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We derive the exact Mayer series for the pressure, density, and the equation of state of a hard-

sphere fluid in the limit of infinite space dimensions D. The Mayer series can be analytically contin-
ued into the full (cut) activity plane and there is no sign of a phase transition. We also treat the
quantum-mechanical system. For D = ~ the fluid behaves like an ideal Bose gas and undergoes a
Bose-Einstein condensation.

I. INTRODUCTION

There is considerable interest in the system of hard
spheres in statistical mechanics, to model the behavior of
real fluids at sufficiently high temperatures where attrac-
tive forces can be neglected. In particular, this applies to
dense fluids. '

Classically, the exact (Tonks) equation of state of the
one-dimensional hard-sphere fluid is known and the sys-
tem does not exhibit a phase transition. For two and
three dimensions, several of the initial virial coefficients
(which are positive) are known, there are also estimates of
the radius of convergence of the virial series. ' Computer
simulations' ' in two and three dimensions indicate a
first-order transition which, at least in three dimensions, is
from a fluid to a solid phase. There are approximate
theories of the equation of state in two and three dimen-
sions which yield results which are in very good numeri-
cal agreement with the fluid branch [Percus-Yevick (PY),'
scaled-particle, Carnahan and Starling (CS), etc.] and
the solid branch ("free volume, " etc. ) of the computer
simulations. There is no analytic theory of a phase transi-
tion for dimensions larger then 1.

The physics of this problem is such that one expects
considerable simplifications in finding an equation of state
in the thermodynamic limit, in the subsequent limit where
the dimensionality D becomes infinitely large. This is a
general feature of interacting systems on lattices in the
thermodynamic limit.

In this paper we consider this infinite dimensional limit
of the hard-sphere fluid. In Sec. II we give a diagrammat-
ic analysis of the Mayer and Mayer type of the grand
canonical partition function for this system for infinite
dimensionality. We obtain infinite series in the fugacity
for the pressure p divided by kT, and for the density p of
the fluid, which are exact for infinite D (with corrections
that are exponentially small in D). We also find their an-
alytic continuation and the exact equation of state. In
Sec. III we compare our results with the approximate
scaled-particle theory equation of state of classical hard
spheres in D dimensions. Briefly, we also discuss some
previous conjectures concerning the form of the equation
of state in D dimensions. Section IV contains a treatment
of the quantum-mechanical system. We extend the
Yang-Lee-Huang-Bogolyubov theory ' " of the degen-
erate, "almost ideal" Bose gas to D dimensions, and com-
pare with the classical hard-sphere fluid. Section V sum-
marizes and discusses the results. A short account of our
work has been published previously. '

II. THE EQUATION OF STATE
FOR THE D = 00, CLASSICAL

HARD-SPHERE FLUID

Our starting point is the expansion of the grand parti-
tion function = for a classical fIuid in powers of the activi-
ty z =A exp(I3p), where p is the chemical potential, or
Gibbs free energy per particle, P=(kT) ', and
A=[h /(2trmkT)]'

oo n n

g(z/n!)fd x fd x„exp —/3+ g $(~x; —x, ~) (2. &)

n=0 i =1 j=1
(j &i)

P is the interaction energy of two particles, which reads
for a hard-sphere fluid

where a is the diameter of the hard sphere. From =, one
obtains the thermodynamic potential

oo, ixi &a
0, x/)a (2.2)

A(T, Vp) = —kT ln" = —pV . (2.3)

Expansion (l) can be rewritten in terms of linear, local

36 2422 1987 The American Physical Society



36 HARD-SPHERE FLUID IN INFINITE DIMENSIONS 2423

graphs, following Mayer and Mayer, by introducing the
function

where 0 is the Heaviside (unit step) function. The ex-
ponent in (2.1) corresponds to a product of factors
(fi+ I), and one can represent it by a graph, that is to
every pair of particles or points r;, r~ one associates a line
or nothing, depending on whether fJ or 1 enters the prod-
uct. As usual, graphs with cycles f;; f;; f;; are

called loop graphs (with loops of length k) and graphs
without cycle tree graphs. The contribution of the nth or-
der in z to the grand partition function = is then (z "In!)
times the sum of all linear graphs of n labeled points (the
zeroth contribution is 1).

The linked-cluster theorem reduces " to a sum of con-
nected graphs "„

:-=exp(:",—1), (2.&)

where =, now contains only graphs with all points con-
nected by at least one line. Thus, =, (z) is a series in
powers of the activity z,

:",(z)= g b„z",
n=0

(2.6)

whose coefficients b„are the sum of all possible connected
graphs of n labeled points multiplied by their respective
weights (integrals over the fi' s), and bo ——1.

From the thermodynamic potential (2.3) one obtains

pV lkT =:-,—1 = V g b„z",
n =1

(2.7)

and, for the average number of particles (N) in the
grand-canonical ensemble,

(X)= —an/a~=za:-, /az =V y nb„z" .
n =1

(2.8)

The equation of state p /(pkT) =f (p), is obtained by elim-
inating z between (7) and (8).

