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It is shown that statistical-mechanical properties as well as irreversible phenomena of stochastic
systems, which consist of infinitely many coupled nonlinear oscillators and are capable of exhibiting
phase transitions of mean-field type, can be successfully explored on the basis of nonlinear Fokker-
Planck equations, which are essentially nonlinear in unknown distribution functions. Results of two
kinds of approaches to the study of their dynamical behavior are presented. Firstly, a problem of
asymptotic approaches to stationary states of the infinite systems is treated. A method of Lyapunov
functional is employed to conduct a global as well as a local stability analysis of the systems. By
constructing an H functional for the nonlinear Fokker-Planck equation, an H theorem is proved,
ensuring that the Helmholtz free energy for a nonequilibrium state of the system decreases monotoni-
cally until a stationary state is approached. Calculations of the second-order variation of the H func-
tional around a stationary state yield a stability criterion for bifurcating solutions of the nonlinear
Fokker-Planck equation, in terms of an inequality involving the second moment of the stationary dis-
tribution function. Secondly, the behavior of critical dynamics is studied within the framework of
linear-response theory. Generalized dynamical susceptibilities are calculated rigorously from linear
responses of the order parameter to externally driven fields by linearizing the nonlinear Fokker-
Planck equation. Correlation functions, together with spectra of the fluctuations of the order param-
eter of the system, are also obtained by use of the fluctuation-dissipation theorem for stochastic sys-
tems. A critical slowing down is shown to occur in the form of the divergence of relaxation time for
the fluctuations, in accordance with the divergence of the static susceptibility, as a phase transition
point is approached.

I. INTRODUCTION

The study of dynamical behavior of systems exhibiting
thermodynamic phase transitions has been of considerable
interest for many years. ' It is well known that in a
thermodynamic system undergoing phase transitions criti-
cal anomaly such as critical slowing down is generally ex-
pected to occur at its transition points. Recently the con-
cept of phase transition has been extended to include
nonthermodynamic or nonequilibrium phase transi-
tions. A problem arises of how the dynamical behav-
ior of nonequilibrium phase transitions compares with the
one for phase transitions in thermodynamic systems. To
discuss this sort of problem, stochastic approaches or
models have been extensively employed, ' ' since such
stochastic methods as using Langevin equation models are
often considered to be capable of simulating the dynami-
cal behavior of phase transitions both in thermodynamic
and in nonequilibrium systems.

In particular, the Langevin equation of the form "
x =yx x'+f(t), —

(f (t)f (t') ) =ct'5(t —t')

has been one of the most popular models used to discuss
the dynamical behavior of systems undergoing phase tran-
sitions involving symmetry-breaking instabilities with
change in certain control parameters as expressed by y in
Eq. (1.1). We must however be cautious of the use of this
equation. Although the ordinary differential equation ob-

tained by omitting the random force f (t) in Eq. (1.1) can
exhibit a bifurcation at y=O, the stochastic differential
equation (1.1) has nothing to do with bifurcations nor
phase transitions in that a stationary distribution for the
random variable x is always uniquely determined irrespec-
tive of the values of y and o.. This is because the corre-
sponding linear Fokker-Planck equation

Q
2

Q
2—p (t,x)= — (yx —x )p (t,x)+ p (t,x)

Bx '
2

(1.2)

is con6rmed to have the property of global stability with
respect to its uniquely determined stationary solution, as
will be noted later. Thus, one cannot expect any critical
divergence at y=O for such physical quantities as the
variance or relaxation time for the variable x in Eq.
(1.1). In fact, the finiteness of the variance is easily
checked with use of the stationary solution of Eq. (1.2)
and the absence of critical divergence of the relaxation
time was shown through the investigation of the eigen-
values of Eq. (1.2). ' ' In view of the fact that changes in
the shape of the stationary distribution for Eq. (1.2) sure-
ly occur at y=O, however, the term "phase transition"
seems to have been extensively used in a somewhat wider
sense to describe a qualitative change in most probable
values as well as shapes of a distribution function accom-
panied by changes in control parameters, in the study of
symmetry-breaking instabilities observed in far-from-
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equilibrium systems. On the other hand, we want to be
concerned with genuine phase transitions involving sta-
bility exchanges. It may be worth noting that the con-
cept of phase transition makes sense for a system with
infinitely many degrees of freedom and that the oc-
currence of phase transition is associated with bifurca-
tions of solutions to underlying equations of the system
which are in most cases nonlinear. In fact, as is well
known, thermodynamic phase transitions in thermo-
dynamic systems can occur only under the condition
usually referred to as the thermodynamic limit. Thus,
the dynamical critical behavior must be studied on a
carefully selected model capable of exhibiting genuine
phase transitions caused by the presence of nonlinearities
and by taking the thermodynamic limit.

Recently, stochastic systems described by a set of
infinitely many coupled Langevin equations of the form
(1.1), which can exhibit genuine phase transitions, '

have been investigated rigorously to see the structure of
the phase transitions by employing analyses of a non-
linear Fokker-Planck equation, which is nonlinear in an
unknown probability distribution function. ' ' ' The
models have dealt with a system of coupled nonlinear os-
cillators in the presence of external white noise, which
was originally introduced by Kometani and Shimizu' to
study such self-organization processes in biological sci-
ence as muscle contraction. As shown below, a non-
linear Fokker-Planck equation with its drift term charac-
terized by a certain type of potential, together with
mean-field interaction, can exhibit bifurcations of solu-
tions leading to the existence of phase transitions of an
infinitely many particle system. The present author has
succeeded in obtaining a criterion for the determination
of the stability of the bifurcating solutions of a nonlinear
Fokker-Planck equation on the basis of analyses of the
second-order variation of an H functional constructed
for the nonlinear Fokker-Planck equation. ' Our studies
have shown usefulness of the nonlinear Fokker-Planck
equation approach to a mean-field treatment- of nonther-
modynamic or nonequilibrium phase transitions in syn-
ergetical systems. It is worth noting that the nonlinear
Fokker-Planck equation, which is termed as such due to
the presence of the first moment in its drift term and is a
kind of nonlinear diffusion equation, ' " belongs to the
concept of a nonlinear Markov diff'usion process (in the
sense of Mckean)' ' and in general no longer ensures
the ergodicity of the process. It is hence on the same
level as a nonlinear master equation, ' ' which was
developed by Malek Mansour and Nicolis to study the
onset of instabilities of local fluctuations in a reacting
medium in a mean-field treatment.

It is very interesting to investigate the dynamical behav-
ior of such stochastic systems of infinitely many particles
described by nonlinear Fokker-Planck equations. The
dynamical behavior of a system, in general, can be studied
in two different kinds of ways. Firstly, one is supposed to
deal with a relaxation process to a stationary (or equilibri-
um) state of the system from a nonequilibrium thermo-
dynamical point of view. A second approach is to observe
a dynamical response of the system to a time-dependent
external perturbation. As is well known, the two ap-

proaches are in some respects interrelated with each other
in a linear regime, that is, in the case of sufTiciently small
perturbation for linear-response theory to be applied.

The problem of an irreversible approach to an equilib-
rium state constitutes a realm of nonequilibrium thermo-
dynamics or statistical mechanics and has attracted con-
siderable attention from many chemists and physicists.
In the nonequilibrium statistical mechanics, the concept
of entropy plays a very significant role, as seen in the
case of Boltzmann's H theorem or the law of entropy
production rate minimum, which was established by
Glansdorff and Prigogine' as a stability criterion for
time evolutions of nonequilibrium states. A similar idea
was developed for the study of an asymptotic approach
to an equilibrium state for Fokker-Planck dynamics by
Green' and Graham and Haken, ' who constructed an
H functional and proved an H theorem to ensure a con-
vergence of time-dependent solutions to a uniquely
determined equilibrium solution. As far as we know,
any rigorous treatment of an asymptotic approach to
equilibrium in terms of such thermodynamical languages
as free energy and entropy production cannot be found
for systems allowed to undergo phase transitions. In a
previous paper we presented a brief report on the va-15

lidity of an H theorem even for infinite systems exhibit-
ing phase transitions. The present paper is intended to
give a detailed description of the H theorem and stability
analysis for nonlinear Fokker-Planck equations giving
rise to bifurcations corresponding to mean-field-type
phase transitions in the system of infinitely many cou-
pled nonlinear oscillators.

We are also concerned in the present paper with
dynamical responses of the system to external time-
dependent perturbations near the phase-transition points
along with the fluctuational behavior within the frame-
work of linear-response theory and the fluctuation-
dissipation theorem. Though linear-response theory for
finite dimensional Fokker-Planck dynamics has been dis-
cussed by many authors, the theory for infinite di-
mensional Fokker-Planck equations or for nonlinear
Fokker-Planck equations seems to be lacking. In particu-
lar, the problem of how critical slowing down for the or-
der parameter is described is our primary concern.
Dawson investigated critical fluctuations for a stochastic12

infinite system associated with nonlinear Fokker-Planck
equations from a point of view of the central-limit
theorem. We study the dynamical behavior of fluctua-
tions and critical slowing down of the order parameter in
an infinite system from a different point of view. Our
present approach, which is based on linear-response
theory, may be compared with the method used in the
study of critical dynamics of mean-field Ising spin sys-
tems. To obtain an idea of critical slowing down of the
order-parameter fluctuations in ferromagnetic materials, a
mean-field treatment of the Glauber model has been
conveniently used to simulate the spin dynamics. Such a
simple analysis results in a single-exponential-type relaxa-
tion for the order-parameter fluctuations with a relaxation
time diverging at the phase-transition point ~ In our
present treatment, based on nonlinear Fokker-Planck
equations, non-single-exponential-type relaxation of fluc-
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tuations has been obtained and an appropriately defined
relaxation time has been shown to diverge as the transi-
tion point is approached.

