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We present calculations of the dc electrical resistivity of a variety of plasmas using rigorous gen-
eralizations of the Ziman formula which extend from the usual weak-isolated-scatterer limit to the
hitherto inaccessible regime of strong multiple scatterers. All the ingredients necessary for the calcu-
lation are computed from first principles in a self-consistent manner, using a density-functional
description of the electrons and ions in the plasma. As is usual in density-functional calculations,
electron exchange correlation is handled in the local-density approximation. The method uses an
average-ion distribution of the plasma environment, together with the assumption of spherical sym-
metry. The numerical procedures for the regime of strong multiple scatterers turn out to be no more

difficult than for the weak-isolated-scatterer limit.

I. INTRODUCTION

The objective of this paper is to demonstrate how re-
sults from density-functional-theory (DFT) calculations
could be used to calculate linear transport properties of
strongly coupled plasmas of arbitrary degeneracy and
density without making many of the restrictive assump-
tions found in existing calculations. We shall use the cal-
culation of the electrical resistivity to illustrate the im-
plementation of the method, merely noting that other re-
lated transport coefficients (e.g., thermal conductivity,
thermal power, diffusion coefficients) can be handled by
similar methods.

The linear transport coefficients, e.g., the electrical con-
ductivity o, can be expressed in terms of Kubo-type for-
mulas!? which, although formally elegant, lead to poor
results unless extreme care is taken in handling the in-
tegral equations for the vertex functions which are sub-
merged in the correlation functions.®> On the other hand,
methods based on the Boltzmann equation easily lead to
good results and proceed via the inverse transport
coefficients, e.g., the resistivity R =1/0. The Boltzmann
equation naturally embodies a number of conservation
principles* which may not be present in some other ap-
proximate kinetic equations or approximations based on
Kubo-type theories. A very successful variational solu-
tion to the Boltzmann equation is the Ziman formula® for
the electrical conductivity. The Ziman formula and its
generalizations which go beyond the simple Boltzmann
equation can be derived using Green’s-function methods.
Such generalized Ziman formulas for the inverse transport
coefficients have been derived by several authors®~° using
the formalism of multiple-scattering theory. We shall use
such generalizations of the Ziman formula and depend
upon density-functional theory'®~'* to calculate the vari-
ous quantities (e.g., structure factors, scattering cross sec-
tions) needed to evaluate them for various plasmas situa-
tions.

The main contribution to R is R,;, i.e., the resistivity
due to the scattering of electrons by the ions (usually hav-
ing some bound electrons) which have an effective charge
Z. On this basis a plasma may be classified into three re-
gimes: (i) weak-isolated-scatterer limit (WIS), i.e., the
“single-site” model where the ions are well separated and
the electron-ion interaction V,; is weak, or formally weak
in that a pseudopotential is available; (ii) strong but isolat-
ed scatterers (SIS), i.e, V, is strong so that linear
response methods, Born approximation, etc., are inapplic-
able but scattering from several ionic centers is unimpor-
tant; and (iii) strong multiple scattering (SMS) occurs, i.e.,
V. is strong and the scattering centers are too close to-
gether to use the isolated-scatterer model. These three re-
gimes, WIS, SIS, and SMS, present increasingly difficult
theoretical problems. Nevertheless, it will be shown that
DFT can be used in all three regimes with no significant
increase in computational tractability. In this paper we
shall only treat R,;.

A density-functional calculation for a plasma requires
the plasma temperature 7, the material density g, and the
bare nuclear charge Z as inputs. The DFT calculation
solves two coupled equations self-consistently. One of
these is the Kohn-Sham (KS) equation which is an
effective one-particle Schrodinger equation for the electron
density distribution s (r) in the external potential of the
scattering center and the associated ion distribution. The
other self-consistent equation has the form of a screened
hypernetted-chain (HNC) equation and yields the ion dis-
tribution p(7) in the field of the central ion and the associ-
ated electron distribution n(r) obtained from the KS
equation. The latter also provides the atomic structure of
the “average atom” in the plasma, i.e., the bound states,
scattering phase shifts §,(¢), and the effective ionic charge
Z. The phase shifts can be used to construct the T ma-
trix. The screened HNC equation provides the ion-
density profile p(r)=pg (r) where g () is the ion-ion radial
distribution function. Hence the ion-ion structure factor
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for the plasma is also known. Thus all the ingredients
necessary for the evaluation of Ziman-type formulas are
available with no essential approximations except for the
use of (i) local-density approximation (LDA) for the ex-
change and correlation potential'> ¥,. in the KS equation,
(i) the HNC approximation for the treatment of ion-ion
correlations, and (iii) average-atom description of the
scattering centers in the plasma. This last feature neglects
the effects of electron- and ion-configuration fluctuations;
for instance, the mean ionic charge Z may be an average
over many values of the effective charge Z, of a given
short-lived configuration ¢. Fluctuation effects are partic-
ularly important in dilute plasmas in the WIS and SIS re-
gimes. Most of the existing calculations treat these two
regimes and do not consider fluctuation effects. There is
some reason to believe that fluctuation effects cancel out
(to lowest order), and we will examine this subsequently.