The evaluation of the weights b„simplifies considerably
as the space dimension D tends to infinity. We shall show
that for large D, they are dominated by tree diagrams, in
that, at a given order n, any loop reduces exponentially
the weight of the diagram by a factor ( /33/2) /3/D. An
nth-order tree diagram has a weight given by evaluating
each integral over x;, . . . in turn. Each integral is re-
stricted by the range a of f;i, except the last, x] which ex-
tends over the whole volume V. Thus the weight of one
given nth-order tree diagram is V(U)" ', where

C= fd sf8(s),
8(s) = f d r3 f23f]3

(2.12)

(2.13)

8(s) is the overlap or intersection of volumes of two
spheres, each of radius a, whose centers (x, and x2) are a
distance s apart. Obviously, 8 vanishes if s)2a. Also,
with z as the axis through the centers x1 and x2 of the two
spheres, and 8, the colatitude angle from that axis, —,'8
equals the volume of a spherical cap ~hose base is a
(D —2)-sphere of radius a sin8, and whose height is given

by z =a cosO, i.e.,

—,'8= VD ](a)a f d8sin 8,
0

(2.14)

with cosO = —,'s/a. Similarly, since the solid angle of a
(D —1)-sphere is SD(1)=DVD(1),

C = —2aVD ](a)DVD(l) f 'dss ' f d8sin 8,
0 0

(2.15)

which can be evaluated after a change of variable,
—,'s/a =cosa, and permutation of the orders of integra-

tion,

C = —(2a) +'VD(1) VD 1(a)
n/2 . D D D n. /3

X da sin a cos a+2 da sin a
n. /3 0

(2.16)

Finally, using the trigonometric identity
sin2a =2 sina cosa, and the obvious symmetry of the in-

tegrand, we obtain

C = —3VD(a)VD ](a)a f d8sin 9 .
0

(2.17)

The integral is obviously bounded by —,]n(3/3/2) . It can
be evaluated exactly when D~ oo. The result is (Appen-
dix A)

1
C = —3VD(a) VD ](a)a 2(D+ 1)

D+1v'3

where r, =x; —x1, and the last coordinate x1 is not in-

tegrated over (it is unrestricted and yields a factor V). C
will be compared with the tree diagram of same order 3,
consisting of three points connected by only two lines,

Co = f d r2 f d'r 3 f12f13 (2.1 1)

C is evaluated in two steps, setting s = r2

7r /2

I (1+D/2) (2.9)

' D+2
1 3/3

D 2
(2.18)

is the volume of a (D —1)-sphere (a disk in D-dimensional
space) of radius a in D dimensions.

Let us now evaluate a diagram containing one closed
loop. The simplest one is of order 3, where all points are
connected to each other (a triangle). We must calculate

C = f d r2 f d r3 f]2f23f]3 (2.10)

Co can also be evaluated from 8(s),

C]]——f d s 8(s)

=2VD(a)VD ](a)a f d]9sin O=U
0

Thus

(2.19a)
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~

C/C,
~

= —[I (1+—,'D)/1 (1+—,'(D —1))]
2v'7r

1
n —2—& fb„i&

n
" n! (2.27)

D+1
3

D+2
V'3

+0
D 2

3 e

2 277

1/2
1

v'D

D+1
v'3

(2.19b)

using Stirling's formula. Thus, the one-loop triangle
graph is bounded by a, a & 1. If the closed loop contains
more than three vertices, say m, it will be bounded at least
by D "a, a & 1, k —1 (this holds, because the integration
over alternating variables in the analog of Eq. (2.10) in-
volves Pm ] overlaps, [ —,'m ] being the nearest integer
&m/2, each of which is bounded by 9 sin 9 [see Eq.
(2.14)]). The contribution of the square loop (m =4) is
calculated explicitly in Appendix B.

Thus, as long as the Mayer series [(2.6)—(2.8)] has
bounded coefficients and a finite radius of convergence—
which it has, according to Groeneveld's theorem (Ref. 13,
p. 95)—and the proportion of loops to tree diagrams of
order n does not increase too fast as n ~ oo —as will be
shown below —it is dominated, as D tends to infinity by
tree graphs, order by order, and

pv 1

kT v'2w
( —zue)"

5/2
(2.28)

which have the same radius of convergence as the original
series, can be analytically continued in the complex z
plane, cut along —oo & z & —1/(eu), by using Appell's in-
tegral '

and the radius of convergence of the Mayer series. Our
classical system of hard spheres at D = ~ realizes the
upper bound on b„(the Ford model' realizes the lower
bound) and the lower bound on the radius of convergence
(2.24).

R serves also as a lower bound for the radius of conver-
gence R ( V) of the finite-volume Mayer expansion,
R ( V) & R =- lim ~ „R ( V). '

The Mayer series (2.22) and (2.23) have a singularity at
the unphysical value zv = —1/e. An analytic continua-
tion of the series can be performed as follows, although
this may not contain the full physical information. The
approximate series (use again Stirling's approximation)

( —zve)"
3/2

:-,—1= V g [c„z"(—v)" '/n!][1+0((a & 1) )],
n =1

(2.20)

( —zev)"
Sn=i

zev ~ t s —1

dt
1 (s) fo e'+zeu ' (2.29)

cn n (2.21)

Now, the activity expansion of the thermodynamic quan-
tities (7) and (8) is

PU

kT

oc tl —2

( —zu)",
n!

n =1
(2.22)

n —1

pu = —g ( —zv)" .
n!

n =1
(2.23)

Both series have the same radius of convergence R,

where c„ is the number of labeled tree graphs of order n,
given by Cayley' ' as

=1+ g B,„ppkT
(2.30)

which is an analytic function of z everywhere in the cut
complex z plane if Rez ~0.

