum space. Therefore,
from Eqs. (3.10), (Al}, and (A6) we obtain

X,(r)= (P &4, N, ) —2P &@,, ) ),
24m

Xi3"(-r}= —,„', ~„~»~kk, '„~„~ik+,k

(A22)

Xq(r ) =

where

6

g P'X '(")
24m

(A14)

+ —,', N;;N, 4)

krak+

—,', +;;~+~+k@k

X3(r ) =

where

9

g P'X", (r ),64m; 4

X,"'(r)= —,', e, e,e,a, ,

X2 ( r }= ~p
I ii~ jj + i5 +Ij +ij +

g
~ i +ijj r

X2 (r)= iociijj r

and, finally,

(A15)

(A16)

(A17)

(A18)

(A19)

X", I(r}= „'„e,e, e,e,eke k . (A25)

In fact, in order to perform the calculations of the vari-
ous quantum corrections, it is useful to write
&X;(r)),. =&X;(r,p))r=&X;) in a simplified form. This
can be accomplished easily if we use, for any given func-
tion of the configuration space, f (r), the following proper-
ty:

(A23)

X3i '(r)= —,'„4&;;&bj+I@k&k—
—,', @; 4&;N 4k@k, (A24)

(A20) & +&;f ( r ) ), = ( 1 //3) & f; ( r ) ), . (A26)

1+ 1pg +jik +ij k (A21)

X3 (r }—gs +Ii@jjkk + iog @ij stijl k + g~ +Ijijl ~ k + e30 I iij @jkl Equation (A26) is obtained performing a partial integra-
tion and taking into account the fact that the potential
must vanish at infinity. Therefore we end with

&X, ) = —(P /24 )&g),, ), , (A27)

&X2& = t «/8) & @„@„&,+ (P'/20) & e„q „), (P3/8) & q .
& ] (A28)

&X, &=
64m

+I ~ z&v & IVj kk &c + 7s6o & iijk jk &c 9o & @iij +jkk &c + ggpo & ijl ijl &c ] 0 gg7 iijjlk'
(A29)

With a derivation similar to those for S, (r ) and S2(r ) in
Eqs. (4.9) and (4.10), we have, from Eq. (4.7),

7

S (r)= „gp'SI, 'l(r), (A 30)
4

where

S(6)(-, ) = 81 e'kekJq ' q' kke', 4

——,'+jk+~C'I, —
—,",+ +'~-~'jkk,

SI37)(r)= ,', eV kq, cja k—+,'",,a,keke, ieJ .

(A33)

(A34)

(A31)

( r }= 8 @i@ijjkk + 6 +ji@jikk + &g +jik C ij k +
i 44 @ikk ~ ijj r

(A32)

Since the derivation of the expressions for the S;(r ) is in-

dependent of that for the X;(r ), Eqs. (4.9)—(4.10) and
(A30), have been used, together with (4.2)—(4.4), to verify
the expressions (A13), (A14), and (A19).
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our simulations. However, this fact should not affect the
quantum corrections as the P; functions are more short
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