The present paper is organized as follows. In Sec. II
we give a description of a mean-field model of stochastic
infinite systems exhibiting phase transitions in terms of
coupled nonlinear Langevin equations. With a heuristic
derivation of a nonlinear Fokker-Planck equation, phase
transitions in the system are shown to be well described
by the equation, whose stationary solutions undergo bifur-
cations with changes in parameters such as intensity of
external white noise. Section III deals with an asymptotic
approach of time-dependent solutions to stationary solu-
tions of the nonlinear Fokker-Planck equation on the
basis of an H theorem. A detailed description of a proof
of the H theorem and of the stability analysis of bifurcat-
ing solutions is presented with use of a constructed H
functional. Section IV is devoted to describing the
fluctuation-dissipation theorem in Fokker-Planck dynam-
ics to relate linear responses with correlation functions of
the fluctuations for the present infinite system. Since the
fluctuation-dissipation theorem in Fokker-Planck dynam-
ics is not so popular as in thermodynamic systems, we
give a detailed description to make the present article
self-contained. In Sec. V we calculate linear responses of
the order parameter to a periodically oscillating external
force with use of the nonlinear Fokker-Planck equation to
obtain generalized susceptibilities and correlation func-
tions of the order-parameter fluctuations. Critical slowing
down is shown to manifest itself in the form of the diver-
gence of relaxation time on approaching phase-transition
points. Finally, in Sec. VI, followed by four Appendixes,
we shall give a brief summary and discussions of the
present results.

II. PHASE TRANSITION
AND NONLINEAR FOKKER-PLANCK EQUATION

We begin with presenting an N-particle Markov system
which consists of a collection of anharmonic oscillators
(which in reality are overdamped in the limit of high fric-
tion) in a potential 4&(x), interacting with each other via
an attractive linear coupling under the influence of white
noise. The set of stochastic differential equations describ-
ing the system is assumed to be given by'

dx, di(x ) & ~ dB, (t)
g —(xk —x;)+o

dt dx, I, N dt

to be uniquely determined and to be asymptotically ap-
proached after a long time for most cases with physical
significance, one cannot expect any bifurcations of solu-
tions to occur in such a finite particle system. For certain
types of phase transitions to take place in the present cou-
pled oscillator system, the thermodynamic limit (X~ oo )

should be taken with an appropriate choice for potential
4(x). Thus we are led to consider an infinite system ob-
tained by taking the limit X~ oo in Eq. (2.1) to discuss
the dynamical behavior of the systems exhibiting phase
transitions.

Noting that an average of the xk 's

lim
N oo

xl, (t) =x(t)
X ~

(2.2)

can be postulated not to fluctuate and to behave in a
deterministic way due to the law of large numbers, each
stochastic difFerential equation in Eq. (2.1) turns out to be
reduced to an independent and identical stochastic
differential equation of the form

dx d 4(x) dB—e'x +ex ( t) +o
dt dx di

(2.3)

The Fokker-Planck equation corresponding to this
Langevin equation is formally given as

Bp
c3t dx

d4(x) 02 a2—Ex +Ex(t) p + 'p
dx 2 Qx

(2.4)

We can interpret p (t, x) along with this Fokker-Planck
equation as follows. When x(t) is considered to be given
a priori, the probability distribution for each oscillator,
which originates from various realizations of white noise
in Eq. (2.3), evolves with time according to Eq. (2.4).
Since we are dealing with infinitely many oscillators at
one time whose time evolutions are governed by an identi-
cal Langevin equation as given by Eq. (2.3), the probabili-
ty distribution appearing in Eq. (2.4) is considered to be
actually realized in real time by the present infinite sys-
tem. In this way the probability distribution p(t, x) can
be viewed as an empirical distribution, which denotes the
probability density of finding oscillators with x being in
[x,x+dx] at time t in the system. More precisely p(t, x)
can be written as

dB, (t) dBi(t')
dt dt' =5,,5(t t'), i =1,2, . . . , 1V—

(2. 1)
N

p (t,x)dx = lim —g 1( +d l(x;(t))x- N, .
(2.5)

with @ ~0 denoting the strength of attractive mean-field-
type coupling and cr &0 the intensity of the statistically
independent white noise added on each oscillator. We
note that when N =1 and &P(x) = —(y/2)x +x l4, the
above equation reduces to Eq. (1.1). One can easily write
down a corresponding Fokker-Planck equation for the
joint probability distribution function p (x, ,x2, . . . , x~,'t)
as well as its stationary solution, if necessary. Since, in
general, as in the present ease, a stationary distribution
for an 1V-dimensional Fokker-Planck equation was shown

Here, 11 +d ~( ) denotes the indicator function of the set
[x,x +dx]C:lR. Since x(t) can then be expressed in terms
of p (t, x) as

x(t)= f xp(t, x)dx, (2.6)

we arrive from Eq. (2.4) at a self-consistent nonlinear
Fokker-P lanck equation for the empirical distribution
function:
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ap(t x) a
Bt Bx

d re(x) +6 xp txdx p tx
(a)

a2
+D p(t, x),

clx

4(x) = —4(x) ——,'ex, D = —,'o
(2.7)

xo/e= J„xps((x xo)dx . (2.9)

This equation for xp plays a key role in the existence of
bifurcations of stationary solutions to the nonlinear
Fokker-Planck equation (2.7).

It is somewhat convenient to introduce a graphical rep-
resentation of Eq. (2.9) in order to have a firsthand under-
standing for the occurrence of bifurcations. Figure 1

shows a typical example of such representations for sys-
tems endowed with a symmetric potential such as a fer-
romagnetic one. All of the self-consistently-determined
values for xp are given by the intersection points of the
two curves in Fig. 1 representing the right-hand and left-
hand sides of Eq. (2.9). For the case of symmetric poten-
tials, xp=0 is easily seen to satisfy the self-consistent
equation (2.9). It can also be shown, by asymptotic evalu-
ations of integrals for a wide class of symmetrical poten-
tial functions, that the initial slope defined as

a
xps((x xo)dx

~ x, =o
Bxp 8

(2.10)

vanishes in the large noise limit (D~ ac ) for e fixed, and
that it becomes greater than the value 1/e of the slope of
the straight line, when D approaches 0 (Appendixes A

We see that the original infinitely-many-body problem
has been reduced to a one-body problem as a result of
the mean-field-type interaction in the present system.
The effect of the mean-field-type interaction manifests it-
self as a feedback effect expressed in terms of the first
moment of the time-dependent distribution function in
the above equation. In fact, Eq. (2.7) is of an integro-
differential type with nonlinearity in the unknown func-
tion p(t, x), which can be responsible for the occurrence
of bifurcations of the solutions under a certain choice of
potentials 4(x) as seen below. Since potentials giving
rise to phase transitions are of our particular concern,
we assume in what follows that 4(x) can induce certain
types of phase transitions. For example, the present sys-
tem with such a symmetric bistable potential as a well-
known one, 4(x) = —

—,'x + —,'x, was shown to exhibit a
phase transition bearing a close resemblance to thermo-
dynamic phase transitions in ferromagnets. "' For this
reason, we hereafter refer to the potentials of the form
4=@ix +@ax (y( &0, y2 &0) as ferromagnetic poten-
tials.

The stationary distribution function p„(x) obtained by
putting Bp /Bt =0 reads

D [&P(x)+xox] D
—'[C (x)+xox]

ps( x~xo ——e e dx
R

with a self-consistent equation for the determination of
the value of the order parameter xp/e being

S(b,c)
Ll(a)

FIG. I. Schematic plots of the averages (x ) corresponding to
the rhs (straight line) and lhs of Eq. (2.9) [(a), (b), and (c)] as
functions of xo for a ferromagnetic model. The value of the or-
der parameter (x ) ( =xo/e) associated with a stationary distribu-
tion function p„ is determined by the intersection of the two
curves. Three typical cases are shown according to the values of
D for fixed e. (a) D &D, (e) (ordered or ferromagnetic states cor-
responding to the two stable points with (x)&01, (b) D =D, (e)
(bifurcation point), (c) D & D, (e) (disordered or paramagnetic
state with (x) =0). Stable (S) and unstable (U) points are dis-
tinguished by the stability criterion [Eq. (3.52)] in Sec. III.

and B). Accordingly, under the conditions implied in Ap-
pendixes A and B for the potentials, it follows that there
exists D, (e) at which the two curves for Eq. (2.9) intersect
with each other at origin tangentially, leading to the ex-
istence of bifurcations of solutions. For systems with pre-
vious1y mentioned ferromagnetic potentials, the oc-
currence of phase transitions or bifurcations associated
with change in D was rigorously proved. ' Namely, for e
fixed, there exists a critical value D, (e) such that for
D D, (e) there is a unique stationary distribution func-
tion with xo ——0, whereas for D ~D, (e) two others with
xp&0 appear besides the former. Figure 2 illustrates a bi-
furcation scheme for such systems with xo/e (order pa-
rameter) schematically plotted against the control parame-
ter D for arbitrarily chosen e&0. The state characterized
by xp ——0 corresponds to a paramagnetic state and the two
bifurcating solutions with xp&0 can be viewed as a fer-
romagnetic state below the Curie point of a ferromagnet,
when one identifies D as the temperature of a thermo-
dynamic system.