There is therefore no sign of a phase transition in the
Mayer series. We shall see in Sec. IV that at high densi-
ties corresponding to zv outside the radius of convergence
of the Mayer series, the physical D = oo hard-sphere quid
is quantum mechanical except at infinite temperatures.

To obtain the equation of state, p/kT as a function of
p, one needs to invert series (2.22) and (2.23). This can be
done in either of two ways. First (Ref. 19, pp. 149—51)
one writes

1 1
lim 1+—

R n-~ n

n —2

=e . (2.24)
where the virial coefficients B have a diagrammatic rep-
resentation (Ref. 9, Chap. 13)

n I1 —2

en! =0.535,1

&2~
(2.25)

For zu &R, the series (2.22) and (2.23) are absolutely con-
vergent since the majorant series

m —1

13 = lim V
1

v —- (m —1)!

d P1 d 12 ' ' d

(2.31)

n n —1

en! = 1.042
3
2

(2.26)

are convergent. Here g(s) = g„",n ' is the Rie-
rnann ~ function and Stirling's approximation,
n!= &2~n ' + ' e ' has been used. Ciroeneveld's
theorem (Ref. 13, p. 95) for hard-sphere systems gives
bounds for the Mayer coefficient

and the sum runs over connected graph's of order m,
m ~ 2 such that there are at least two paths of lines con-
necting two points (graphs which cannot be disconnected
by cutting one single line, sometimes called "blocks" ).
Among all tree graphs, only those of second order remain
if D~ oo. We have

1= —U
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and consequently,

8,= —,'v [1+0((a ))],
8 ),——O((a )) .

Recently, Frisch and Percus have generalized this result
to arbitrary finite-range repulsive interactions and nonuni-
form densities.

The equation of state is simply

number is22

b —n + 1/2 —5/2
2v'

where b and xo ~ 1 are finite. Since

—n + i/2 —5/2 i/ n —2
( )

—n

(2.36)

(2.37)

P =1+ 2Vppk1
(2.32)

pue)" =zu (2.33)

inside a contour in the pu plane around the origin such
that ~zv

~ ~

e ~"
~

&
~
pv

~

for pv on the contour. Equa-
tion (2.33) yields d(pv)/d(zv)=e ~"(1+pv) ', whereas
(2.22) and (2.23) imply that zv [d (pv IkT) ld (zv)] =pv;
thus d (pv IkT)ld (pv) =pv l[zv [d (pv)ld (zv)]]. Combin-
ing these two expressions with (2.33), we obtain
d(pvlkT)ld(pv)=1+pv and thus (2.32).

At this point we must discuss the influence of other di-
agrams, besides trees, on the Mayer coefficients b„.
Enumeration of all diagrams ("labeled star trees") contrib-
uting to b, is discussed in Ref. 22.

Consider first one-loop diagrams of order n, containing
one closed loop of length k. Their number is given by'

I n~
n n —k —]

2 (n —k)! (2.34)

Comparing now with the number of tree diagrams of the
same order, n ",we obtain, summing over k from 3 to
n,

1 n! ] k n!n 1
n n"

2 (n —k)! 2n"
&

(n —k)'
(2.35)

more one-loop diagrams than tree diagrams. The sum is
bounded by e" and n! is approximated by Stirling's for-
mula. As a result there are less than n times more
one-loop graphs than tree graphs of order n. The corre-
sponding Mayer series clearly converges within R (2.24)
and we can, as D~ oo, omit this contribution. The point
is that the number of such graphs grows only as a power
of n.

For c loops (c =e —n +1, e =number of lines,
n =order of diagrams), the weight of a diagram is
suppressed by a factor (a )" rather than by (a )' because
loops with a common line do not have independent re-
strictions on overlaps (see Appendix B).

At every order, the total number of labeled star trees is
( jfinite [the overwhelming majority of all 2 2 graphs, con-

nected or not, are stars for large n and c (Ref. 22). If one
restricts the diagrams to consist of stars containing no
more than a given number of loops c =e —n +1, their

This equation is exact for D = oo, and the corrections are
exponentially small in D. p/kT is an analytic function of
p.

Alternatively, one can use Langrange's method of series
reversion: ' The Mayer series (2.23) is the unique root of
the implicit equation (in pv )

1 m.e
pvHc= +-

D/2

On the other hand, close (dense) packings of spheres in
D = oo dimensions have a density given by Roger' s
bound

cD (pucp (2 D

where c is a number less than 2. Consequently, the di-
mensionless close-packing density puzp is infinite as
D~ao. We shall see in Sec. IV that the physical hard-
sphere fiuid, at pu & 1, is quantum mechanical for all
finite temperatures. The quantum hard-sphere fluid does
undergo a phase transition (Bose-Einstein condensation).

