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optically induced twist Freedericksz transitions in planar-aligned nematic liquid crystals
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The optical-field-induced Freedericksz transition for a twist deformation by a normally incident

laser beam in a planar-aligned nematic liquid crystal is studied. The Euler equation for the molecu-

lar director and the equations describing the evolution of the beam polarization in the birefringent

medium are solved simultaneously in the small-perturbation limit. The stability of the undistorted

state is investigated. An alternate series of stable and unstable bifurcations is found. This
phenomenon has no analog in the Freedericksz transition induced by dc electric and magnetic exter-
nal fields.

In recent years, nonlinear interaction between a nor-
mally incident linearly polarized light beam and a homeo-
tropically oriented nematic liquid-crystal film has received
a great deal of attention. ' The existence of a characteris-
tic threshold intensity for induced molecular reorientation
was experimentally well demonstrated. The underlying
physical mechanism for such an effect, known as the opti-
cal Freedericksz transition, is essentially the same as in
the corresponding dc Freedericksz transition. The
geometry dictates that the polarization of the light beam
remains unchanged in traversing the cell, even with
molecular reorientation. There are a number of other dc
Freedericksz transitions with different geometries to
which one may also find optical analogue. In most cases,
however, the underlying physical processes of the dc- and
optical-field-induced transitions are very different because
the beam polarization varies in propagating through the
medium. In this paper, we consider optical Freedericksz
transition in a planar-aligned cell induced by a light beam
linearly polarized in a direction perpendicular to the
molecular alignment. The induced molecular reorienta-
tion yields a change of birefringence seen by the beam,
and consequently, the beam polarization changes continu-
ously as it propagates through the cell. We must consid-
er, simultaneously, the local action of the elliptically po-
Iarized light beam on the liquid-crystal molecules and the
change of the beam polarization due to birefringence aris-
ing from molecular reorientation. It turns out that even
the threshold behavior for the induced transition is
characteristically unique. This is what we would like to
focus on in the present paper. The transition is second
order. The present case shows little resemblance to the
corresponding dc case. The characteristics of our case are
intimately related to the exchange of angular momentum
between the light beam and the liquid-crystal medium.

Let us consider a planar nematic cell of thickness I,
with the molecular alignment originally along x. A light
beam, linearly polarized along y, is normally incident on
the cell along z. If the optical field is su%ciently strong to

reorient the liquid-crystal molecules, then the local molec-
ular orientation is described by the unit director
n=(cosg, sing, O), and the local beam polarization is de-
scribed by the Stokes unit vector s=(s&,sz, s3) on the
Poincare sphere. Here, both n and s are functions of z
and time t. The quantity s3 denotes the polarization ellip-
ticity: s3 ——(Itt It )/(It—t +It ), Itt and IL being the inten-
sities of the right- and left-handed circular components of
the beam, respectively.

It has been shown that the evolution of the beam polar-
ization of an optical wave propagating in an inhomogene-
ous uniaxial medium is approximately governed by the
precession equation

t)s/t)z =Q&&s,

where, in the present case,

Q = (2sr!A)b, n (cos(,2$), sin(2$), 0),
is the optical wavelength and An =n, —n o is the

difference between the extraordinary and the ordinary re-
fractive indices of the medium. Equation (1) can be de-
rived from Maxwell's equations in the slowly-varying en-
velope approximation in the limit of low birefringence
An /n. For higher birefringence, one needs a more
rigorous approach, in which the beam polarization should
be described by a set of pseudo-Stokes parameters. For
conventional liquid crystals, b, n/n =0.15, and Eq. (1) is
sufficiently accurate.

According to the angular momentum conservation
law, the angular momentum lost by the light beam per
unit time in traversing the medium must be equal to the
optical torque exerted on the liquid-crystal molecules.
The angular momentum carried by a beam with intensity
I and ellipticity S3 is (IS3/fico)fi=(IA, /2vrc)S3 per unit
area and unit time. Then, the angular momentum per
unit volume and unit time lost by the light beam be-
tween planes z and z +dz is (IA, /2trc)tiS3/t)z, which is
also the optical torque per unit volume acting on the
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P(z, O) =0,
P(O, t) =P(L, t) =0,
s(O, t) =so,

where so is the Stokes vector for the input light. For
linear polarization along the y axis, we have so ——( —1,0,0).
It is easily seen that s=so ——( —1,0,0) and /=0 is a solu-
tion of Eqs. (1) and (2). This corresponds to the propaga-
tion of an ordinary wave in the undistorted sample. This
solution, however, becomes unstable when a critical inten-
sity threshold I,h is reached. The bifurcation point can be
found by using Lyapunov's first method for test of stabili-
ty extended to continuous media as follows.