The available experimental data for the resistivity are of
modest accuracy in the plasma phase but are more accu-
rate for solid-state materials. Practical plasma codes re-
quire values of transport coefficients of modest accuracy
but over a wide region of the phase diagram of a material.
For instance, Lee and More'* present a model for the
efficient calculation of all the transport coefficients (in-
cluding those in a magnetic field) for a wide range of
physical situations. Rinker!® has presented a single-site
calculation which is quite close to ours in approach but he
uses many simplifications to achieve a relatively rapid
computational procedure. The objective of the present
calculations is to treat a few cases carefully and con-
sistently. The results are useful as bench marks for the
present method, and in the construction of more approxi-
mate models, or in incorporating DFT models where the
more traditional methods fail. In Sec. II we discuss the
Ziman formula and its generalizations, and touch upon
some existing calculations of the resistivity. In Sec. III
we present the results obtained from the present calcula-
tions where density-functional theory is used to model the
plasma. The discussion and conclusions are relegated to
Sec. IV. Some calculational details are given in the Ap-
pendix.

II. THE ZIMAN FORMULA

In this section we shall review the Ziman formula and
discuss how it has been used in existing calculations be-
fore we proceed to consider the DFT model.

A. Regime of isolated scatterers

The most familiar form of the Ziman formula applies to
plasmas and liquid metals in the WIS and SIS regimes—
i.e., weak and strong but isolated scatterers. The resistivi-
ty R is given by

-

3nZ %e 2,5
where ¢2=2k%*(1—cosf). Here q is the momentum
transferred from the incident electron with energy e=k?.
The derivative of the Fermi distribution for the electrons

at a mean density 7=2Zp is denoted by f’(¢). The mean
ion density is p. The ion distribution is specified by the

[defie) [Fdqq’S@olg, @D
0 0

structure factor S(g). The differential scattering cross
section o(g) depends on the incident-electron momentum
k and the transferred momentum q. For strong scatterers
o(q) has to be obtained from the phase shifts of V. In
the weak-isolated-scatterer limit the Born approximation
may be used to obtain o(g). Then

a(q)= | V,(q)/4melq) | *, 2.2

where V,(g) is the weak electron-ion interaction or a
pseudopotential'® which is weak by construction. e(q) is
the exact interacting uniform electron-gas dielectric func-
tion at a density 77 and temperature 7. Generally speak-
ing, both V,;(g) and e(q) are not readily available except
in certain limiting cases.

The ion-ion structure factor S(gq) is determined by the
ion density p, temperature 7, and the ion-ion pair interac-
tion V;(g). Once V,(q) and e(q) are chosen for a fluid in
the WIS regime, then to second order in perturbation
theory we have (e =#=1)

Vil@=Z*V,+ | Vil |’X (q) , 2.3)
where
1 1
X(g)=— |——1], 2.4
9) V, | €q) , )
V,=4m/q* . (2.5)

Hence S(q) should be determined using the ion-ion pair
potential of Eq. (2.3) for a consistent application of the Zi-
man formula.