(Stirling's formula), we see that their contribution, com-
pared to those of tree graphs is =(a /xoe)"; for D large
enough this can be again neglected. In the case of polygo-
nal stars (mixed Husimi trees), b =0.87, xo ——0.24.
Therefore, as long as a &0.66, the corresponding graphs
can be neglected. Note that the above restriction to (an
infinite collection of) stars with a finite number of loops is,
according to Ref. 22, not necessary for Eq. (2.36) to be
valid. The weaker, necessary condition is not known.

In the absence of any restriction on the types of consti-
tuting stars, the number of connected graphs of order n is,

asymptotically, 2 = & 2" . From the above discussion,
we have a suppression factor of at least a ", e ~ 1. Thus,
at the very least, at every order n there is a D„above
which the Mayer coefficient is dominated by tree graphs.
Since the Mayer series is uniformly convergent within its
(finite) radius of convergence, the operations D~go and
g„can be interchanged.

Note that Eq. (2.32) has a nontrivial virial coefficient
and that the hard-sphere system is still interacting as
D~ ao. Nevertheless, there are no premonitory signs of a
phase transition in the classical fluid phase described by
the equation of state (2.32) (which is analytic and does not
exhibit any pressure divergence or maximum) or by the
Mayer series (2.22) and (2.23) and its analytic continua-
tion, Eq. (2.29).

Consider, however, the characteristic densities of a
hard-sphere fluid in D = m dimensions. u is the natural
scale of volume for the Mayer cluster expansions (2.1),'

so that pu is the relevant dimensionless density. pu=1
corresponds, as we have seen, to the radius of convergence
of the Mayer series.

A hypercubic lattice of touching hard spheres has an
utterly negligible density
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III. COMPARISON WITH APPROXIMATE THEORIES
OF CLASSICAL HARD-SPHERE FLUIDS

The exact equation of state (2.32) can be compared with
the results of approximate theories. The scaled-particle
theory (SPT) (Ref. 6) is a simple, yet accurate method to
determine the equation of state of hard-sphere Auids. It is
based on evaluating the reversible work, hence the entro-

py produced in creating a spherical cavity in the Quid. In
a hard-sphere fIuid, a cavity of radius a has precisely the
same effect on the rest of the system as a particle itself, so
that there is a relation between macroscopic thermo-
dynamic quantities and the microscopic structure of the
system. The scaled-particle theory is easily generalized to
arbitrary dimensions. As D~ao, the equation of state
is

spT
=(1+—',pv)/(1 ——,'pv)+O(2 pv) . (3.1)

D
p
kT „1a„Y" . (3.2)

The conjecture is based on calculations in D = 1,2, 3.
For D = oo, the canonical Y form can be rewritten as

, , (a+PY+yY'+ ),1

pk T 1 —2D 3y

since

y(1 —2 y) '= Y[1—(2D —1)Y]

(3.3)

The second virial coefficient, —,v, is identical in both SPT
and exact theory (2.30). The exact pressure, at given den-
sity, is lower than that given by (3.1), as may be expected
from an approximate calculation.

Carnahan and Starling (CS) have suggested a sem-
iempirical modification to the SPT equation of state in
D =3, to make it yield the exact next virial coefficient. It
has also been conjectured that such a correction, and the
approximate equation of state itself, must be of a specific
form ( Y form) of monomials in Y =y /(1 —y) [where

y =p VD(a/2)=pv/2 ] so that the CS approximate equa-
tion of state in D dimensions should be a polynomial of
degree D in Y,

The physical situation indeed requires a quantum-
mechanical treatment. The radius of convergence of the
Mayer series

~

zve
~

=1 corresponds, at low temperature
(for maximal value p=O of the chemical potential) to a
thermal wavelength A of the order of the hard-sphere di-
ameter u' . Given a classical Hamiltonian for N hard
spheres, both first and second quantization are required.
The hard spheres are spinless so that they should be re-
garded as bosons. Their mutual repulsion is a dynamical
effect of the hard-sphere potential, not a statistical one
(which would be reminiscent of Fermi-Dirac statistics).

In this section we shall show that the hard-sphere Bose
gas becomes ideal in the limit D = ao, in that the particles
are effectively noninteracting. The difficulty with an
infinite interaction potential at small interparticle dis-
tances, is circumvented in the standard fashion, by calcu-
lating the scattering amplitude or t matrix, and using it as
a pseudopotential whose effect can be treated in the Born
approximation.

