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The problem for random packing or filling has been treated in many fields. In this paper we

form random sequential packing patterns, filling metallic squares with integer length a on insulator
substrates divided into square unit cells. We investigate the percolational and fractal property of
the packing patterns, and clarify that the maximum critical percolation length a, (=3 units length)
of the packed squares is presented for the insulator-to-metal transition to take place on the ran-

dom sequential packing textures. When a & a„noinsulator-to-metal transition occurs even at the
saturation coverage where no more squares can be filled without any overlap. However even in

such patterns with a ~a„the large percolation clusters possess fractal properties, and the fractal
dimensions equal 1.94.

I. INTRODUCTION

It was reported that lattice percolation clusters' ' and
patterns of deposited metal films' " have fractal proper-
ties. In our previous paper" we presented that random
textures shaped on square cellular structures or square
meshes have fractal properties. The fractal dimension D&

of the large percolation clusters is equal to 1.9 for all the
published cases.

In this paper we shape random sequential packing pat-
terns on square cellular structures and investigate the per-
colational and fractal property of the packing patterns.
Although the problem for random sequential packing or
filling has been treated in many fields, the percolational
behavior and fractal property of the patterns formed by
random sequential packing are little known. We form
random sequential packing patterns, filling orientated me-
tallic squares with integer length a at random one by one
without any overlap, but permitting any contact among
the filled squares, on insulator substrates divided into unit
square cells or meshes. Then the sides of the packed
squares are just put on the cell boundaries of the square
substrate. When a = l the packing (saturation or jamming
coverage) fraction p is equal to unity, and the insulator-
to-metal transition takes place at a certain metallic
volume (area) fraction p in the course to the saturation
coverage. As a increases, the packing fraction decreases,
but still the packing pattern is metallic at its saturation
coverage. When the length a further increases and the
probability of contact among the filled squares is very
small, the pattern becomes an insulator even at the jam-
ming coverage. It is interesting to find this maximum crit-
ical percolation length a, for the insulator-to-metal transi-
tion and to investigate the fractal property of metallic
clusters shaped on packing textures.

In Sec. II we present the percolational behavior of ran-
dom sequential packing patterns shaped on square cellular
structures or square meshes. In Sec. III we study the
fractal property of the clusters on the patterns.

II. PERCOLATIONAL BKHA VIOR
OF RANDOM SEQUENTIAL PACKING CLUSTERS

We form random sequential packing textures on square
insulator substrates divided with N )& N unit cells, where N
is the length of the substrates. When a is unity and it is as-
sumed that the percolational How is transmitted only
among nearest-neighbor cells, the critical volume (area)
fraction v, for the metal-insulator transition is equal to the
critical percolation probability of the site percolation
problem on square lattice. Many articles have been pub-
lished on the critical percolation probability, and many
references are given by Zift' and Sapoval. ' They proposed
a very eKcient method of computer simulation to obtain
critical percolation probabilities, and presented a very ac-
curate value,

v, =0.592745 .

U, =0.595,

which agrees well with (1).
For a =2 and 3 we obtain by the same method

U,, =0.601, (3)

and

u, =0.621, (4)

respectively. However, for a =4 no insulator-to-metal
transition or global percolation cluster takes place even at
the saturation coverage, where the coverage fraction is

Our computer simulation method is very simple, and
we take as U, the volume fraction when the largest per-
colation cluster formed on a substrate with 200&200 unit
cells begins to reach one side of the substrate from the op-
posite side in the course of packing metallic squares. To
examine the accuracy of our method, at first we apply the
method to the case of a=1, and obtain the average value
of 20 trials
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FIG. 1. An example of random sequential packing pattern of
a=3 at the saturation coverage, generated on a square cellular
structure with 200)&200 unit cells. The largest cluster, which
travels from one side to the opposite side, is represented by
black. Other clusters or islands are indicated by fine meshes.

TABLE I. Packing and critical volume (area) fraction.

Length of packed square a
Packing fraction P
Critical volume (area)
Fraction v,
Standard deviation of U,

1 2
1.000 0.749

3
0.681

0.595
0.012

0.601 0.621
0.007 0.006

4
0.646

a =3 (5)

In Table I we list the packing fraction" and the critical
volume fraction U, against the length a of the filled

squares. The values of U, are the averages of 20 samples.
As shown in Table I, the packing fraction (0.646) for

a=4 is greater than II, (0.595, 0.601) for a= 1 and 2.
Therefore, the insulator-to-metal transition occurs on a
packing pattern for a =4 at the saturation coverage when
the packed squares with a=4 are divided into squares
with a =1 or 2, and rearranged.