In practical applications of the Ziman formula, various
approximations have been made. The early form of the
Ziman equation contained the form (2.2) for o(g) and the
applications were to simple liquid metals'” using a variety
of pseudopotentials and dielectric functions. However,
S (g) was not obtained from the assumed V,(q) and e(q).
Ashcroft and Leckner'” used a hard-sphere model for
liquid metals near the melting point. In plasma applica-
tions Minoo, Deutsch, and Hensen,'® and other authors
used the S(g) from machine simulation results for the one
component plasma (OCP). In the calculations for plas-
mas the electron-ion interaction V,; was taken to be the
bare Coulomb potential (rather than a pseudopotential)
and linear screening using the Thomas-Fermi form was
used for e(q). Such assumptions restrict the validity of
the theory to weakly charged ions in a dense electron gas.
In the more recent work of Ichimaru and collabora-
tors,!”?° the Born approximation is still used with a
linearly screened bare Coulomb potential. But the S(gq)
used is consistent with the V,; since it is calculated from
the corresponding V; and the HNC equation.

The scattering cross section for an isolated nucleus of
charge Z immersed in an electron gas can be calculated
using a suitable Schrodinger code which builds up the
internal structure of the ion and gives it an effective
charge Z. Such a calculation would in fact be a density-
functional calculation for an ion in jellium of the ap-
propriate electron density and temperature. This DFT
calculation can be approximated by various models of in-
creasing simplicity (e.g., Thomas-Fermi models). This
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leads to various average-atom models giving the electron
potential around the scatterer. Rozsnyai’! and Rogers?
construct analytic forms of V,(r) from the potentials ob-
tained from their quantum calculations. Rogers et al.?
computed quantum mechanical phase shifts §,(g) from the
analytic potentials and used them in the Williams-DeWitt
kinetic equations. In the work of Rinker'> model poten-
tials for ¥V, are consiructed by interpolating between
low-density  self-consistent atomic calculations and
Thomas-Fermi-type calculations more suitable for high
temperatures and high densities. (The LDA is implicit in
the atomic models of all these calculations.) These model
potentials are then used to calculate phase shifts by solv-
ing the Schrodinger equation. The structure factor S(q)
is not obtained from the electron-ion interactions as in Eq.
(2.3) but form an heuristic model. Rinker’s calculations
are motivated by the need to calculate the resistivity with
moderate accuracy for a wide regime of plasma condi-
tions.

In the DFT calculations presented here the isolated
(i.e., single-site) scatterer is represented by an ion im-
mersed in jellium of infinite extent. (Note that this is
slightly different to Liberman’s** model which uses a jelli-
um background containing a cavity.) The total plasma is
made up of the individual ions and their overlapping
charge clouds, as in standard pseudopotential theories?® of
simple metals. The DFT calculation!! using the Kohn-
Sham equation solves for continuum electron states ¢y, (r)
having the asymptotic behavior

du(r)—sinfkr —17/248,(k)]/kr asr—ow . (2.6)

Hence the phase shifts §,(k) are a necessary result of
the calculation. Further, at self-consistency the phase
shifts satisfy the finite-temperature version of the Friedel
sum rule, thus guaranteeing the correct construction of
the continuum electron density of states as modified by
the scattering potential. Note that any model which treats
the continuum by a Thomas-Fermi approximation will (a)
not give the correct continuum density of states, and (b)
not correctly incorporate the effects of electron-electron
interactions in the electron-ion phase shifts. Thus such a
model will not be reliable for the evaluation of the scatter-
ing cross section.

The scattering cross section is given in terms of the
phase shifts by?°

2i8,(k)
e

1
= , = | — 1 —1
o(q.0)=tile)= 5 3 (2 +1) )

li

X Pi(cosOyr) | (2.7)

where, for elastic scattering k>=(k’)?=e¢. The corre-
sponding & functions in the ¢ matrix have been left out for
brevity. The scattering angle is ¢ and the momentum
transferred, q=k’—Xk, is given by

q*=2k*1—cos0) . (2.8)

Hence the density-functional calculation avoids the
need to construct an explicit pseudopotential V,;(g) and
does not require an explicit form for the dielectric func-

tion e(q). Instead o(q) is directly obtained from the
density-functional ion-in-jellium calculation. To obtain
S(g) we now solve not just the Kohn-Sham equation but
also the screened HNC equation for the ions to determine
the ion profile p(r)=pg (r). Hence g(r) and S (k) are also
known, leading to a self-contained and consistent deter-
mination of the quantities needed to evaluate the r-matrix
version of the Ziman formula, viz., Eq. (2.1).