In D dimensions, the Born approximation for the
scattering amplitude is established as follows (we shall
only be interested in s waves). The scattered wave u (r)
satisfying the radial Schrodinger equation for zero angular
momentum,

+k — V u=01 d D i d 2 2p
r ' dr dr

(4. 1)

D —3g"+ g'+k a =0
r

(4.2)

and fo is the s-wave scattering amplitude. The total wave
function is the sum of the incident plane wave Po=e'"'
and the scattered wave u (r), f=tto+ u. It is also the solu-
tion of the Schrodinger equation, which can be written in
the Born approximation, using the Green's function, as
ate ——Pv+ f (m/fi )GOVgod r, where Go is the solution
of

[where p= —,'m is the reduced mass in a collision of two

particles of mass m, E =Pi k /(2p) the eigenenergy, and
V the scattering pseudopotential], can be written as
u(r)=(fo/r )g(r) in the region V=O, where g(r)
satisfies the Bessel equation

The SPT equation (3.1) is obtained for a= 1, P= —„'2; all

other coefficients vanish. The exact equation of state (all
higher-order virial coefficients) is recovered by adding to

p /pkT, the Y-form term —4( —,'pv) l(1 ——,'pv). Then

y = —4( —,
' 2 ), and the other coefficients remain zero.

Thus, the conjecture of Barboy and Gelbart is satisfied

by the exact expressions for D = 1 and D = oo.

(V'+k )Go(r, r')=6' '(r —r'),

which is

Go(r, r')= —[(D —2)SD] 'exp(ik
~

r —r'
~

)

X(/r —r'/)'

(4.3)

(4.4)

IV. THE HARD-SPHERE BOSE FLUID

In Sec. II we have seen that the Mayer series and the
equation of state are analytic within the classical Quid
phase. Analytic continuation of the Mayer series could
also be performed outside the circle of convergence,

~

zev
~

=1, i.e., for densities higher than (pv)*=0.305.
However, classical mechanics may no longer be applicable
at such high densities.

The numerical factors [SD ——DH~ /I (1+D/2)] are ob-
tained by integrating (4.3) over a spherical volume VD(r)
enclosing the source point r'=0, neglecting k beside V
for the singular behavior at

~

r
~

=0, and using Gauss's
formula. By putting Go into the integral equation for Pe
in the asymptotic region

~

r
~

&&a, one obtains fo in the
Born approximation. For slow collisions

~ q ~

a && 1,
where q is the momentum transfer and a the range of the
pseudopotential, it reads
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(D —2)Sn))1
fd rV(r)

drr 'V r
(D —2)A'

(4.5)

For D =3, fo i—s called the scattering "length. " Here fo
has dimensions (length)

The hard-sphere Bose gas has been analyzed in three
dimensions by Lee, Huang, and Yang. " Despite the
hard-sphere potential being infinite for small interparticle
distances, the scattering amplitude, or t matrix, remains
finite and plays the part of the pseudopotential V.

In the Born approximation (4.5),
Aa -DSt)pa

~ fo ~

&&1 is the small parameter of the
perturbation scheme. [p=N/V is the density of Bose
particles, and the approximation symbol stands for nu-
merical factors given below in Eq. (4.10).] In this sense,
the hard-sphere Bose gas is regarded as almost ideal in
three dimensions. We shall see that it becomes ideal as D
tends to infinity.

The main physical quantity measuring the effect of in-
teractions between particles is the depletion of the zero-
momentum condensed state, given by 1 —(No'//N, where
(NQ }/N is the fraction of particles in the condensed state
at absolute zero.

Let us recall the main results of Bogolyubov's
theory, ' ' straightforwardly generalized to D dimensions.
The energy of elementary excitations of momentum p is

s~ =[(p /2m) +u p ]'/

mu =(D —2)St)A ufo lplm

(4.6)

(4.7)

where u is the sound velocity in the Bose gas. The
coherent mixing between Bose particles and antiparticles
is given by

Lz ——(ez —p /2m —mu )/mu (4.8)

and the p&0 momentum distribution of the Bose particles
at T=Oby

(N ) =L /(1 L), —

D

p( 2)r))1}

The change of variable, p =2mu sinht, eliminates m and A

from Eq. (4.9), which now reads

so that the depletion of the condensate is
1 —(NQ ) /N

SD 1

(2rrfi}~ p
2 2

X ppd D —1 (mu )

0
P2e (p /2m +mu —e )P

(Eq. 78.20 of Ref. 26 is misprinted). Here we have made
the standard transformation to a continuum p spectrum,

and HD is the dimensionless integral

Ho ——f"dt exp( —2t)(sinht)
0

(4. 1 1)

HD diverges at large t for D )4, and a cutoff t,„ is re-
quired at large momentum. It is given by the obvious sum
rule N ' g =1, equating the number of modes to the
number of particles, that is

1 = A St) /(Dp)(i/2 sinht, „)n . (4.12)

Note that the cutoff; sinht, „~ D ', becomes very large
as D~ op. It is unnecessary at D =3, where H3 is easily
evaluated and Eq. (4.9) yields the classic result

1 —(No}/N = —(p i fo i

)'
3i/7r

For D~ oo, the integral in HD is dominated by the large t
contribution, where sinht —(1/2)e', and

j —4/D
1 Dp

2&/&(D 4)
(4.13)

by using the cutoff' (4.12); so that, finally,
4/D

SD

pD
1 —(NQ) /N=—1 D

4 D —4

1

, (e /4)r )(2~re) (
~ fo p' /

)

(Nz )(T)= [nz+Lz (nz + 1)]l(1 Lz ), —(4.15)

where the coherent mixing L~ is defined in Eq. (4.8), and
nP is the Bose-Einstein occupation number at p =0,

n~ ( T) = I /[exp()t3e~ ) —1] .

e~ is given by Eq. (4.6). Depletion of the condensate

(4.14)

which is negligibly small at D = oo. The hard-sphere
Bose fluid behaves therefore like an ideal Bose gas, with
classical Bose-Einstein condensation, in infinite space di-
mensions.