As seen in this case, a condition for the occurrence of
phase transitions of any kind will, in general, be given by
the requirement that the two curves representing the left-
hand and right-hand sides of Eq. (2.9) intersect with each
other with the same tangent at certain values of e and D:
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&a) 1 ——'(x'&=O,
D

(2.15)

because (x & vanishes when x0=0. Since, when xo is
viewed as an external perturbational field, Eq. (2.12) is
reminescent of a thermodynamic relation between the
fluctuations and the linear-response functions of physical
quantities, the equality (2.14) holding at the phase-
transition points is suggestive of the divergence of the
static susceptibility associated with the order parameter
at the transition points. Although we can give an ex-
pression for the static susceptibility as well as its diver-
gence at the bifurcation points on the basis of a pertur-
bational treatment for (x &,

' we shall taken an alterna-
tive and more systematic approach to study these prob-
lems in Sec. V.

Dc D

III. H THEOREM AND STABILITY ANALYSIS
FOR NONLINEAR FOKKER-PLANCK EQUATION

FIG. 2. (a) When 4(x) takes the form of a bistable (ferromag-
netic) potential, (b) the system undergoes a pitchfork bifurcation
as the external noise power D changes.

xo

XO E

a
xp„(x,xo)dx =0 .

Bxp R
(2.11)

In fact, when the difference of the slopes of the two curves
at an intersection point changes its sign at the point corre-
sponding to Eq. (2.11), a bifurcation or phase transition of
second order takes place as a result of stability exchange
of the stationary solutions of Eq. (2.8), as will be shown
later in the following section. Since the following equality
holds,

xpst x~xo dx = x —x
Bxp R D

(2.12)

the difference of the slopes of the two curves at an inter-
section point can be written as

a
Bxp

Xp 1 e(x&=— 1 ——&(x —&x&) &

Bxp e D

1 ——'((x —(x &)'& =O .
D

(2.14)

(2.13)

Here ( & denotes the average over the stationary distribu-
tion p„(x,xo). Thus it follows that the bifurcation point is
characterized by the following condition expressed in
terms of the second moment of the fluctuations x —(x &

with respect to p„:

As stated in the preceding section, nonlinear Fokker-
Planck equations of the form given by Eq. (2.7) can yield
bifurcations of their stationary solutions for appropriately
chosen potentials, when D is viewed as a control parame-
ter. For such nonlinear systems displaying bifurcations, it
is very important to investigate the asymptotic approach
of a time-dependent solution to equilibrium and to con-
duct a stability analysis of bifurcating solutions to deter-
mine which state is stable. In this section we study the
dynamical behavior of the system with regard to how the
system that is set far out of equilibrium decays to a sta-
tionary or equilibrium state, and conduct an asymptotic
stability analysis of the system described by Eq. (2.7).
Progress in studies of such aspects of the dynamical be-
havior, which have been of paramount importance in the
field of nonequilibrium thermodynamics, has been marked
by the establishment of stability theories involving the
kind of Lyapunov functional as was developed by
Glansdorff and Prigogine. ' As shown below, by con-
structing an H functional playing the role of a Lyapunov
functional, an approach with use of an H theorem is avail-
able to explore not only a global but also a local stability
analysis for the present nonlinear Fokker-Planck equa-
tions. An H theorem for systems described by finite di-
mensional linear Fokker-Planck equations was studied by
several authors' ' to ensure the approach of an arbitrary
initial distribution function to a unique stationary solution
for t~ oo, under the condition that a matrix of diffusion
coefficients be positive definite and the drift coefficients
having no singularities do not allow explosive solutions.
It should be noted that due to this uniqueness of the
asymptotically approached solution one cannot expect any
bifurcations of solutions to occur in finite dimensional
Fokker-Planck dynamical systems with the above-
mentioned condition.

As an H functional for the present infinite system de-
scribed by the nonlinear Fokker-Planck equation (2.7), we
take the following expression

It is noted that D, (e) for the ferromagnetic models is
given by' ' H(p( ~ ))= f p(x)ln dx,p (x)

q (x)
(3.1)
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1
q (x) =exp D -' C'(x)+xox — xo

2E'
(3.2)

dynamic systems:

V= —D ln f q dx

Xp=E xp X dx (3.3)

where p (x), is an arbitrary probability density chosen so
as to make H(p( ~ )) well defined and to satisfy the nor-
malization condition

= —Dln exp D ' 4x +xpx-
R

1
Xp dX

2E'

(3.10)

p(x)dx=1 . (3.4)

8 q(x) 8 d@(x)D — +xo q x=0,

irrespective of whether the xo defined in Eq. (3.3) is time

dependent or not. Moreover, when p(x) assumes a time-

dependent solution p (t,x) of Eq. (2.7), it is easy to see

(3.5)

The H functional defined above differs from that
developed by Green' and Schlogl ' for finite dimen-
sional Fokker-Planck dynamics and a general analysis of
thermodynamic nonequilibrium states, respectively. The
usual H functional ' '' ' takes the form of Kullback in-
formation or information gain, in which, when p (x) as-
sumes a solution of a linear Fokker-Planck equation,
q (x) corresponding to Eq. (3.2) is also given by another
either time-dependent or stationary solution of the equa-
tion. In our construction of the H functional, even when
p(x) assumes a solution p (t,x) of the nonlinear Fokker-
Planck equation (2.7), q(t, x) does not satisfy Eq. (2.7),
unless p(t, x) is equal to its stationary solution, because
the expression for q(t, x) contains p(t, x} through xo(t)
[q (t,x) =q( x; x(ot))]. In the present case, however,
q(x) is easily seen, by comparing the expressions for
q(x) and p„(x), to satisfy a seemingly stationarity condi-
tion

with xo determined by Eq. (2.9). This is easily observed
by substituting the stationary distribution function Eq.
(2.8) into the expression (3.1) for the H functional.

A. H theorem

The functional H(p (. ) } satisfies the following two im-
portant properties, which is usually called an H theorem.

(I) H{p (.) } is bounded from below:

H(p (.)) & const . (3.1 I)

(3.12)

Since the H theorem provides us with very important and
useful information for the understanding of the dynamical
behavior of an irreversible process towards equilibrium,
we present the details of the proof of the theorem.

Proof of (I)

(2) When p is substituted for H(p( ~ )) by a solution

p (t,x) of the nonlinear Fokker-Planck equation (2.7)
satisfying the normalization condition (3.4), H(p(t, . }) is
a monotonically decreasing function of time:

2
d

H(p(t, .))= —f Dp(t, x) ln ' dx &0 .i} p (t,x)
dt a '

Bx q(t, x)

f p (t,x)q(t, x)
ii q (t,x)

When we define entropy S to be

S= —f p Inp dx,

(3.6)

(3.7)

x —1&lnx (x &0), (3.13)

we obtain

Letting qi(x) and q2(x) be any probability densities and
noting the inequality,

and energy U consisting of the potential and interaction
parts as

E' 2U= — @xp xdx —— xp xdx
R 2 1R

(3.8)

H(p ( ))= f p lnp dx —f pD ' @(x)+ x11 dxI IR 2E'

the functional H{p (.)) given by Eq. (3.1) can be rewritten
to be identified as being proportional to a generalized
Helmholtz free energy 7 per particle of a nonequilibrium
state of the present nonlinear stochastic system under the
condition that D be viewed as temperature:

q2 q I =q 1 ln('q2/q» . (3.14)

Integration of the above inequality yields the so-called rel-
ative entropy inequality

f q1ln(qi /q2)dx &0 . (3.15)

1
exp D ' 4&(x)+xox — xo dx, (3.16)

R 2E

Defining Z (xo) to be a partition function associated with
the function q (x) in Eq. (3.2),

Z(xo)= f q(x)dx

=D '( U DS ) = V/D . — (3.9)
and substituting q &

——p and q2 ——q /Z into inequality
(3.15), we obtain

If the system is in equilibrium, the generalized Helmholtz
free energy 2 turns out to take the form quite analogous
to the usual expression for the free energy of thermo-

f p ln(p/q)dx & —lnZ(x11) . (3.17)

To prove the boundedness from below of —lnZ, we
first consider the case where N(x) takes the form derived
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from a ferromagnetic potential 4&FM(x)

E
N(x) =@FM(x)=——@FM(x)——x

2

=ax bx— (b &0) . (3.18)

Noting that lnZ can be written as

—1 D [4(x)+xpx]lnZ(xo)= xo+ln e ' dx,
2De R

(3.19)

we differentiate lnZ with respect to xo to see the behavior
of the function. We have

D InZ(xo )
d

dxo

(3.20)

dx(xo )
(i) &0, (ii) x(xo) 0 (xo 0),

dxo dx 0

—xo a D [NFM(x)+xpx]+D- ln e dxa-. '

To see the sign of d lnZ/dxo, it is convenient to resort
to a graphical representation of each term on the right-
hand side (rhs) of Eq. (3.20) viewed as a function of xo.
The second term of the rhs, which we denote by x (xo ),
expresses the average of x over the probability distribu-
tion ~exp[D '[@„M(x)+xox]I and hence satisfies the
following properties:

lnZ(xo) & max [lnZ(xo)],
xp

(3.22)

the opposite sign of which gives a lower bound for

fa p ln(p /q )dx:

f p ln(p/q)dx & —lnZ(xo) & —max [lnZ(xo)] . (3.23)I xp

To deal with cases with more general potentials @(x),
we assume that N(x) can be expressed as a sum of &PFM

corresponding to a ferromagnetic potential and N& satisfy-
ing the condition

the curve representing the second term on the rhs inter-
sects the line for the negative of the first term on the rhs
of Eq. (3.20) (d/dxo lnZ =0, see Fig. 1). The first case,
which is characterized by dx(xo)/dxp

~

0& 1/e,
yields only one intersection point at xo ——0, giving rise to
a disordered state in a ferromagnetic model system. The
sign of d lnZ/dxo changes from a positive one (xo &0)
to a negative one (xo&0) at xo ——0, where accordingly
lnZ attains its maximum value. The second case, which
is characterized by 0 & 1/e &dx(xo)/dxp

i 0 and is re-

sponsible for the occurrence of an ordered state, allows
three intersection points including xo ——0. Hence, lnZ
attains its maximum at the two points with xo&0. Thus
we confirm the existence of the maximum value of lnZ
for both cases:

(iii) —x( —xo) =x(xo), (iv) x(xo) &Exo~

(for suKciently large xo) . (3.21)

(i) and (iii) can be easily checked and (ii) follows from the
GHS inequality. ' ' A proof of (iv) is given in Appen-
dix C. From these properties of x(xo) it follows that
there are only two cases with regard to the way in which

I

2+1(x) /D
e dx( (I)

so that

e(x)=eFM(x)+@i(x) .

