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Infiuence of perturbations on period-doubling bifurcation
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The inAuence of noise and resonant perturbation on a dynamical system in the vicinity of a
period-doubling bifurcation is investigated. It is found that the qualitative dynamics can be revealed

by simple considerations of the Poincare map. These considerations lead to a shift of the bifurcation
point which is proportional to the square of the amplitude of the perturbation. The results of this in-

vestigation are in agreement with numerical calculations for the microwave-driven Josephson junc-
tion.

I. INTRODUCTION

Dynamical systems which undergo periodic motion are
of great theoretical interest and also of importance for ap-
plications. Not only the existence of periodic orbits but
also the structural stability of these is important. In this
paper we focus on the stability of a periodic orbit against
period-doubling bifurcation in the presence of noise and a
small resonant signal, a problem which has attracted con-
siderable interest. ' It is shown that the qualitative dy-
namics in the vicinity of a period-doubling bifurcation can
be derived from very simple considerations and that these
results are in qualitative agreement with previous re-
sults. ' These considerations di6'er from the previous
ones' in the way that the dynamics is investigated ex-
clusively on the basis of the Poincare map. Furthermore,
the investigation takes its origin in the fix points in the
Poincare map and can therefore be based on linear-
stability analysis. The results show that the shift of the
bifurcations point is proportional to the square of the per-
turbating amplitude, a result which is confirmed by exper-
iments on Josephson junctions. As an example of the
influence of perturbations on a period-doubling bifurca-
tion, a numerical study of the microwave-driven Joseph-
son junction is reported.

We consider a dissipative dynamical system modeled by
the following differential equation:

x=f„(x,t)+a(t)+s(t), (x, t)EIR"XR, p EI .

Here f(., t)=f (.,t+ T) is periodic in t with period T, p is
a control parameter defined in some interval I,
a (t) =a (t +2T) is periodic in t with period 2T, and s(t)
is a white-noise term defined by (s(t)s(t +r)) =ofi(r)
and (s(t)) =0. a(t) and s(t) are small compared to
f(x, t), i.e., the perturbations are small. Let us first set
these perturbations to zero. As the control parameter p is
varied, changes in the structure of the asymptotically
stable solution governed by Eq. (1) may occur. In this pa-
per it is assumed that this solution changes from a period-
ic orbit y of period T to a periodic orbit y* of period 2T.

II. DYNAMICS IN THE POINCARE NIAP

A tool for investigation of the asymptotic behavior of
orbits close to a closed orbit is the Poincare map. Here

this map is given by a local transversal section of the orbit
in phase space g(x, t), at integer numbers of period T,
g(x, nT)=fr(x), and is written P(xo)=fr(xo). With the
aid of the Poincare map one can derive a discrete dynami-
cal system arising from Eq. (1),

x„+&
P&(x„)—,—x E R" . (2)

/AIR .

g is the deviation from the fix point in the direction of
the eigenvector for A, = —1, if k~ —1 the fix point is
stable, but if A, ~ —1 the fix point has become unstable
and a period-doubling bifurcation has occurred. Higher-
order terms in g„are not necessary since this is a linear
stability analysis.