The physical reason for this ideal Bose-Einstein behav-
ior can be seen by comparing the kinetic energy of free
bosons p /2m, with their collision energy

mu = A -DSt) lfo l p« /m»(2M) 2

2m

as defined in Eqs. (4.6) and (4.7) at large momenta. The
collision energy becomes negligible as D~ oo because the
ratio between the volumes of a D sphere and its cir-
cumscribed D cube becomes itself negligible.

The Bose-Einstein condensation temperature T, can be
obtained by calculating the depletion of the condensate at
finite temperatures, T & T„so that p =0. The p&0
momentum distribution is given by

(N ) /N A 2(Si)//p)2) l/2)D —2~

where

A =[mu/(i/2'))i)] =(D —2)St)
~ fo ~

p/(2)r ), (4.10)

(N )(T)/N=A (Snip)2 (~p+~r)
p (&0)

is due to two contributions, (i) nonideality of the Bose
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fluid Hz, corresponding to n~ =0 in (4.15), and shown
above to be negligibly small at D = co [Eqs. (4.9)—(4.14)],
and (ii) the thermal contribution

H, = f dx [S(x)]
0 exp(x) —1

with

(4. 16)

—,'[(xkT/mu ) —1]e(x —mu IkT)(S(x)(xkTlmu

where e is the Heaviside (unit step) function, yield excel-
lent bounds for Hz,

(1/2)D

I (D/2)F (mu IkT)
2mu

&H~ &2
2mu

(1/2)D

I (D/2)g(D/2), (4.17)

where F~/z(x) = g„, e " In . For D~ ~,

and

Fg)/2(0) =g(D/2)~1,

Fa/2(x) =e "[1+0(2 )],
so that

mu
exp — & HzkT

kT
2mu

( & /2)D

I (D/2) (1 .

(4. 18)

We shall show later [Eq. (4.21)] that kT, =(2M Im)p /,
so that, from Eqs. (4.7) and (4.14),

kT, /mu = [(2m) / l[D'/ (D —2)]I

X(D/2~e) '(
~ fo p' '

)

S(x)=
I [1+(xkTImu ) ]' —l I /2 .

Here the change of variable x =Pe~ has been made.
Bounds for S (x),

p=[A, /I (D/2)] f dx x '(e —1),
0

(4.22)

T, ) 302.6N '(2we) 'g D, p & 1/v (4.23)

for D~ ~, with a in angstroms. At high densities, there-
fore, the hard-sphere fluid is an ideal Bose condensate in
an overwhelming range of temperatures.

To discuss the phase diagram, consider the classical
hard-sphere fluid described in Sec. II [Eq. (2.32)], and de-
crease its temperature at constant density p, or activity z.
The fiuid becomes (smoothly) quantum mechanical at Tv,
whenever the thermal de Broglie wavelength A reaches a
typical atomic (v'/ ) or interatomic distance (p

'/
), or,

for statistical reasons (validity of the Boltzmann distribu-
tion), when the chemical potential p ~

=k T, i.e.,

A=(ez) '/, whichever is the condition encountered first
when decreasing the temperature. Thus, the degeneracy
temperature TD is given by

A( Tn ) =min[v ",p —"~,(ez) —"~] . (4.24)

Because p&z [Eq. (2.33)], p
' &(ez) '/, and the in-

teratomic distance is irrelevant in determining the degen-
eracy temperature, which is always larger than the Bose-
Einstein temperature A, =p '/ (4.21).

Within the radius of convergence of the Mayer series,
ze & 1/v, the degeneracy temperature TD corresponds to a
metric condition

x =p /(2mkT), thereby confirming the ideality of the
D = ao Bose fluid.

T„given by Eq. (4.21) or (4.22), is best expressed in
terms of the linear density p=(n, /1, ) . Let N be the
atomic weight, mz, the proton mass, m =Nmz. Then, if
l

&
is expressed in angstroms,

T, =302.6(n, /I, ) N '[g(D/2)] /+ (K) .

(This yields T, =3.11 K for He in D =3. ) Recall that for
D ~ oo, I (D /2 )~ 1.

At, and above the (high) density p = 1/v, corresponding
to zv =e, that is near the radius of convergence of the
classical Mayer series (2.23), T, is, typically, in Kelvin,

D/2
kT

Hp ——2
2mu

I (D/2),

= [e /(D —2)](1—( No ) /N)

is very large, and

(4.19)

(4.20)

A( Tv ) = v ', ze ~ 1/v .