Hence, using the Schwaltz inequality, we obtain

(3.24)

(3.25)

f -p[D-'[+(-)+-.-]]dx = f exp[D-'[~, M(x)+x.x+e, (x)]Idx
T

f exp[2D [@FM(x)+xoxl]dx
1/2

exp 2D '4] x dx
1/2

(3.26)

From Eq. (3.19) and inequality (3.24), we have

+ —,
' ln f exp[2D '4i(x)]dx . (3.27)

lnZ(xo) & xo+ —,
' ln f exP[2D '[@FM(x)+xox) Idx

2De

it follows that

lnZ(xo) &c + —,
' ln f exp[2D '@i(x)]dx:—c' .

Thus we proved that H has a lower bound —c':

H {p ( ) ) = f p ln(p /q)dx & —lnZ (xo ) & —c' .

(3.29)

(3.30)

Since, as has been proved, for the ferromagnetic potentials

—1 xo+ —,
' ln exp[2D [NFM(x)+xpx] Idx & c,

2De

(3.28)

Proof of (2)

Letting p(t, x) be a solution of the nonlinear Fokker-
Planck equation (2.7) and substituting it into Eq. (3.1), we
take the derivative of H(p(t, . )) with respect to time t.
With use of Eq. (2.7) we obtain
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dII(p (&, . ))
dt p ln —dx+ p ———dx

q p q

a2 dN +xo(t) p ln —dx —f dx
Bx dX q p q

p D, + +x t ln~dx—dN
Bx dx Bx q R q

i)/Bx (p /q) pq
p D + +x, t) QX— dx

8 Bx dx p/q a q

1=f„ + +xo(&)
d@ Q p

Bx Jx ()X q

D [8/Bx(p/q)] f pq

(p /q)~ ii q

2

= f q D 2+ +xo(t) —dx —f pD lnp dx —f pqdx
R Qx dX BX q H Bx q 1R

f g D
8

Rq Bx

dN +xo(t) q dx —f pD ln — dx —f dx .Jq
Bx dX BX q q

(3.31)

Here dots represent time derivatives and we used the
normalization condition for p in deriving the second line
and integrations by parts in the third and the last lines.
Since from Eqs. (3.5) and (3.6) the first and third terms
of Eq. (3.31) vanish, we finally obtain

2

dH
pD ln — dx &0 .p

dt R Bx q
(3.32)

The H theorem states that the functional H (t)
representing the free energy of the system continues
monotonically to decrease in time but that it cannot de-

crease indefinitely due to the property (1). Thus we find

that dH/dt must vanish for large times and from Eq.
(3.32) it follows that

pln — =0
BX q

(3.33a)

and hence

—=const (independent of x) (taboo) .
q

(3.33b)

(t ~ ).oo

This implies that a probability distribution function as a
solution of the nonlinear Fokker-Planck equation con-
verges to a function proportional to q (t,x) =q(x;xo(t)) as
t~ oo. We note here that xo(t) in q(t, x) must satisfy Eq.
(3.3) with xo and p (x) being replaced by xo(t) and
const. q(x;xo(t) }, respectively, in the limit t~ oo:

Xq X;Xo t dX
xo(t)= (3.34)

q x;xo t dx

Then, by noting the x dependence of the expression for

q( ; x(tx))oand comparing Eqs. (2.9) and (3.34), xo(t) in

the t~ oo limit is seen to have to assume one of the static
values xo given by Eq. (2.9). There is no possibility that

xo(t) in q(x;xo(t)) admits an oscillatory or wandering

motion among xo's given by Eq. (2.9), because, as is easily
checked, the nonlinear Fokker-Planck equation (2.7)
yields no solutions of the form

q(x;xo(t)) f q(x ' x(ro)}dx,

with xo(t) being other than the time-independent constant
values characterized by Eq. (2.9). Hence, the large time
limit q ( oo, x) should coincide with one of the stationary
solutions given by Eq. (2.8) except for a normalization
constant. Thus it follows that a time-dependent solution
to the nonlinear Fokker-Planck equation (2.7) should al-

ways approach for large times one of the stationary proba-
bility densities given by Eq. (2.8) with xo satisfying the
self-consistent equation (2.9). In view of this convergence

property, we may be able to state that the present H
theorem implies "pre-global stability" of the set of the
Gibbs-type stationary solutions Eq. (2.8). Here the term
"global stability" is used in the sense that there is no oth-
er attractor than a set of Axed-point-type attractors corre-
sponding to the stationary solutions given by Eqs. (2.8)
and (2.9) and that any time-dependent solutions of Eq.
(2.7) lying far from equilibrium must be attracted by ei-

ther one of those stationary solutions without any possi-
bility of exhibiting runaway behavior or limit cycle type
oscillations. Accordingly, if the system admits only one
stationary distribution, as for example in the case of
paramagnetic state (D &D, ) of the ferromagnetic model
or in systems with no phase transitions, global stability in

the usual sense of the stationary distribution follows from
the H theorem. Namely, a uniquely determined station-
ary distribution function of the form Eq. (2.8) is always

globally stable. In such cases, it is no longer necessary to
conduct a local stability analysis presented below. Para-
phrasing the above situation in the case of the uniquely
determined stationary state, in the language of nonlinear
stability analysis, the functional H(p (t, ) ) constructed
here plays the role of a Lyapunov functional of the non-
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linear Fokker-Planck equation (2.7) appearing in the so-
called "second method of Lyapunov" applied for stabili-
ty analysis of dynamical systems.

H (p ( . ) ) H—(p ( ) ) = 5I "H [5p] +5' 'H [5p 5p] +

Differentiating H(p (.)) with respect to p, we obtain

(3.38)

B. Stability analysis of bifurcating solutions

5I 'H [5p, 5p] & 0 (for V5p~0) . (3.35)

It is easily seen from the discussion given below that the
above condition indeed ensures local stability of a sta-
tionary state. The condition of positive definiteness for
5' 'H [5p, 5p] implies that

Since the self-consistent equation for xo yields, in gen-
eral, more than one solution for such systems capable of
exhibiting phase transitions as ones with ferromagnetic
potentials, it is very important to determine which of the
stationary solutions is approached for large times in the
course of the time evolution or, in other words, to consid-
er a problem of the change in stability between the sta-
tionary solutions. To this end we employ a method of
nonlinear stability analysis for the present nonlinear
Fokker-Planck equation. Noting a close similarly be-
tween the properties of our H functional and the free en-
ergy of thermodynamic systems, we are led to be con-
cerned with analyses of a local structure of the H func-
tional around a stationary solution p„or, more
specifically, an analysis of the second-order variation of
the H functional. In fact, since the functional H(p(t, ))
is a decreasing function of time, the condition for asymp-
totic stability of a stationary state is given by the positive
definiteness of the second-order variation of the H func-
tional evaluated at the stationary state p =p„, ' '

5H= f 5p ln —dx+ f p
q R p

5q dx
q

p 5q=f5pln & dx —f P ~dx,
q q

(3.39)

with

5q=D 'q ex f x5pdx —e f xpdx f x5pdx

(3.40)

Substitution of Eq. (3.40) into Eq. (3.39) yields

5H= f 5p ln —dx .
q

(3.41)

Putting p =p„, we see that the first-order variation
5I "H [5p] vanishes,

5'"H [5p]=0 . (3.42)

25"'H= f 5p
IR p

This implies that the stationary distribution functions
given by Eq. (2.8) correspond to extreme points of the H
functional. The second-order variation can be obtained
by differentiating 5H with respect to p and using Eqs.
(3.40) and (3.41),

H(p( ))&H(p„(.))

holds for p in a certain neighborhood 0 of a stationary
state p„with the equality sign being valid for p =p„only.
Since H(p (t, .)} is a monotonically decreasing function of
t, the condition for the second-order variation will also
imply that any solution of the nonlinear Fokker-Planck
equation (2.7) starting in fI always remains in Q. Now
that the domain of definition for the H functional H(p ( ))
is restricted to 0, it is easily seen, by following the same
discussion as in the end of Sec. III A that
(d Idt)H(p (t, ) } is negative definite in fI; that is,
(dldt)H(p(t, .))=0 (p&Q) is satisfied only by p =p„.
Hence, the application of the H theorem to the case with
the restricted region 0 yields that any p in 0 tends into
the stationary state p„(local stability of p„). In this case
the stationary state p„ is a local minimum of the H func-
tional and the H functional with its domain of definition
being restricted to a neighborhood of the p„ turns out to
be a Lyapunov functional of the nonlinear Fokker-Planck
equation (2.7).