If we now look at the influence of a small resonant per-

A fix point of the discrete map Eq. (2) corresponds to a
closed orbit of period T, and it is clear that the stability of
the fix point reflects the stability of the closed orbit. A
period-doubling bifurcation is associated with an eigenval-
ue A, = —1 at the fix point x' of the Poincare map Eq. (2).
This means that an orbit y* of the orbit P(x, t) alternates
from one side of the fix point x * to the other along the
direction of the eigenvector e~ for X= —1. Orbits like y
are confined on a two-dimensional surface called the
center manifold. This surface can be descrbed as a
Mobius band, i.e., a band with a half twist in it (see Fig. 1).
The asymptotic behavior of the orbits near a fix point, in
the vicinity of a period-doubling bifurcation, can be re-
vealed by linearization of the discrete map around the fix
point. Since the asymptotic behavior in the directions of
the other eigenvectors is relaxing fast, the asymptotic be-
havior can be described exclusively with respect to the
direction of the eigenvector for A, = —1. This means that
the discrete map will be one dimensional (see Fig. 1), re-
gardless of the original dimension of the dynamical sys-
tem. It should be noted that this way of describing the
asymptotic behavior agrees with the previous descrip-
tion. ' Instead of the control parameter p the eigenval-
ue A, of the discrete map will be used, assuming that p and
A, are linearly related in a narrow region close to the bifur-
cation. So linearizing Eq. (2) around the fix point, and us-
ing the mentioned assumptions, the equation describing
the asymptotic behavior becomes
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ther even or odd. From this result one observes two
things. First the influence of the resonant perturbation is
to stabilize the system against bifurcation as seen from Eq.
(7), where the squared eigenvalue is reduced by A, . This
leads to a bifurcation shift which is proportional to 3 &.

Experiments on Josephson junctions, where the detuning
is very small, confirms this result. Second, as seen from
Eq. (8), the small perturbation is amplified as the reduced
eigenvalue tends to —1.

The influence of noise alone on the asymptotic behavior
can be modeled by adding a sma11 stocastic term s, to Eq.
(3) so this becomes

kn + t
=~En +~n (9)

FIG. l. Intersection of a two-dimensional manifold with the
Poincare map P. The periodic orbit y of period T is confined to
this manifold and intersects P at the fix point x . The vector e~,

in P is the eigenvector for the eigenvalue k= —1. y is a period-
ic orbit of period 2T which intersects P at the points pl and p, .

where s„has the following properties; (s„)=0 and
(s„s ) =o5„, the bracket means ensemble averaging
and 6„Kroneckers delta. s„describes the random inter-
section of orbits in the Poincare map along the direction
of the eigenvector e~ for k= —1, caused by the noise.
Equation (9) can be solved (k"~0 for n ~ oo ),

turbation at half of the fundamental frequency [a (t)&0 in
Eq. (1)], the discrete map Eq. (2) will, of course, be
changed by the perturbation. The change in the discrete
map Eq. (2) is written

g„+,= g s„;A,' .
i =0

The ensemble average of g'„ is

(10)

x„+~ P„"(x„),——where P„*+2(.) =P„*( ) (4)
since (s„)=0 and the autocorrelation function is

g„+,=kg„+( —1)"A, g„+(—1)"Ao, (6)

where the last two terms are part of an expansion of
P„(x). It is assumed that this expansion of P„ is the
simplest possible with the given periodicity. In the ex-
pansion, terms such as Bo and Bg„are neglected since
they correspond to resonant terms at the driving fre-
quency and not on half the fundamental frequency.
and Ao are small compared with 1. Since the perturbed
Poincare map has the periodicity of 2, it is natural to
seek fix points with this periodicity,

g'„+2=(X —2, )g„+[X—( —1)"3 ]
—1](—1)"Ao .

Inserting the fix point g„* one gets

( —1)"30[k —( —1)"3 )
—1]

1 —(A. —3 i)
(8a)

or

2AO(1 —A. )

These fix points correspond to intersection of the orbit at
either even or odd numbers of the period T, that is, n ei-

since the driving terms in Eq. (1) now have the periodicity
2T The function .P„*(x„)is approximated in the follow-
ing way:

P„*(x„)=P(x„)+P„'(x„),P„'(.)=P„'+2(.),
where P(x„) is the unperturbed Poincare map and P„'(x„)
is a sma11 perturbation with the given periodicity. Linear-
izing around the fix point x* gives

m ~( 2)

g„+,=kg„+ ( —1)"A, g„+( —1)"A 0+s„. (12)

Using the same procedure as in Eqs. (6) and (9) the aver-
age value of g„becomes as expected the same as Eq. (8a),
and the autocorrelation function

(13)

It is seen that the general features are the same as when
the perturbations were added separately, that is, the
amplification of both the noise and the small signal and a
reduction of the critical eigenvalue, i.e., a stabilization
against the bifurcation. It should be noted that it is also
possible to see the stabilization against the bifurcation in
the case of a near-resonant signal which is different from
half of the fundamental frequency. This is done in the
same way as before, but now the function P„' (x„) has a
periodicity which is much larger than 2, see Eq. (5).