Equation (1) is linearized by taking p, Sz, and S3 as
small quantities. With the introduction of the following
normalized quantities:

u =z/i,
r=t(k23/y, L ),
I= (I /ck~z hn )(k/2~)

L =2~An i/A, ,

(4)

the linearized set of equations becomes, for 0 ( u & 1,

ay/ar+(a'y/— au )+IL(aS, /au) =0,
aS, /au =0,
aS, /au = —LS, ,

aS lau =L(S +2/),

(5)

with S~=S~(O,t)= —1. Although the set of Eq. (5) is not
self-adjoint, we can still take a trial solution of the form

molecules. With the inertia term neglected, the equation
of motion for the molecular reorientation is obtained by
equating the optical torque to the viscous and elastic
torques:

—y, (ap/at) +k, (a'y/az ')+ (I /c)(X/2~)(aS, /az) =0,
(2)

where y& is the v'iscosity coe%cient and kzz the elastic
constant for twist.

Equations (1) and (2) form a set of coupled nonlinear
partial differential equations for the quantities s and P,
which must be solved with the initial and boundary con-
ditions

(x +a)(x L—) —2I L x =0 .

The results show that o, always appears to be real instead
of complex. A plot of a as a function of I for i=5 is
presented in Fig. 1. At a given intensity I, there exists a
discrete set of eigenvalues a„(n =0, 1,2, . . . ) with
ao) a& )a2)

According to Lyapunov's criterion for stability, the
solution s=( —1,0, 0), /=0 is stable if, and only if, all
a„have a negative real part. This is certainly not the
case here. Let I (m =0,1,2, . . . ) be the zeroes of a(I),
as shown in Fig. 1. We have I=I (m even) correspond
to the points where the solution s=( —1,0,0), /=0 be-
comes unstable with further increase of I. The lowest
threshold for instability is given by Io. As seen in Fig.
1, there is a series of alternate stable and unstable inter-
vals as the light intensity increases. In the regions I &Io
and I * & I & I + &

(m odd) the undistorted state P =0 is
stable, such that any spontaneous fluctuations will be
damped out in time. For I &I &I +, (m even), how-
ever, the eigenvalue o.o is positive, and the fluctuations
will grow exponentially. The initial growth of the insta-
bility is governed by a time constant proportional to
1/ao. For I &I &I * (m odd), the state /=0 is also
unstable, but the initial growth of the fluctuations has a
double-exponential character with two time constants
proportional to 1/ao and 1/a &, respectively. At the
points I=I * (m odd) the eigenvalues ao and a f

coalesce. In any case, in the unstable regions, deviation
from the undistorted state will grow in time, until the
nonlinear terms, neglected in Eq. (5), become significant
and drive the system to a steady-state saturation regime.
This behavior has no analog in the corresponding dc
Freedericksz transition.

The threshold intensities I, at which the solution
s = ( —1,0,0), / =0 switches from stable to unstable can be
obtained as a function of L by setting a=O in Eq. (8).
We find x& ——0 and xq L+1+2I, ——so that Eq. (7)
reduces to

sin(L +1+2I,„)
2I,h L+1 2+Ih

L=5

l2

P(u, r) =g(u)exp(ar),

SQ 3 —(T3 3( u )exp(ar)

Insertion of Eq. (6) into Eq. (5) yields a set of equations
that can be solved by the standard method for eigenvalue
problems. We report here only the results of the calcula-
tion. The dimensionless eigenvalue a is obtained from the
transcendental equation

&6

I

20

[(xzz L)l(x f L)]sin(xz)/x—2
——sin(x, )—/x, , (7)

where x t (a) and x2(a) are the two roots of the biquadrat-
ic algebraic equation

FIG. 1. Plot of the eigenvalues o. vs I for L=5 from Eq. (7).
The dotted part on the abscissa denotes regions where the trivial
solution s =( —1,0,0), /=0 becomes unstable.
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first-order transition. Note that in the stable regions (e.g. ,
I

~ &I &I2), the system is intrinsically bistable, with the
two stable solutions given by the unperturbed state
s =( —1,0,0), /=0 and the nonlinearly perturbed state on
the steady-state branch. If I is suddenly switched to an
unstable region, the system would vary in time until the
corresponding nonlinearly perturbed state on the steady-
state branch is reached.

The present theory applies also to smectic-c liquid crys-
tals in Rapini s X-configuration. In this case, the follow-
ing forrnal substitutions should be used:

ne

(n, cos 0+nosin 8)'~

FIG. 4. Ellipticity s3 of the transmitted light beam through
the sample as a function of I for L=5. The dashed part on the
horizontal abscissa corresponds to the unstable solutions shown
in Fig. 1.

gradually increased. At the second branching point
I=I2, the system again undergoes a second-order
Freedericksz transition and moves onto the second
steady-state branch. If I is slowly decreased instead, then
as it reaches the end of the stable interval I=I j, the sys-
tem should switch to the first steady-state branch via a

(I /ck22 I3.n )( A, I27r )

(1 —k cos 8)sin 0

( k33 k22 ) ~k22

where k33 is the bending elastic constant and 0 is the tilt
angle characteristic of the smectic material. Samples with
small 0 are expected to have lower threshold I,h, which is
roughly scaled by the factor sin 8.
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