Defining 6p as

=f P dx ——' f x5pdx'
p D

(3.43)

Putting p =p„gives the second-order variation evalu-
ated at the stationary state

25'~'H[5p, 5p]= f dx ——f x 5pdx
ps~ D . ™

(3.44)

5p =y(x)p„(x)', p(x) EL (R ) (3.45)

and letting H& be the subspace of L (R) spanned by
[p,', ,xp,', ) and H, the orthogonal complement of H, ,
we decompose y into AH and yz,

When we put @=0 in the above expression, we recover for
5' 'H [5p, 5p] the form obtained by Schlogl.

To determine the sign of 5I 'H [5p, 5p], we proceed
further to rewrite the expression (3.44). Considering a
6p of the form

&P =P —
PS~ (3.36) O'=0'a, +0'i

f 5pdx=o, (3.37)

we calculate the variations of H(p (.)) around p =p„:

=ap„(x)' +/3xp„(x)' +yj(x)

From the requirement (3.37) for 5p, we have

(3.46)
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f 6p dx = f (~p„+pxp„+g~,',") dx = o +p& x & „=0 . (3.47)

Substituting Eqs. (3.45) and (3.46) into Eq. (3.44) and using Eq. (3.47), we obtain

26"'H[6p 6p]= f (qH, +q~)dx ——' ' f xp,',"p„dx '

cpgdx + x

g~dx + x —x „„l —— (3.48)

B(xp/e)

Bxo f xp„(x)dx
a

Bxo 8

which can be rewritten, by noting the relation (2.12), as

26' H [6p, 6p] = f (p~dx+eP~((x —(x )„)2)„

26"'H [6p, 6p]

(0.

(6xp )'

D 2

(3.54)

(3 49) Thus, it is confirmed that when

Here, ( )„denotes an average over a stationary distribu-
tion p„, (3.55)

( A (x) )„=f A (x)p„(x)dx . (3.50)

Now we find that if the term involving the static mo-
ments in Eq. (3.48) is positive,

the stationary distribution function turns out to be unsta-
ble for deviations that make 6' 'H [6p, 6p] negative.

At the bifurcation points, where

(3.56)
1 ——((x —&x)„)'&„)0 (3.51)

or, equivalently,

a
axo

a
xp„(x)dx )0 (for e) 0),

C)XO IR
(3.52)

x —&x)„
D P St~XO (3.53)

Substituting this into Eq. (3.44) or (3.48) yields

6' 'H[6p, 6p] becomes positive definite to satisfy the sta-
bility condition (3.35), and thus the stationary distribution
function p„can be approached by any initial distributions
lying in a neighborhood of the p„after a long time.

When, on the other hand, the inequality (3.51) has the
opposite sign, the stationary solution becomes a saddle
point and it can be shown that there exist probability
density functions, such that for each deviation 6p,
6' 'H [6p, 6p] assumes a negative value. To see this, it is
sufhcient to take as a distribution function for variation
the Gibbs-type probability density as given by Eq. (2.8)
in the neighborhood of the p„(x). Hence we have, in
the lowest order in 6xo,

exp [D '[d&(x) +xpx] I
6p =6 f exp [D '[N(x)+xpx] I dx

1R

holds, one must in general study higher-order variations
of the H functional for the determination of the stability
of the solution, unless the stationary solution is uniquely
determined. As noted previously, a uniquely existing sta-
tionary state is always stable.

The above results of the nonlinear stability analysis for
the bifurcation problem of the nonlinear Fokker-Planck
equation (2.7) show that the sign of 1 —(e/D)((x-
(x),, ) )„ is relevant to the stabihty condition in such a
way as to determine the sign of the second-order variation
of the H functional and hence to ensure local stability of
the bifurcating solutions. To conclude this section, we
note that the stability criterion derived can be seen to pro-
vide us with an intuitive and practical recipe for stability
analysis by employing a graphical interpretation of the in-
equality (3.52). Namely, in the graphical representation
(Fig. 1) of Eq. (2.9), when the curve for J xp„(x,xp)dx
intersects the straight line xo/E' with the slope of the
former being less than that of the latter, the stationary
state corresponding to the intersection point is stable.
Such a graphical method for the stability analysis coin-
cides with what has been extensively used in studies of
thermodynamic phase transitions of mean-field type, in
which, however, a rigorous proof of the validity of this
method, made from the viewpoint of the theory of time
evolutions of thermodynamic systems, seems not to have
been given thus far.
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IV. LINEAR-RESPONSE THEORY
AND FLUCTUATION-DISSIPATION THEOREM

In this and the following sections we deal with anoth-
er kind of dynamical behavior associated with phase
transitions in our coupled-oscillator systems. In systems
undergoing phase transitions, exchange in stability takes
place at the bifurcation points, as examined in the
preceding sections, and accordingly we expect, in gen-
era1, the behavior of dynamical responses and fluctua-
tions of such macroscopic variables as the order parame-
ter to be subject to some influences due to the oc-
currence of the instability. A critical slowing down'
exhibited by the order-parameter fluctuations is a well-
known and typical dynamical phenomenon characteristic
of phase transitions in such thermodynamic systems as
ferromagnets. Also, in the case of our stochastic sys-
tems, the existence of singularities in the dynamical be-
havior of the fluctuations as typified by a critical slowing
down can be shown from the analysis made within the
framework of linear-response theory with use of the
Callen-Welton-Kubo fluctuation-dissipation theorem,
which has been frequently employed to investigate the
critical behavior of fluctuations in systems undergoing
thermodynamic phase transitions.

Nowadays it is well known that the fluctuation-
dissipation theorem holds in thermodynamic systems
and has played a very important role in the statistical
mechanics of the irreversible processes. The
fluctuation-dissipation theorem states that a linear
response to a weak external perturbation of a system in
thermal equilibrium is related to equilibrium fluctua-
tions. More specifically, susceptibility tensors or
response functions describing dissipation are connected
to correlation functions of thermodynamic fluctuations
in the equilibrium state. The fluctuation-dissipation
theorem for such nonthermodynamic systems as the sto-
chastic ones described by finite dimensional Fokker-
Planck equations has been derived by Agarwal. In or-
der to discuss the fluctuation-dissipation theorem for our
stochastic systems with infinitely many degrees of free-
dom and to lay foundations for calculations in Sec. V,
we begin, by following the methods developed by
Agarwal, with N-dimensional Fokker-Planck dynamics
corresponding to the set of stochastic differential equa-
tions (2.1}with terms representing external perturbations
being taken into account.

%e consider the case in which each oscillator described
by Eq. (2. 1) is subjected to a temporally driven uniform
external field K(t), so that the Fokker-Planck equation for
the N-particle system reads

We split LFp([x } r) into unperturbed and time-dependent
parts:

LFp( [x},l') =L Fp( [x } ) +L „t([x },r)
with

(4.2)

LFp([x j)= —Qp

Bx;

B4(x;)
+ —g (x —x;)

2

+-,
Ox;

L,„,( [x j,t)= K(r) p- a
clx;

(4.3)

Since we are concerned with a linear deviation from the
stationary solution 8;, due to a small external perturba-
tion L,„„we linearize Eq. (4.1) around W„by putting

W= W„+5W([x j, r)

to obtain an equation for 5 W as

(4.4)

abc'
=LOFp( [x j )5W+L,„,( [x},r) W„. (4.5)

&& L,„,( [x },s ) W«ds . (4.6)

The change in the average value of a dynamical variable
A ( [x j ) is expressed as

5(A), = f A([ jx) 5W([ jx, t)d[ jx

dsK s A x expI. FP x t —s

W«([x})d [x} .a
X;

(4.7)

The last line was obtained by substitution of the explicit
form of L,„,. Using

BW„([x}) D;
W„([xj) (4.8)

C)X].

with

A solution of this equation is obtained by integration in
the form

5W([x },t)= J exp[LFp([x j )(t —s}]

+K (r) W([x j, r)

+ —,'cr g W( [x j, t)
Bx;

D; ( [x } ) = — 4(x; )+—g (x —x; ),dx; ' N

D =—,'cr

and noting the identity

L Fp ( [x j )x W t ( [x } ) =D ([x } ) W i ( [x j).
(4.9)

(4.10)

=LFp([xj, t)W([xj, t) . (4.1) Eq. (4.7) is rewritten as
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5( A), = f ' dsK(s) f A ([x j)exp[L„p([xj)(t —s)]LFp([x j) gx; W„([xj)d[xj (4. 11)

dsKs A x expLFP x t —s x; R„x d x (4.12)

r

ds K (s)—f A ( [x j )exp[L Fp( [x j )(t —s)]5( [x j —[x'j ) g x W„( [x' j )d [x jd [x'j (4.13)

f' dsK(s) —f A([xj) gx W([xj, t —s
~
[x'j,0)W„([x'j)d[xjd[x'j (4.14)

dsKs —2 x t —s x;0
D dt 0

LFP

(4.15)

N

A =A~([xj)=—g x;(t)
N, .

and we define its fluctuations,

(4.16)

1
y~(t) =

&x [x;(t)—(x; ) ]
i =].