This result shows that the noise is amplified as the ei-
genvalue A, approaches —1. Since A, is negative g relaxes
towards the fix point in an alternating fashion, centering
the noise spectrum about half of the fundamental frequen-
cy. 4

Finally, the influence of both noise and a small reso-
nant perturbation is investigated [a (r)&0 and s(t)&0 in

Eq. (1)]. By Eqs. (6) and (9) the equation describing the
asymptotic behavior becomes
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III. NUMERICAL CALCULATIONS

In order to illustrate the features of the above theory,
the differential equation describing a microwave-driven
Josephson junction is integrated numerically. The
governing differential equation is

P«+a/, +sing= ADsin(coDt)+ A, sin(co, t)+ I)+n (t) .

(14)

Here P is the quantum-mechanical phase diff'erence across
the junction and o. is a damping parameter. AD and A,
are the driving and resonant perturbing amplitudes nor-
malized to the critical current of the junction Io, coD, and
co, are the corresponding frequencies normalized to the
maximum plasma frequency of the junction. g is the nor-
malized bias current and n (t) is a noise current to be
specified below. We note that Eq. (14) also describes a
driven damped pendulum.

In the numerical calculations described here Eq. (14) is
integrated using a fourth-order Runge-Kutta method with
32 points per period of the drive. 256 drive periods are
integrated and the first 128 are discarded to remove tran-
sients. The noise is assumed to have a white spectrum de-
scribed by the parameter I =2ekT/AEo, i.e. , the ratio of
the thermal energy (kT) to the Josephson coupling energy
(fi/2e)IO Typical . experimental values for Josephson
junctions correspond to I =10 —10 ~ In the calcula-
tions the white noise is constructed using a random-
number generator. Throughout the calculations the fol-
lowing values of the parameters were used: a =0.2,
AD ——0.85, A, =0 and 0.001, coD ——1.6 and co, =0.8.
and n (t) were varied. The parameters were chosen so the
system would get near a period-doubling bifurcation with
the variation of g, here used as control parameter.

Figure 2 illustrates for AD ——0.85 and coD ——1.6 an ex-
ample of the inAuence of noise and a small resonant signal
in the vicinity of a period-doubling bifurcation. Here the
amplitude of the response at the signal frequency co, =0.8
is plotted versus the control parameter q, which is the
normalized bias current. Figure 2(a) shows the amplitude
in the absence of both noise and signal A, =0 and
n (t) =0 (this response is in fact due to the extremely slow
relaxation). In Fig. 2(b) a small signal is included
(A, =0.001, co, =0.8) and it is seen that the small signal
is amplified in the vicinity of the period-doubling bifurca-
tion in agreement with the above theory. In Fig. 2(c) the
signal is absent but now noise is included (I =10 ), and
it is seen that the noise is amplified in the vicinity of the
bifurcation. In Fig. 2(d) both noise and signal are includ-
ed (A, =0.001 and cu, =0.8) and again the amplification
of the perturbations is seen.