Outside (ze & 1/v), it is statistical,

A( Tv ) = (ez) '/, ze ) 1/v,

that is, if a is expressed in angstroms,

yields the Bose-Einstein condensation temperature

kT, =(2~ /m)p2/D A p
—1/D (4.21)

This is exactly the condensation temperature of an ideal
Bose gas in D dimensions (Ref. 27, p. 248)

except at the very lowest temperatures kT «mu .
At T =T„ the occupation of the condensate is no

longer macroscopic, and

1= g (Np )(T)IN
p (&0)

=—'A (Sg) /p)I (D/2)(kT, /mu )

Tv & 302.6N '(2ne) 'a D (K),
an infinite degeneracy temperature, as D~ ~. The classr. -

cal hard-sphere fluid fails to describe the D = ~ real fluid
when zev ~ I, outside the radius of convergence of the
Mayer series. In that region of high density and activity,
we are dealing with a quantum Bose fluid, which under-
goes a Bose-Einstein condensation and becomes ideal at
T, , given by Eq. (4.21). It is therefore idle to speculate
on the validity of the classical hard-sphere fluid, and on
its exact equation of state (2.32) at very high densities,
notably near Rogers's bounds for close packing. The
fluid is quantum mechanical except at infinite tempera-
tures.
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On the other hand, the high-density configurations of
the classical hard-sphere fluid for D = oo can be analyzed
as a mathematical problem; indeed very recent work has
focused on spatial fluctuations of the density in this pic-
ture. Above a critical density the system reaches a Kirk-
wood (or softmode) instability. ' However, the form of
the resulting nonuniform structure and its thermodynamic
manifestations are unknown.

Thus the D = ~ hard-sphere fluid, is a "physical"
manifestation of the ideal Bose-Einstein condensation,
which had not hitherto found a concrete representation.
We have not yet calculated the equation of state and the
virial expansion of the Bose gas at all temperatures above
the Bose-Einstein condensation temperature, and checked
whether they are identical with those of the classical fluid

[Eq. (2.31)].

V. SUMMARY AND CONCLUSIONS

We have presented an analytic theory of the fluid
branch of the infinite dimensional hard-sphere system, in-
cluding its low-temperature behavior. For the classical
hard-sphere fluid in the limit D~ op, the fluid branch
remains analytic for all finite values of pU (p is the densi-
ty, U the volume of a sphere with the double radius). The
equation of state is

(5.1)

which shows that the system is still interacting. The
D = ~ hard-sphere system realizes Groeneveld's upper
bound for the Mayer coefficients.

Failure to detect a phase transition in the Mayer expan-
sion does not necessarily imply that there is no phase
transition. Indeed, such failure also befalls the Ford mod-
el (Ref. 16), a grand partition function written down ad
hoc as an example of a Yang-Lee phase transition, but
which has not yet been attributed to any physical poten-
tial.

There, as for Eq. (2.29), the Mayer series can be analyt-
ically continued throughout the cut, complex z plane, but
continuation beyond the radius of convergence does not
yield the condensed phase branch. In the Ford model, no
pressure maxima have been obtained by Pade approxima-
tion of the virial series, indicating again the failure of the
fluid equation of state to supply any information about
the condensed phase, exactly as in the present D = ao

hard-sphere model. Incidentally, the Ford model realizes
Groeneveld's lower bound (2.7).

Nevertheless, if the hard-sphere fluid is kept classical as
a mathematical artifice, one would expect a phase transi-
tion into a condensed phase to occur. This is because
fluctuations are averaged out, and mean-field theory be-
comes exact, as the dimensionality of the system in-
creases. The simple form of the D = ap fluid equation of
state, with only one non vanishing virial coefficient to
represent the interaction between hard spheres, indicates
that a mean-field limit has been reached, with a finite
effective interaction. It is retained for nonuniform density
profiles, which, at higher densities, leads the system to a
Kirkwood instability.

But any classical condensation is physically hidden at

D = oo, because by then the hard-sphere system has be-
come quantum mechanical ~ Indeed, we have shown that,
at high densities p ) 1/v beyond the radius of convergence
of the classical Mayer series, the D = ~ hard-sphere fluid
is an ideal Bose condensate at all finite temperature: The
Bose-Einstein condensation temperature T, is proportion-
al to D when p) 1/v [Eq. (4.23)]. At all densities, the
hard-sphere system behaves as a nonideal classical fluid,
which undergoes a Bose-Einstein condensation, where 100
percent of the particles occupy the condensate at T =0,
despite a finite second virial coefficient and a finite interac-
tion.

An obvious, but hard extension of this work would be
to carry out the 1/D expansion, thereby including the first
effects of finite D. This might settle the question of the
existence of classical solid phases, and also of metastable,
"glassy" states which have been observed in computer
simulations of the three dimensional hard-sphere sys-
tem. ' One can also ask for the phase behavior of mix-
tures of hard spheres of different diameters in the D~ oo

limit. It should be possible to generalize our theory to
this case.