N

g [x;(t)—(A~)] . (4.17)

Then 5( A~ ), can be written as

Here the symbol ( ) o in the last line denotes an aver-
FP

age with respect to the stationary Markov process charac-
terized by the Fokker-Planck operator LFp. Since we are
concerned with linear responses of the order parameter of
the system, which is a macroscopic variable corresponding
to the "total magnetization, " we now take A ( [x j ) to be a
sum of the variable x of each oscillator divided by N,

5( A „),=— (y „(0) )h cos(cot)

X~(~)= f" (y„(t)y„(0))e ' 'dt,—1 d
o D dt

the Fourier transform of Eq. (4.20) is written as

(4.24)

+ f "
(y „(s)y„(0))hen sin[co( t —s)]ds

0

(4.21)
from which we can obtain the generalized dynamic sus-
ceptibilities. Here we used the fact that the correlation
(y (oo)y (0)) vanishes by definition of y . More gen-
erally, introducing the Fourier transforms of 5( A )„
K(t), and ( —I /D)(d Idt)(y (t)y (0) ),

5A(co) = f 5( A „),e '"'dt, (4.22)

K(cu)= f K(t)e ' 'dt, (4.23)

5(A~), = f"K(t —s) (yz(s)yz(0))~o ds .
—1

o D ds FP
5A (co) =K(co)X„(co) . (4.25)

(4.18)

Here we changed the variable for integration in Eq.
(4.15). This is the well-known Callen-Welton-Kubo
fluctuation-dissipation theorem talking about the rela-
tion between a response of the macroscopic variable Az
and the fluctuations y~.

When N goes to infinity, the thermodynamic limit 3
is expected to exist and is expressible in terms of p (t,x) in

Eq. (2.5) as

Then XA(co) turns out to be the generalized susceptibility
representing the ratio of 5A(co) to K(co) and is expressed
in terms of its real and imaginary parts as

Xg (co) =X'g (co) —tX'g (co) . (4.26)

Explicit expressions for X'„(co) and X'~ (co) are obtained
from Eq. (4.21) or (4.24):

X'& (~)=—(y (0)2) —~ f (y (t)y (0) )singlet dt
D "

o

A ([xj)= f xp(t, x)dx, (4.19)
(4.27)

and an assumption of the existence of the thermodynamic
limit y seems to be reasonable. Furthermore, we can
expect that even in the thermodynamic limit (X~ ao ) the
above equation (4.18) holds:

X'„'(co)=—f (y (t)y (0) )cosset dt .
0

(4.28)

It is easily seen that the static susceptibility X„(0) is relat-
ed with the variance of the fluctuations through

5(A ), = f"K(t —s) (y„(s)y„(0))ds .
—1

D ds

(4.20)

X (0)=X' (0)=—(y„(0)') .

We note that the following sum rule is obeyed:

(4.29)

When we put K (t) =h cos(cut), integration by parts
yields

DX'„' (co)
lim y ty„0 dt .

0
(4.30)
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g(io)= f" (y„(t)y„(0))e ' 'd
277 oo

(4.31)

The dynamical behavior of the order-parameter fluctua-
tions y is of primary concern in the present study. The
correlation function, which is related to the generalized
susceptibilities through Eq. (4.24), can be given in a more
explicit form by expressing it in terms of the power spec-
trum of the fluctuations. The power spectrum is defined
as the Fourier transform of the correlation function:

p =p.t+&p (5.2)

A linear equation thus obtained for 5p is written in the
form

asap =Lo5p — e x 5p dx +F(t) p„,Bt Bx
(5.3)

with

To this end we linearize the equation around the stable
stationary distribution p„as given in Eq. (2.8) by putting

From Eq. (4.24), we can easily obtain an expression for
the power spectrum of the order-parameter fluctuations
in terms of the generalized dynamical susceptibility:

iD [X„(co)—X~ ( —co)]
S(oi)= 2' M

a dc a'
+xo +D

Bx dx Bx

x, =~ xp„dx .
lR

(5.4)

1 DX'q(co)
(4.32)

A formal solution 6p is given by

5p (t,x) = —f e e f x 5p (s,x)dx +F(s)

(4.33)

When the correlation function of the fluctuations is de-
scribed by a single-exponential function ~e ~', the relax-
ation time is simply given by the inverse of y. However,
in general, a single-exponential type of relaxation cannot
be expected for fluctuations in most systems where the
correlation function takes the form of a sum of exponen-
tial functions [see Eq. (D12)]. For this type of correlation
functions, relaxation time can only be defined as an aver-
age over distributed relaxation times appearing in the ex-
pression of the correlation functions. To be precise, an
explicit expression for the relaxation time is generally
given by

y„ t y„O dt

(y„(0)') (4.34)

Combining Eqs. (4.29) and (4.30), it turns out that the re-
laxation time v. of the fluctuations can be expressed in
terms of only the generalized susceptibilities

Xg (Ql)~= lim~-o cd„(0) (4.35)

V. DYNAMICAL CRITICAL PHENOMENA

From the exposition in Sec. IV, we see that all that is
needed to obtain the dynamical properties of the Quctua-
tions in the system exhibiting stochastic phase transitions
is to know the generalized susceptibilities of the system.
We now calculate the linear response of the order parame-
ter of a stationary state to an external time-dependent per-
turbation F(t) on the basis of the nonlinear Fokker-
Planck equation

dN(x) +e f xp dx+F(t) p+D ~p
a2

dx R Bx

Bp
Qj Bx

Hence the correlation function of the fluctuations is given
by the inverse Fourier transform as

DX'q (co )
(y (t)y (0) ) = f

X p„(x)ds . (5.5)

Lo(t —s)
xe ' p„xdx

= f ds e f x 5p (s,x)dx +F(s) R (t —s),
J

(5.6)

R (t)= —(x(t)x(0))
—1 d
D dt L()(xo )

(z(t)z(o))1 d
D dt -o(xo)

with

Z(t)=x (t) —(x)
=x(t) —f xp„dx .

(5.7)

(5.8)

Here we followed the same procedure as we did in deriv-
ing Eq. (4.15) by making use of Eqs. (4.8) and (4.9) with
D; and W„replaced by d+ldx +xo and p„, respectively.

Putting

G (t)= f x 5p (t,x)dx, (5.9)

Eq. (5.6) is rewritten as

G(t)= f '
[eG(s)+F(s)]R (t —s)ds . (5.10)

Since this equation is a linear integral equation for G(t),
the solution can be easily found by taking the Fourier
transform of Eq. (5.10). Defining the Fourier transforms
of G(t), R (t), and F(t)

Thus the deviation of the expectation value of x over the
empirical distribution p (t,x) from its stationary value
takes the form

f x5pdx= —f ds e f x5p(s, x)dx+F(s)

(5.1)
G(co)= f G(t)e ' 'dt, (5.1 1)
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R(co)= f R (t)e ' 'dt,
0

F(cu)= f F(t)e ' 'dt,

(5.12)

(5.13)

R (co)=—(Z') „— y(~),

with

(5.17)

the Fourier transform of Eq. (5.10) reads

G(co) = [eG(cu)+F(~)]R (~) .

Then G(cg) can be solved in the form

(5.14)

F(cu)R (co)
G Q7

1 —eR (co)
(5.15)

X(
F(~)

R (co)

1 —eR (co)

—[(Z ) —t~y(co)]
D

1 ——[ ( Z ) i coy—( cu ) ]D

(5.16)

From Eqs. (4.25) and (5.15) we obtain the complex sus-
ceptibility X(co) for our system in the following forms:

y(~)= f "e ' '&Z(t)z(0))~
( )dt, (5.18)

oo ] 2
y(~) = g . f [x —(x )„]P„(x)dx

LQ7+ Ap 8
(5.19)

From Eq. (5.16) we can easily obtain an expression for the
static susceptibility:

X(0)= (5.20)

and ( )„denotes the average over the distribution p„.
We note that y(co) is known to be expressible in terms of
the eigenvalues [ —A,„I and eigenfunctions IP„] for the
Fokker-Planck operator Lo(xo) (Appendix D):

Here we used the fact that R(cu) can be rewritten after an
integration by parts as

The real and imaginary parts of X(co) defined in Eq. (4.26)
are given as

1 ——[(Z')„—y, ( )] [(Z')„—y, ( )]——'y, ( )'

Y'(~) =
2

1 ——[(Z )„—coy, (co)] + —coy, (~)
'2 (5.21)

X"(~)=
1

coy ~ ( ci) )

1 ——[(Z )„—coy, (co)]

2

+ coy,. ( cc) )

2 (5.22)

with

y, (co)=Rey(cu)= f"cosset(z(t)z(0))L
(

Idt,
0 0 0

y, (co)= —Imy(co)= f singlet(Z(t)Z(0))~
( Idt .

0 0 0

(5.23)

Combining Eqs. (4.32) and (5.22), we find the power spectrum of the order-parameter fiuctuations y „as
1+(~)=-
7j 2

+ ~y, (~)
2 (5.24)

Then the correlation function of the fluctuations is given by the inverse Fourier transform as

(y (t)g„(0))= f S(~)e'"'dc@=—f y, (~)e'"'de
2

1 ——[(Z )„—coy, (co)] + —coy, (co)

2 (5.25)

We note that in the limit e~0, S(cu) approaches the
power spectrum of the fiuctuations y, (~)/m. for a single
independent oscillator without any couplings with the
others, as expected. Furthermore, since we have from Eq.
(5.22)

DX"(~)
lcm
m~0 CO

y, (0)
2 (S.26}

using Eqs. (4.35) and (5.20), we obtain the relaxation time
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~ of the fluctuations as

y, (0)
(5.27)

It is noted that the positivity of y, (co) holds from Eq.
(5.19) and that the denominator is also positive, so far as a
stable stationary state is concerned.