The form (2.1) of the Ziman equation containing o(g)
instead of (2.2) follows from the work of Edwards.® It
was introduced by Evens et al.” as a method of calculat-
ing the electrical conductivity of liquid transition metals.
Its actual practical applicability to liquid transition metals
is still controversial®’ since the scatterers in, say, liquid Fe
may not be well treated by a model of independent
scattering centers due to the nature of d-electron interac-
tions. This leads us to the question of multiple-scattering
effects.

B. The regime of strong multiple scatterers

In this regime the ion-ion interactions are such that the
system cannot be treated as a sum of independent scatter-
ing centers, be they weak scatterers or strong scatterers.
Thus the electron is scattered from a given quasistatic ion
distribution consisting of many centers. Following the
work of Edwards,® and also Rousseau er al.,® the resis-
tivity corresponding to a definite configuration ¢ of ions
can be written as

# © =, k c
5 [Tdef e [Fdaq Tivte)

R =
° 3meln

(2.9)
where, as before, we have left out the 6 functions for brev-
ity, it being understood that k?=(k')’=¢ and
g% =2k*(1—cosOyy).

The actual measured resistivity is obtained by averaging
over all ion configuration to give {R,) and this involves
the configuration-averaged total T matrix T} ;.(¢), viz.,

Ty e)=(T5y) . (2.10)
In the DFT calculation { T ;) is approximated by T} .,
<T£,k’(5)>—’Tk,k’(€) » (2.11)

where Tk’ «(€) is calculated from the average-ion distribu-
tion p(r). Thus the configuration-averaged T is replaced
by the T for an average configuration derived essentially
from a pair fluid description of the plasma. At present
(2.11) is one of the few approximations that is computa-
tionally practicable. The total T matrix of the average
distribution, viz., Tkyk:(s), is obtained from the phase
shifts A;(k) of the Kohn-Sham equation solved in the
external field of the scattering ion and its associated distri-
bution p(r) [recall that in the isolated scatterer case we
use the jellium model where p(r)=p]. The formula (2.9)
does not contain an ion-ion structure factor and the evalu-
ation of (2.9) is actually simpler than evaluating the usual
Ziman formula. The structure factor can be made explicit
in the isolated-scatterer limit when

Ty w(e)—pS(|k—k'[)i( | k—K'|). (2.12)
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Here #(|k—k’|) is the single-center scattering matrix of
Eq. (2.7). Thus, in the isolated-scatterer limit we expect
that the T matrix of the DFT calculation using the ion
profile p(r) will be simply related to the ¢ matrix of the jel-
lium calculation via Eq. (2.12). In the multiple-scattering
regime the individual scatterers interact with each other
and the electronic structure, i.e., the bound electron struc-
ture, Z, etc.—obtained from the DFT calculation with
the ion profile could be different from that obtained for
the ion immersed in jellium of the same mean electron
density and temperature.

Equation (2.9) contains a modified distribution function
f(e). In the individual-scatterer limit this was just the
Fermi function. In the multiple-scattering case the mean
free path I, of the electrons may become comparable to
the characteristic correlation lengths of the ion
configurations which scatter the electron. In our model
this would correspond to the ‘“‘correlation distance” d,
within which the ion distribution p(r) tends to the mean
density p. Since g(r) decays slowly for strongly coupled
plasmas, /, may become comparable to d.. Then f(g)
must be calculated from the one-electron Green function
via

+ oo ImG(w)
1+eh

j?(e)=—i

T —

do , (2.13)

= w—e—3Hw)

where 2} (w) is the self-energy of the electron arising from
the ion-electron scattering process which also produces
the resistivity. Hence =} (w) can be obtained from the T
matrix which is already known from the phase shifts.
Thus we have, from the Dyson equation,

G=G’+G’2"(0)G

=G°+G°T(0)G°,
with
G'=(w—e+4i0")" .
Hence we approximate =} (@) by

Sfw)= [ %T“""(”W”—E)'
This procedure leads to a consistent inclusion of mean-
free-path effects in the resistivity calculations in the
multiple-scattering regime where k is not a good quantum
number over the distance d, defining the ion correlations
in the fluid.®

The inclusion of self-energy corrections also raises the
question as to whether the following many-body correc-
tions are important.