One way of characterizing the stability of a dynamical
system against a period-doubling bifurcation is to calcu-
late the maximum Liapunov exponent. ' When this ex-
ponent is negative the periodic orbit of period T is stable,
but when the exponent tends to zero the orbit gets unsta-
ble against an orbit of period 2T. Figure 3 illustrates the
maximum Liapunov exponent o. „versus the control pa-
rameter il. Figure 3(a) shows the maximum Liapunov ex-
ponent in the absence of a small signal and noise ( A, =0
and I =0) where it is seen that the exponent comes very
close to zero, i.e., to a period-doubling bifurcation. In
Fig. 3(b) a small signal is included (A, =0.001 and I =0)
and it is seen that the exponent is reduced in the vicinity
of the bifurcation showing the stabilization of the system
against bifurcation in agreement with the above theory.
Figures 3(c) and 3(d) are similar to Figs. 3(a) and 3(b) but
here noise is included (I =10 ). In Fig. 3(c) only minor
effects of the noise are seen, whereas the presence of noise
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FICs. 2. The amplitude of the response at the signal frequency
cu, =0.8 for AD ——0.85, coD ——1.6 vs g. Curve a, without any
perturbations A, =0 and I =0. Curve b, with a small resonant
perturbation, A, =0.001, co, =0.8, and I =0. Curve c, with
only noise added, A, =0 and I = 10 . Curve d, where both
noise and a resonant perturbation are present, A, =0.001,
cu, =0.8, and I =10

FIG. 3. Maximum Liapunov exponent o. „vs g, for
AD ——0.85, coD ——1.6. Curve a, without resonant perturbation
and noise, A, =0 and I =0. Curve b, with resonant perturbation
and no noise A, =0.001, co, =0.8, and I =0. Curve c, with noise
but no resonant perturbation, I = 10 and A, =0. Curve d,
with noise and resonant perturbation, A, =0.001, co, =0.8, and
r =10-'.
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FIG. 4. Asymptotic behavior around the fix point in the Poincare map. The numbers 1,2,3, indicate the successive intersection of

orbits with the Poincare map. AD ——0.85, coD ——1.6 and g=0.68. (a) Without perturbations, A, =0 and I =0. (b) With a resonant
perturbation, A, =0.001, u, =0.8, and I =0. (c) Only noise is present, A, =0 and I =10 . (d) Both noise and a resonant perturba-
tion are present, A, =0.001, co, =0.8, and I = 10

and signal in Fig. 3(d) reduces the exponent in the vicinity
of bifurcation.

In the above theory it was assumed that the asymptotic
behavior was confined to a line in the Poincare map; in
order to illustrate this numerically, successive intersec-
tions of orbits with the Poincare map were calculated.
Figure 4 shows the relaxation towards the fix point in the
Poincare map for q=0.68. The relaxation is very fast in
the direction perpendicular to the curve on which the
essential asymptotic behavior is confined. The numbers
(1,2,3,) in Fig. 4 indicate the alternating relaxation to-
wards fix point(s) or steady state in the presence of noise.
It is seen that the asymptotic behavior, with no noise add-
ed, is strictly confined to a one-dimensional curve in the
Poincare map [see Figs. 4(a) and 4(b)], and so confirming
that the asymptotic behavior in the full phase space is
confined on a two-dimensional manifold. In the presence
of noise the asymptotic behavior is not as strictly confined

to the one-dimensional curve in the Poincare map [see
Figs. 4(c) and 4(d)]. The asymptotic behavior shown in
Fig. 4 agrees with the basic postulates of the present and
the previous theory. '

As a result of Fig. 4, where only very small perturba-
tions are used ( A, =0.001), the dynamics close to a
period-doubling bifurcation in the presence of larger per-
turbations (e.g. , A, =0.01), have to be described by a
two-dimensional manifold in the full phase space, where
the curvature of the manifold has to be considered (the
Poincare section is no longer a line but a curve).

IV. CONCLUSION

In conclusion it has been shown that the influence of
perturbations on the qualitative dynamics of a system in
the vicinity of a period-doubling bifurcation can be de-
rived from very simple considerations on the Poincare
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map. The general features of this inAuence are, first, an
amplification of both noise and signal as the bifurcation
point is approached, and second, a stabilization of the
dynamical system against the bifurcation. The shift of the

bifurcations point is proportional to the squared ampli-
tude of the perturbation. Agreement between numerical
studies on the microwave-driven Josephson junction and
the above theory is found.
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