Since, as shown in Sec. II, bifurcations of solutions to
the nonlinear Fokker-Planck equation take place at the
point where 1 —(e/D)(Z )„=0holds, it turns out from
Eqs. (5.20) and (5.27) that both the static susceptibility
X(0) and the relaxation time r diverge as

(5.28)

on approaching the phase transition point. Here we not-
ed that neither y, (0) nor (Z )„exhibits a singular be-
havior at the phase transition point, since they are asso-
ciated with the linear Fokker-Planck equation character-
ized by Lo. The above result confirms, from a general
stochastic-theoretical point of view, the widely accepted
belief on a critical slowing down for thermodynamic
phase transitions of mean-field type' that the degree of
the divergence of the relaxation time is to the same ex-
tent as that of the static susceptibility.

VI. SUMMARY AND DISCUSSIONS

We have investigated the dynamical aspect of nonther-
modynamic phase transitions of mean-field type taking
place in stochastic systems of infinitely many coupled
anharmonic oscillators in a rigorous and systematic way,
on the basis of the nonlinear Fokker-Planck equation.
Studies have been performed from the two kinds of
points of view —an asymptotic approach to equilibrium
and a critical anomaly of dynamic responses of the sys-
tem. We will give the summary and discussions of our
results of these two kinds of studies in turn.

Our main results with regard to the first part of the
study are the presentations of the H theorem and its ap-
plications to the problem of stability analysis, together
with a stability criterion expressed in terms of the
second-order variation of the H functional of the system.
We have confirmed that even for infinite stochastic sys-
tems exhibiting phase transitions, an H functional can be
constructed to show the validity of an H theorem. ' It
has been shown that the H functional plays an essential
role as a Lyapunov functional in conducting a stability
analysis of bifurcating stationary states of the system. Al-
though a stability analysis of a nonlinear equation giving
rise to bifurcations is usually conducted by means of a
linear stability analysis involving a study of the eigenval-
ues of the linearized equation, we took in the present arti-
cle an alternative approach, i.e., a method of nonlinear
stability analysis making full use of the concept of a

d;S =JS—
T

dF . (6.1)

Accordingly, the H theorem (3.12) implies the positivity
of the entropy production ' during an irreversible evo-
lution of the system and we see that the amount of entro-
py production is calculable for any time interval during
the course of the irreversible time evolution of the present
infinite system, provided the time-dependent solution p of
the nonlinear Fokker-Planck equation is solved. Further-
more, if we confine ourselves to the behavior of the ir-
reversible process near equilibrium (linear region), we can
elaborate more about the entropy production. It can be
shown that the Prigogine inequality or the law of entropy
production rate minimum ' holds near stable stationary
states of our system. To be more precise, since, based on
Eq. (3.44) and the linearization of Eq. (2.7), we can prove

Lyapunov functional. The relation between the two ap-
proaches for the present nonlinear Fokker-Planck equa-
tion will be studied elsewhere. To summarize the role of
the H functional in light of the stability analysis involving
a Lyapunov functional, the H functional [(3.1)—(3.3)] has
been shown to be a Lyapunov functional of the nonlinear
Fokker-Planck equation (2.7), ensuring global stability of
a stationary solution of the nonlinear Fokker-Planck
equation, in the case where that stationary solution is a
uniquely existing one. On the other hand, when the non-
linear Fokker-Planck equation admits more than one sta-
tionary solution, the H functional has been shown to be
entitled to become a Lyapunov functional only in a cer-
tain neighborhood of a stationary state making the
second-order variation 5' 'H [5p, 6p] positive definite,
which ensures local stability of that stationary state.

The H functional also proves useful in exploring the
dynamical behavior of the nonequilibrium process of the
system. Since, as is stated in Sec. III, the H functional
constructed in the present article is proportional to the
generalized Helmholtz free energy of a nonequilibrium
state, it follows that, owing to the explicitly expressed
time evolution equation for p (nonlinear Fokker-Planck
equation), the time change of the free energy of the sys-
tem is explicitly given and, in principle, amenable to cal-
culation, and furthermore the free energy cannot in-
crease at any moment in the course of the time evolution
of the system. The above situation makes a sharp con-
trast with thermodynamic systems, where the same kind
of rule for the free energy (principle of free-energy
minimum) holds, because it is difficult, in general, not
only to define nonequilibrium free energy for thermo-
dynamic systems but to derive the rule from a first prin-
ciple such as the Liouville equation rather than by in-
voking the second law of thermodynamics. In this con-
nection, it is worthwhile to note that an increment or
difFerence of the values of the H functional at two times
in the course of the time evolution of the system turns
out to be the negative of the so-called entropy produc-
tion. This can be easily seen by observing the relation-
ship (3.9) between the H functional and the generalized
free energy 9 and by noting a possible analogy to the
thermodynamic relation between the free energy F and
the entropy production d;S:
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d2

dt
5' 'H [5p, 5p]

=2 JR

—5p
a
at

pst

2

E a
dx —— x —6p dx

D R Bt

(6.2)

it turns out from the expressions for the second-order
variation 5' 'M[5p, 5p] Eqs. (3.44) and (3.48) that the sta-
bility condition given by the inequality (3.51) implies

d2S n"'a &o .
dt2 dt2

(6.3)

We now turn to discussing the problems of another
type of dynamical behavior, which concerns the critical
anomaly of the fluctuations. To investigate the dynami-
cal critical phenomena of the present system, we have
calculated dynamical responses of the order parameter
to an externally driven field within the framework of
linear-response theory. Noting that the fluctuation-
dissipation theorem holds even in the thermodynamic
limit, we have obtained correlation functions and power
spectra of the order-parameter fluctuations in our sys-
tem. Our main results are the presentation of the ex-
pressions for the generalized dynamical susceptibilities
together with the spectra of the fluctuations of the sys-
tern and the confirmation of the occurrence of a critical
slowing down for the order-parameter fluctuations in the
system, irrespective of the form of the potentials and ac-
cordingly of the kind of phase transitions, as long as the
system undergoes a phase transition at the point charac-
terized by Eq. (5.28). Critical slowing down has been
shown to occur in such a way that the relaxation time of
the order-parameter fluctuations diverges with the same
power as that of the divergence of the generalized static
susceptibility, as a phase transition point is approached.
The present result of the qualitative nature of the critical
slowing down coincides with that obtained by a well-

known mean-field analysis of critical dynamics in sto-
chastic Ising spin systems based on the Glauber model.

As far as we know, rigorous approaches and thorough
studies to obtain expressions for the critical divergence of
relaxation time and dynamical responses of the order pa-
rameter of the infinite system undergoing phase transi-
tions are very few except for the above-mentioned mean-
field analysis of the Glauber model for the dynamical crit-
ical behavior of the Ising ferromagnet. Kometani and
Shimizu' studied the phase transitions in the present
model system, making use of an approximated theory in-
volving an interrelation between the evolutions of the fluc-
tuations and the macroscopic order parameter, in which a
Gaussian approximation for the fluctuations of each oscil-
lator was employed. As stated in their paper, they avoid-
ed investigating the dynamical behavior of fluctuations in
the neighborhood of the phase-transition points owing to
the nature of their approximations. Desai and Zwanzig'
also investigated the dynamical behavior of the present
system for the case of the ferromagnetic potentials on the

basis of a self-consistent dynamic mean-field theory, in
which they introduced the nonlinear Fokker-Planck equa-
tion and derived a hierarchy of equations for the cumu-
lant moments of the time-dependent distribution function.
They discussed the linear response of the system and ex-
pected the occurrence of a critical slowing down based on
a crude analysis. Results of thorough studies including
the obtaining of generalized dynamical susceptibilities,
spectra of the fluctuations, and relaxation time in explicit
forms, however, were not given in their paper.

Although we have a qualitative agreement between the
results of the present system and those of the mean-field
Ising spin system with respect to the mean-field charac-
ter of the critical slowing down for the relaxation time of
the systems, there are some differences worth noting be-
tween the outcomes of the studies for the two systems.
Major differences, which come from an arbitrariness in
the choice of the potentials in our present approach, are
those of the shapes of the relaxation functions together
with the extent to which the theoretical considerations
can shed light on the mechanisms for the occurrence of
the critical slowing down. While the mean-field
Glauber mode1 yields a single-exponential type of decay
for the relaxation of the order parameter or for the
correlation function of the fluctuations, the present sys-
tem, which can be viewed as a model of continuous spin
version of ferromagnets, if for example ferromagnetic
potentials are adopted, has been shown to give rise to a
multiexponential type of decay for the relaxation, origi-
nating from the nonlinearities of the drift terms of the
Langevin equation (2.1). The single-exponential type of
decay for the fluctuations in the system described by the
mean-field Glauber model comes from the fact that the
time evolution of the averaged value of magnetization is
governed by a one-dimensional ordinary nonlinear
differential equation, the linearization of which yields a
solution with a single-exponential form. On the other
hand, in our treatment the underlying time evolution
equation responsible for the bifurcations of the order pa-
rameter takes the form of a nonlinear Fokker-Planck
equation. Since the linearization of this equation still in-
volves nonlinearity in the variable x in its drift term, the
relaxation or correlation function of the order-parameter
fluctuations assumes a non-single-exponential type of de-
cay. Since the present approach for treating the critical
slowing down allows one a freedom of choice of poten-
tials 4(x) for the occurrence of bifurcations involving no
broken symmetry, as well as symmetry-breaking instabil-
ities in the system, we are left with the possibility of dis-
cussing phenomena of critical slowing down in several
kinds of phase transitions. In this sense, expressions
for the non-single-exponential type of decay of fluctua-
tions in the present infinite stochastic systems seem to be
useful to discuss the dynamical behavior of systems ex-
hibiting various kinds of phase transitions ranging from
nonequilibrium to such thermodynamic phase transitions
as found in some ferroelectric materials.