(2.14)

(i) The electron mass renormalization, viz.,

m OReZf(w)

s—7 gRe W)
m/mi=Zi |1+ ok ’

where Z, is the quasiparticle renormalization factor;

(i) renormalization of the 7 matrices to the form
Zk Tk,k'(E)Zk'; and

(iii) the inclusion of the true k,e dispersion form given
by the solution of w —e— 2 (w)=0.

These questions have been discussed carefully by Itoh and
Watabe?® in the context of the electrical resistivity of
liquid metals. Since T ,(€) is available from the DFT
calculation, it is indeed quite practicable to obtain =} (w)
and hence Z,,m, and also the dispersion (k) for a real-
istic plasma. In fact such a dispersion was studied by us
in Ref. 12. In the present calculation we have neglected
all these many-body effects and the mean-free-path effect
arising from ImZ;(w). The relative importance of these
effects in plasmas and liquid metals will be treated in de-
tail in a future paper.

C. Fluctuation effects

The discussion of Sec. II B touched upon the question
of taking the configuration average over the matrix
T «(e) for a given ionic configuration ¢, having a definite
electronic configuration. We noted that in the dilute plas-
ma limit (isolated scatterers) we can ignore the effects of
the ionic distribution and assume that the individual ion
ti 1(e) could be used, together with the structure factor
S(k,k'), as in the standard Ziman formula. However,
fluctuation effects are even more important in the dilute
plasma limit as a statistical consequence of the small
number density of electrons and ions in such plasmas.
The isolated-ion ¢ matrix needed in the Ziman formula is

tk,k'(8)2<tlf,k'(€)> N (2.15)

where the average is over the many possible electronic
configurations of a single ion (i.e., an isolated ion in jelli-
um). The average over ¢ is replaced in our calculations
by a ¢ matrix for the average configuration given by the
DFT calculation for the isolated ion in jellium. Thus

tk,k'(s)_‘)t—k,k'(s) . (2.16)

It is this approximate 7 that is used in calculating the
resistivity. The DFT atom (or any average-atom model)
contains mean electronic occupation numbers given by the
Fermi factor f(g,,,) at the energy of the bound state
€,m- The true, fluctuating configurations have occupation
numbers O or 1 with statistical weights such that the aver-
age reduces to f(g,;,). Associated with each electronic
configuration there is also an effective ionic charge Z,
such that

Z=(Z.) . 2.17)

Perrot® has recently given a configurational analysis of

probable atomic configurations in a plasma using DFT
concepts. He discusses the spectrum of Z, and evaluates
the statistical weights of each configuration. His method
can be extended to the calculation of # ;-(¢) and the eval-
uation of f; ,.(g), of Eq. (2.15), thus avoiding the approxi-
mation of (2.16). However, a simpler method of approxi-
mately correcting for configuration fluctuation effects is to
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note that the most important correction probably occurs
in the use of Z rather than Z. since this occurs as Z2 in
the scattering cross section. That is, we need to use (Z2)
rather than (Z,)2. This can be estimated via the
compressibility of the plasma as follows.

The fluctuations in Z, are intimately related to the fluc-
tuations in the electron- and ion-particle densities in the
plasma. We assume that ion fluctuation effects are too
slow to follow the electron-density fluctuations which
determine the electronic configurations and electron-
scattering processes. Hence we consider only the fluctua-
tions in the electron subsystem. We have

kT, ={n)~1({n?)—(n)?, (2.18)

where n is an operator for the number of electrons and «,
is the electron-gas compressibility at a density 7 and tem-
perature 7. We write

n :Zcﬁ ’

where p is used instead of the operator p since ion-density
fluctuations are considered negligible during the time
scales relevant to electron scattering. Then, from (2.18),
assuming that the electron correlation volume is essential-
ly equal to an atomic volume, we get

(Z2)=(Z )1 4+pkpTk,) . (2.19)

Taking (Z,) =Z we see that fluctuation effects can be ap-
proximately incorporated into the Ziman formula if (Z?)
is calculated using (2.19) instead of it being approximated
by Z2 The finite-temperature interacting electron as
compressibility «, can be obtained from the electron-gas
response function via the static structure factor since

Zpkp Tk, =S, (0) . (2.20)

The g—0 limit of the local field to be used in evaluating
S, (0) would be 9dV,.(n,T)/dn where V,. is the
exchange-correlation potential'> used in the density-
functional calculation.
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The above analysis suggests that #; ;.(¢) evaluated from
an average atom should be corrected by the factor
[14S,.(0)/Z]. However, the constant in front of the in-
tegral in the Ziman formula also contains a 1/7 2 factor,
or equivalently, 1/Z ? factor. It is not immediately clear
that this 1/Z? should be treated in the same way as
1/{n?) and included in the averaging. If this is so, the
total effect of electron-density fluctuations would cancel
out, to this order of analysis. Hence we provisionally
conclude that the use of an average-atom model may be
quite reasonable in the context of the Ziman formula for
the static resistivity.