III. FRACTAL PROPERTY OF RANDOM SEQUENTIAL
PACKING PATTERNS

nected and localize. We examine this behavior using 20
samples. Hence, when we express by a, the maximum
critical percolation length of the filled square, it is clear
that

0.646." We illustrate in Figs. 1 and 2 an example of pat-
tern at the saturation coverage for a = 3 and 4, respective-
ly. In Fig. 1 we represented by black the largest percola-
tion cluster and by fine meshes we represented other clus-
ters. We can see that the largest cluster does not localize
and travels from one side to the opposite side. In Fig. 2
we indicate by black the largest and second largest cluster,
and recognize that the two greatest clusters are not con-

The fractal dimension Df is defined in many forms. ' A
relation for Df of the two-dimensional problem is given by

D /2P=cA f

where P is the perimeter of fractal objects, c is the propor-
tional contact, and 3 is the area. Lovejoy" used (6) to es-
timate the fractal dimension of cloud and rain area boun-
daries, and their Df's are equal to 1.35. We applied (6) in
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FICs. 2. An example of random sequential packing pattern of
a=4 at the saturation coverage. The two largest clusters, which
are separate, are represented by black.

AREA, 4
(NULT tpLES OF THE AREA OF UNI T CELL)

FIG. 3. Scatter plot of the perimeter P vs area A for the clus-
ters of a = 1.
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FIG. 6. a= 5 and 6.

our previous paper" with respect to the continuum per-
colation problem. Here also we use (6).

We plot in Fig. 3 P against 3 of percolation clusters for
a=1. Each datum point in the figure corresponds to the
area and perimeter of a single cluster, and clusters touch-
ing the boundary have also been taken into account. The
numbers of unit cells of the substrates are indicated in Fig.
3 as 50&50, 100)&100, and 200X200. More than eight
randomly generated configurations have been used to ob-
tain Figs. 3 —8. As shown in Fig. 3, there are three stages
in the relation between P and A. We already expressed
these three stages in our previous paper, " but restate
them again here. In the first stage where the percolation

5
10

and

D~ ——1.94,

P =1 97M' (8)

The fractal dimension (1.94) agrees well with values (1.9)
previously published. '

In the third stage where the metallic volume fraction is

clusters are small and localized, the data points greatly
scatter, and we cannot determine a definite Df for the
data. In the second stage, the metallic area fraction is
close to the critical fraction U, and large clusters occur. In
this stage we derive Df and relation (8) graphically as fol-
lows:
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36 PERCOLATIONAL AND FRACTAL PROPERTY OF RANDOM. . . 2387

10

LaJ

0
I

~ CK

~ LLI

X ~r
CC ~
0
W ~

LLI

0
I

X:

e a ~]Q
x a ~?0

10

&0

FIG. 8. a= 15 and 20.

10 10
AREA, A

fNULT IPLES OF THE AREA OF UNIT CELL)

1.0

0.5 1.0

beyond U„the perimeter of the largest cluster rapidly de-
creases with an increase of the area, Df also decreases,
and at last it becomes unity when the surfaces of the sub-
strates are covered overall by metal films. These three
stages appear independently of the numbers of unit cells
in the substrates, though the sizes of the greatest clusters
depend on the cell numbers.

In Fig. 4 we plot the same result of a=2. As indicated
in Fig. 4, Df in the second stage is the same as a = 1, but
the proportional constant c decreases from 1.97 to 1.41,
and the third stage, where the perimeters become small
with an increase of the area, little appears.

In Fig. 5 we present the same results of a=3 and 4.
As shown in Fig. 5, the third stage which appears in a = 1

and 2 perfectly disappears. Although the percolational
behaviors of a = 3 and 4 are quite different, the difference
among the plotted data are unexpectedly small, and the
fractal dimensions (1.94) of the large percolation clusters
are equal. A small discrepancy appears only in the
change of c, and c decreases from 1 to 0.79.

We plot in Figs. 6 and 7 the same data for a = 5,6 and
a = 8, 10, respectively. The fractal dimensions of large
clusters are equal to 1.94, although c decreases. When
the length of the filled squares becomes increasingly large
and equal to 15 or 20, even the second stage where large
percolation clusters grow, vanishes, as shown in Fig. 8.
The data points fluctuate and Df has no definite values.

In Fig. 9 we plot the proportional constant c against
1/a. As shown in Fig. 9 the relation between c and 1/a is

FIG. 9. Relation between c and 1/a.

IV. CONCLUSIONS

In this paper we shaped by computer simulation two-
dimensional packing patterns, filling orientated metallic
squares with integer length a at random one by one
without any overlap, permitting contacts, on the cells of
insulator substrates divided into square unit cells. We in-
vestigated the percolational and fractal property of the
packing textures. The results show the following.

The critical volume or area fractions against a are listed
in Table I. When a is more than three, no insulator-to-
transition occurs in the packing textures even at their sat-
uration coverages. The large percolation clusters have
fractal properties, they do not lose the properties until a
becomes considerably greater than three, and the fractal
dimensions Bf are equal to 1.94, which agrees well with
values previously published. As a increases, only the pro-
portional constant c of Eq. (6) with the same Df de-
creases, and c is 1.0 and 0.79 for a = 3 and 4, respectively.
In this case it is reflected not on Df but on the small
difference of c whether the insulator-to-metal transition
takes place or not. Equation (10) expresses the relation
between the perimeter P and area 3 of large percolation
clusters for a & 2.

c=3/a for a &2 . (9)
ACKNOWLEDGMENTS

P= —2' for a+2 .3
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Therefore, the relation of P and 2 for the large percola-
tion clusters is empirically presented by
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