Finally, we note the importance of the role played by
the fluctuation-dissipation theorem in the study of the
critical behavior of fluctuations. Although the nonlinear
Fokker-Planck equation (2.7) is available for the descrip-



36 DYNAMICAL BEHAVIOR OF STOCHASTIC SYSTEMS OF. . . 2409

tion of the fluctuations of each individual oscillator in
the system, it provides us with no information on the be-
havior of the fluctuations of such macroscopic variables
as the order parameters of particular concern. We are
necessarily led to employ the fluctuation-dissipation
theorem to obtain the dynamical behavior of the order-
parameter fluctuations. In the present paper, the
fluctuation-dissipation theorem extended to the infinite
system has been presented by simply taking the N~ ao

limit of an expression derived for a finite-dimensional
system of Fokker-Planck dynamics. There, the existence
of the N~oo limit of the order-parameter fluctuations
y has been assumed. It is shown by Dawson, ' howev-
er, that the behavior of the critical fluctuations just at a
phase transition point (D =D, ) goes beyond what is
claimed by the commonly known central-limit theorem,
which admits the N ' scaling of the fluctuations as in
the definition of y . Accordingly, the present result of
the dynamical critical behavior of the fluctuations will
not be allowed to apply just at a transition point, though
the generalized susceptibilities will still remain meaning-
ful at a stable transition point. In general, more detailed
discussions will be needed to justify our procedures in
obtaining the fluctuation-dissipation theorem for such
infinite systems exhibiting phase transitions as the
present case, where the order of taking the limit N~ oo

and t~ oo becomes crucial and discussions about the
central-limit theorem associated with the existence of the
order-parameter fluctuations y „are inevitable. Quite
recently, in the case where the usual central-limit scaling
for y holds and hence the fluctuations become a Gauss-
ian process, conducting a more rigorous mathematical
analysis of the fluctuations in our infinite system, we
have been able to prove the fluctuation-dissipation
theorem as claimed in the present work, to justify the
present approach to obtain the critical slowing down of
the order-parameter fluctuations. Details of such
mathematical arguments have been omitted in this arti-
cle and will be reported elsewhere.

APPENDIX A: D ~ co LIMIT OF EQ. (2.10)

To evaluate the value of 3/Bxo f„xp„dx in the limit
D~oo, we note the identity given by Eq. (2.12). Since
we are concerned with the evaluation at xo ——0 of the
second moment of a symmetric potential N(x), it will
suffice to prove

D —I) Kx2+Mf x e '"'dx f x e ' +
dx

IR ( 8
D N(x)d D [—K2x "—M]

e dx
IR

dy
IR

IR

Here we made a change of variable x =D' "y for integra-
tion. Since

(A3)

0( lim
(x')„

D
2n

—K2y "2'
( 1 2M/DD 1/n —1

y2e 1

=0, (A4)

we have

(x')„
lim =0.D- D (AS)

Case I

We first deal with the case where N(x)
[= —4&(x) —ex /2] is given such that its global max-
imum is attained by more than one point. Let
x;(i =1,2, . . . , m) be such points. For simplicity we as-
sume that around each x; the potential @(x) can be ex-
panded in a Taylor series as

with

N(x)=A —a, (x —x, ) + (B1)

a &0, A= Max 4(x).—oo (x (oo

Using the saddle-point method for integrations involved
and taking the limit D~O yields

r
1/2

2 Der
exp —g x,'

APPENDIX B: D ~0 LIMIT OF EQ. (2.10)

To see the behavior of (x )„/D in the limit D~O, we
consider two cases for types of symmetric potentials.

2 D 4 (x)d~—(x )„=
x e

D D f D 4&(x Idx
~0 (D~oo) . (A 1)

(x')„
m

exp—
D

Dw

a;

1/2

We assume 4(x) to satisfy the following condition: There
exist positive M, K&, K2, and an integer n ( & 1) such that

1/2

Xi
2

a;
1/2 (B2)

—Ezx "—M & 4(x) & —K,x "+M . (A2)

We note that when C&(x) is a polynomial, whose term
with the highest order is given by —Kx " (K &0), we can
choose M, K, , and K2 for &P(x) to satisfy the above condi-
tion. From the inequality (A2), it follows that

We tkus have in the limit D~O
(x')„

D
~ OO (B3)
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Case II

Here, 4(x) is assumed to have a single maximum at
x =0 and further to be such that the quadratic term in a
Taylor expansion of 4(x) around x =0 is given by

&x'&„
lim
D~O D

1 1

e—a e

APPENDIX C: PROOF OF (iv) IN EQ. (3.21)

(B6)

Cx E4(x)= ———x
2 2

(B4)

with

0&ca &e .

Hence using the saddle-point method, we obtain an
asymptotic expression for the variance (x )„, when D is
suKciently small

Xp
X &X

b —e' (C 1)

implies

We examine the asymptotic behavior of (x )„as a func-
tion of xp for the ferromagnetic potentials in the limit
xp~oo. Let e' be any small positive number satisfying
b & e'& 0. With e' fixed, it is easily seen that

' 1/3

&x')„-

Finally we have

(B5)
4FM(x)+xox

D

Hence we have

ax —bx +xpx ax 2 g'x 42 4

D D
(C2)

f D [eFM(x)+XQx] &
x' D [eFM(x)+xpx]

e dx& e dx )
Qo 0

[+FM(x) +XQX) 00 D [~'FM(x) +xpx]
—1 —1

xe dx & xe dx
00 0

D [4FM(x)+xpx]x'e dx+
0

D [eFM(x)+xpx]&x' e dx +
0

Thus we obtain

D (ax —e'x )d~r ~e
~ I 2 ~ I 4

X
X

f D (ax —e'x )d
0

(C3)

(C4)

&x&„= f Qo D [eFM(x) +xpx]xe dx

f Qo D [eFM(x) +xQx]
e dx

g x D [4FM (x ) +Xp X] D (ax —e'x ) vx' e
0

ax+ xe ax
0

f D [4FM(x)+XpX]
e dx

0

xeD "-'—" 'dx
I ~I

~~

~

~ i 2 ~ I 4
X

0=x +
D [&PFM(x) +x()x]

e dx
0

(C5)

By noting

D [4FM(x)+xpx] xp/D x D PFM(x)e
0 1

(x'& 1), (C6)

diffusion coefficient,

P(t, x) =LP (t,x—),a
at

with

(D 1)

it follows that for suSciently large xp,

D (ax —e'x )dx
(x )„&x'+e x' D 4FM(x)f e dx

I

(C7)

a2
V(x)+D zBx BX

Denoting the stationary solution of Eq. (Dl) bv e
we transform the Fokker-Planck operator L to LH ..

(D2)

so that

(x&„&

' 1/3

(xo ~) . (Cg)

L„=e'"Le '"=D —V, (x-)
a'

Bx

with

(D3)

APPENDIX D: PROOF OF EQ. (5.19) (REFS. 3 AND 4)
V, (x)= — V(x)+ V(x)1 d 1

2 dx 4D
(D4)

To prove Eq. (5.19), it will suffice to consider a one-
dimensional Fokker-Planck equation with a constant

It can be easily checked that LH is an Hermitian operator.
When V, (x)~ oo as

~

x
~

~ oo, the Schrodinger-type
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LPj = —A~PJ (D7)

Since the transition probability density P(t, x:t',x') is
given by

P(t, x:t',x') =e " ' '6(x —x')

equation

LH p&
———k

has a point spectrum and its orthonormal eigenfunctions

[pl jl o constitute a complete base of L (R), where
as seen from LHe =0, Po=e is an eigenfunction
with the eigenvalue Xo=O. Thus the eigenfunctions for
the Fokker-Planck operator L are given by

P, =e "—
tt, =CA,

with

P2(t, x, t', x') =P (t,x:t',x')e

=f (x)g (x') g g, (x)g, (x')e ' . (D9)
J

A two-time correlation function in the stationary process
of a random variable Z (x) is given by

(Z(x (t))Z(x (0)) ) = f f dx dx'Z (x)Z (x')P, (t,x,0,x')

00

e ' f Z (x)go(x)gj(x)dx
j =O

e ' f Z (x)P, (x)dx
j=O R

(D10)

Substituting

=e OX j X OX X
J

I

=Qp(x)Po(x') ' g P, (x)P, (x')e
j

Z(x) =x —(x )„,
we find

(Z,Zo) = g e ' f (x —(x)„)P,(x)dx
j=0

(D 1 1)

(D8)

assuming t t' without loss of generality, the density of
the joint probability distribution in the stationary pro-
cess reads

e ' f (x —(x )„)P&(x)dx.
j=1

(D12)

The Fourier transform of the correlation function yields
Eq. (5.19).
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