Another aspect of the evaluation of the electrical resis-
tivity is related to the question of evaluating the mean free
path (/) or 1/{/™'). Even if configuration fluctuation
effects are negligible in the sense that the electronic
configuration and Z are fixed, the difference in the two es-
timates of the mean free path arises from the width of the
free-electron Fermi distribution and appears as corrections
to the lowest-order variational solutions to the Boltzmann
equation. In the classical limit, this amounts to the use of
a convergent expansion in Sonine polynomials and the
effect of higher-order terms have been sometimes approxi-
mated by including a factor of the form 8+13V'2Z)/
(844V2Z) in the conductivity. At intermediate degen-
eracies the effect of this contribution is expected to de-
crease and give a factor of unity at full degeneracy if the
fluctuations in Z are neglected. However, a more detailed
analysis is needed at intermediate degeneracies since the
ratio of the first-order and second-order polynomial ap-
proximations is not expected to depend simply on Z
alone. hence, in presenting the results of our calculations,
the Sonine polynomial corrections will not be included.

In the SIS and SMS models used in this paper we have
assumed an averaged spherical ion distribution. Fluctua-
tions of the ion distribution will also clearly affect the
electrical conductivity. One way to include their effects
would be to make use of static ion microfields. Thus we
take the SIS model and calculate the scattering with a
given ion microfield E imposed on the scatterer. The re-

TABLE 1. Resistivities of H plasmas calculated in the strong-isolated-scatterer (SIS) model and the
strong-multiple-scatterer (SMS) models. The last seven rows correspond to the H plasmas previously
studied by DFT in Ref. 12. The coupling parameter I is given for reference only and is not used in cal-
culations. T'=2Z%/(r;kyT) where r; was taken to be r, in all cases. The comparisons are free of the

Sonine polynomial corrections.

X 10~° Qcm Other
7 T/Tk Tx10"° K r Zgs Rgs Rgus Zsus calculations

0.333 0.191 1.00 0.95 1.0 0.109 0.091 1.0 0.099*
0.500 0.430 1.00 0.63 1.0 0.315 0.293 1.0 0.282?%
0.750 0.967 1.00 0.42 1.0 0.809 0.733 1.0 0.683*
1.00 0.271 0.158 2.00 1.0 2.034 2.332 1.0 1.56%
1.00 0.108 0.063 5.00 1.0 1.822 2.170 1.0 N.A.®
1.00 0.054 0.032 10.0 1.0 1.619 1.967 1.0 N.A.P
2.00 4.00 0.581 0.213 0.88 4.261 4.570 0.89 (2.67%)
2.00 2.00 0.291 0.314 0.74 8.578 9.029 0.78 N.A.
2.00 1.00 0.145 0.563 0.65 13.25 15.32 0.79 N.A.
3.00 4.00 0.258 0.267 0.80 13.07 13.84 0.82 N.A.

#Ichimaru and Tanaka (Ref. 20).
®Not available.
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TABLE II. Details of the H atomic structure for the partially
ionized hydrogen plasmas treated in Table II. (See Ref. 12.)
The value of Z given is consistent with the SMS model. r; is the
electron-sphere radius, Eq. (3.3). Thus r;=3 corresponds to
7 =5.96x10?? electrons/cm’ and T /Tr =4 corresponds to 66.8

eV.

¥s T/TF kg T (a.u.) €1s (a.u.) Zf]: Z
2 4 3.68 —0.121 0.188 0.89
2 2 1.84 —0.057 0.237 0.78
2 1 0.92 —0.012 1.00 0.79
3 4 2.45 —0.183 0.217 0.82

sulting cross section is now used to calculate the resistivi-
ty for each microfield and the actual resistivity can be ob-
tained by averaging over the ion-microfield probability
function P(E). In the present study we have not evalu-
ated these effects.