In this paper we have been solely interested in the
(mechanical) equation of state of infinite dimensional
hard-sphere fluid. It seems relatively straightforward to
carry out the kinetic theory in the Boltzmann-Grad limit
of this system and to compute the transport coefficients
(self-diffusion, viscosity, and thermal conductivity) from a
suitably modified Boltzmann equation using either the
Chapman-Enskog or Grad thirteen-moment expansion
methods.
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APPENDIX A: EVALUATION OF SOME
INTEGRALSID(y)= f dosin 0

A recursion relation can be obtained

D —1 1ID(g)= ID 2(y) ——sin x cosx
~

„=g .
D D

This yields simply

2(D —1)!!
D II

2ID (77/2) =ID(77) 2(D 1 )ii

D II
D even

~—&(1+(D —1)/2)
I (1+D/2)

= Vi)(1)/VD i(1)=(2~/D)'i

(A1)

(A2)

in the limit D~ ~. For cp&~/2, the integral ID{cd) is
more easily evaluated for an odd D =21+1. From (Al)
we obtain



2430 D. %'YLER, N. RIVIER, AND H. L. FRISCH

2'l 'I

(2l + 1)!I
cosy . 21

' ' 2"+'l(l —1) . (l —k) . 12, 2k

(21+1) „o (2l —1)(2l —3) . (2l —2k —1)
(A3)

The series in (A3) can be rewritten as 2D+1 D —1

2'l )

(2l —1 )!! k=0

(21 —2k —3)!!
(siny) 1 (1+D)1 (1+ ,'(D ——2))

2D —1

r(1+-,'D)
2'l!

(21 —1)!!m=0

(2m —1)!!"
sin

2 m!
(A4)

' 1/2
4

33/2

D

[1+0 (1/D)] (B4)

(2m —1 )!!
X

m=0 2 m

for x &1; hence,

( I 2)1/2 (AS)

with the convention ( —1)!!= 1, and the change of variable
m =l —k —1. But by Stirling's approximation.

By comparison with the tree diagram of order 4,
Qo = v

3

&ir D[VD, (1)/VD(1)] J

2'I! 1

(2l —1 )!! cosy
(21 —1)!!-

sin"q
2'l!

=(~2/&6~)D'/2
3/23

D

[1+0 (1/D) ] (BS)

(2m —1)!!
s1n

gm
m =I+1 2 m.

(A6)
decreases exponentially with D.

APPENDIX C: TWO-LOOP MAYER DIAGRAM

1

D+1 coscp sinD+ 'cp+ O
1

D+1
SinD+3q

The first two terms in (A6) cancel out the first two terms
of I21+1(y), and only the last term in (A6) contributes to
I21+1(y). Term by term, it yields

1 ~ 2I+2I21 +, (y) = cosy sin '+ y+ 0
2l +2 2l +2

sin" +4@

En this appendix we calculate the simplest two-loop
Mayer diagram and compare it with the one square loop
diagram evaluated in Appendix B. These diagrams are
given, respectively, by

Q'=IXI= f d s 0 (s),
(Cl)

Q= = f"d sO'(s),
0

For arbitrary D, we have the trivial bound
(A7)

where s, as in Appendix 8, denotes the diagonal distance.
Using the bound (82) for 6(s), we obtain

ID(y) &y sin y . (AS)

For even D, I2, (y) interpolates between I21, and I21+1.
Consequently, ID(y) decreases exponentially with D, ex-
cept for y=m/2, where ID(7r/2)-D

APPENDIX 8: SQUARE-LOOP MAYER DIAGRAM

We wish to show that all one-loop diagrams are vanish-
ing exponentially as D~ ao. The square loop diagram is
of order 4,

Q = = f d s8'( )=sDV(D1) f"dss '8'(s), (Bl)
0

Q' & DVD(a)[a VD, (a)] n [J(vr/2) —J(~/3)],

Q &DVD(a)[aVD 1(a)] ir J(ir/2),

where

J(y) =2 f dg sin +'icos
0

Clearly, Q'& Q.
For J(y), the obvious bounds

[2 /(2D +2)] sin + y cos

&J(y) &[2 /(2D+2)]sin + y (C4)

suftice, except for y=~/2, where
where s denotes the distance between diagonal points 1

and 2, and 6(s) is the overlap between the two spheres at
1 and 2, given by Eq. (2.14). Let cosg=(1/2)s/a. The
overlap is bounded by

g(s)=2VD, (a)a f d8sin 0 &~a VD, (a) sin g, (B2)
0

and Q by

J(~/2)=(2~/3D)'/ (4/3 /
) [1+0(1/D))

was derived in Appendix B. Consequently,

J(ir/3) ) [3/(2D +2))(3/4)

Hence

(CS)

(C6)

Q & DVD(a)[ VD 1(a)a]'ir'J,

where

(B3) Q' & DVD(a)[a VD, (a)] ir (2~/3D)'/2(4/33/2)D

X [ 1 (27/g~)1/2D —1/2[(35/2/16)]DI (C7)
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Thus Q' and Q have the same asymptotic behavior as the
triangular diagram evaluated in the main text (2.18):
They decrease roughly as a", where n =4 (for Q, Q') or
3, respectively (for the triangular diagram) and a & 1, as
stated in the text. For large n. , the weight of a diagram of

order n with e edges, containing c =e —n+1 indepen-
dent loops is smaller than that of a tree diagram of the
same order by a factor (a )" rather than (a )' (recall that
c-n l2 for large n).
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