III. RESULTS

In this section we present the results obtained from nu-
merical calculations based on the preceding theory. Two
types of calculations are presented.

(i) Strong-isolated- (i.e., independent) scatterer (SIS)
model,

f de f'e fOdeqq3S(q)t_(q). 3.1

e %

(i1) Strong-multlple-scatter (SMS) model,
2% 1=
R = 377_2—2 22222 f de f'(e fo dqq°T(q) . (3.2)

In (3.1) 7#(q) is the isolated average-atom scattering
cross section [see Egs. (2.7), (2.15), and (2.16)] calculated
with a single ion immersed in a uniform electron gas of
density 7 and temperature T and a compensating uniform
positive background. In Eq. (3.2) T(q) is calculated with
the scattering center immersed in an electron gas of mean
density 7 and an ion distribution p(r) which tends to g for
large r. In (3.2) no electron self-energy corrections (e.g.,
m—-m?*, Z,#1, corrections to f(g) due to lifetime
effects, etc., discussed in the Sec. II) were included in the
numerical work. Fully and partially ionized plasmas at
several densities and temperatures, as well as an iron plas-
ma and a xenon plasma, have been studied. The exam-
ples chosen overlap some existing calculations but also
treat regimes for which no other calculations are available.

Hydrogen plasma. In Table I we present results for ten

5 ———e —

/—\

r=1.0

3 V(M /v, (0

2 / |
N4 |
— v mN o

r=2.0 ——

FIG. 1. The exchange potential ¥Vx(7T) and the correlation po-
tential Vc(T) as a function of T for electrons at a density where
rs=1. Vx(0) and V.(0) are the zero temperature values and Tr
is the Fermi temperature. The arrow marked I'=2.0 is at
T/Tr=0.271 and corresponds to the conditions of the MD
simulation of Ref. 31.

different hydrogen plasmas of varying degeneracy, densi-
ty, and coupling strength. Four of the plasmas carry
shallow 1s bound states and hence have Z < 1. The plas-
ma can be characterized by the electron-sphere radius r
(e =fi=m,=1),

ri=3/(4nm) , (3.3)

and the coupling parameter
r=Z/(rkgT) ,

where r; is the ion-sphere radius. Since I' is used merely
to give a measure of the coupling strength of the plasma,
and not for use in calculation, r; is replaced by r, for
these H plasmas. We also define

T=T/Ty, Tr=Ep/kg, (3.4)

where Ep is the Fermi energy, given in hartree atomic
units by 1.8416r;" 2. The electrons are fully degenerate
when T—0 and essentially classical for 7> 5. The three
plasmas with r; <1 given in Table I correspond to cases
studied by Minoo, Deutsch, and Hansen assuming full
electron degeneracy and Thomas-Fermi screening.
Ichimaru and Tanaka®® have used a more appropriate
dielectric function inclusive of degeneracy effects and
given a parametrization of the Coulomb logarithm. We
have used the latter to obtain the results attributed to Ref.
20 in Table I. The remaining plasmas were studied by us
in Refs. 11 and 12 using DFT but the resistivities of these

TABLE III. Resistivities of two plasmas where the ions have significant internal structure (see Table

V).
SIS SMS N Other
T 4 R (Qcm) VA R (Qcm) 4 R
Xe 2.12 eV 0.70 0.315%x 1072 0.75 not calculated 1.0 0.271x 102
Fe 5 keV 22.87 0.956< 10~° 24.85 1.441x10°¢ 22.99° 0.827x 10~°

#Ichimaru and Tanaka, Ref. 20; their Sonine polynomial factor 1.97 has been removed.

YRinker, Ref. 15.
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plasmas were not calculated at that stage. The case r;=1,
I'=2 has been studied®' using molecular-dynamics (MD)
simulation and also with classical integral equation
methods. Four of the plasmas given in Table I carry
significant but shallow bound states, as reflected in the
value of Z. These weak bound states have extensions
which overlap the nearest-neighbor ions and hence the
isolated-scatterer model is not appropriate. The atomic
structures of the average atoms in these plasmas are given
in Table II. Although the energy levels are very shallow,
€1, /kpT being 1% to 7%, their effect on Z, etc., is not
negligible and is discussed in detail in Ref. 12. The ques-
tion at issue is: Do we ignore these shallow levels and
treat these plasmas as fully ionized (Z=1) as far as the
conductivity is concerned? No clear-cut answer can be
given at this stage since, as already noted, the resistivity is
determined by an average over the scattering from many
atomic configurations, but the approximation (2.16) uses
the scattering from an average configuration. In the cal-
culations reported in Table I, the value of Z consistent
with the model has been included.

The values obtained in the SIS and SMS models for a
hydrogen plasma at r,=1, I'=2 turn out to be
significantly larger than the MD (Ref. 31) result:
1.11xX107° Qcm. This case corresponds to a tempera-
ture T/Tr=0.271 and hence the electrons are probably
poorly approximated by the classical model implicit in the
MD calculation. As shown in Fig. 1, the exchange poten-
tial V, as well as the correlation potential V', for the elec-
trons clearly indicate that at T /Ty=0.271 electron
screening would be closer to that of a degenerate system
than to a classical system. the Ichimaru-Tanaka (IT)
(Ref. 20) calculation is more appropriate to the plasma
conditions. However, IT uses linear response theory and
this is probably one of the main reasons for the difference
between our results and theirs. Even though they suggest
that their parametrization is appropriate for r <2,
T/Tg>0.1, their approach is not a priori applicable to
systems with bound states. Thus the case r,=2,
T/Tp=4, and I'=0.213 gives R =2.67x10° Qcm
with Z =0.88. This low estimate is due to the linear
response approximation and the lack of inclusion of
bound-state effects.

In Table IIT we give the results for two plasmas having
relatively large bound electronic structures. The presence
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FIG. 2. Structure factors of the Xe plasma (7 =2.12 eV,
Rws=7 a.u.) and Fe plasma (T =5 keV, Rys=0.45 a.u.) calcu-
lated using DFT and used in evaluating the electrical resistivity.

of the inner shells makes the electron-ion interaction rela-
tively weak and hence methods valid in the WIS or SIS
regime should be adequate provided the electronic struc-
ture of the ion does not change when going from a jellium
model (SIS) to a full plasma model (SMS). This is essen-
tially the case for the Xe plasma which is a relatively di-
lute system at 7'=2.12 eV and with a Wigner-Seitz ra-
dius Rws~7 au. In the case of the Fe plasma,
Rys~0.45 au., T=5 keV, and the isolated-scatterer
model is not valid. The notoriously difficult d-electron
problem of low-temperature plasmas (viz., liquid metals®’)
surfaces here to some extent and further pushes the prob-
lem to the SMS regime. The structure factors for the Fe
and Xe plasmas calculated from the DFT equations are
given in Fig. 2. The change in the electronic structure
when going from a SIS model to a SMS model for Fe is
seen from Table IV. This is consequently reflected in the
different values of Z obtained from the two models.

IV. CONCLUSION

We have presented calculations of the dc electrical
resistivity of a variety of plasmas using generalizations of
the Ziman formula to cover situations which extend from

TABLE 1IV. Energy level structure of an Fe ion in an iron plasma at a temperature of 5 keV and elec-
tron density of 60.9 electrons per atomic unit of volume. The plasma is modeled by (a) jellium, i.e., SIS
model with Z=22.87; (b) using the most probable ion distribution of Fig. 4, i.e., SMS model with

Z =24.85. Here the Wigner-Seitz radius is 0.424 a.u.

Energy (Ry) Occupation (Radius) (a.u.)
Level (a) (b) (a) (b) (a) (b)
s 556.998 478.33 0.484 0.430 0.0583 0.0583
2s 77.301 7.940 0.203 0.174 0.2495 0.3139
2p 72.656 0.428 0.200x 3 0.171x3 0.2188 0.3388
3s 9.214 0.174 0.6955
3p 7.070 0.174 %3 0.6801
3d 2911 0.172 x5 0.6358
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the weak-isolated-scatterer limit to the strong-multiple-
scatterer limit. The calculations do not use any model
potentials, model dielectric functions, or structure data,
but proceed via first-principles calculations based on
density-functional theory in the local-density approxima-
tion. The electronic structure of an average scatterer is
constructed using the Schrodinger equation. Unlike in
most of the other available methods for resistivity, our
calculations generate phase shifts which satisfy the finite-
temperature Friedel sum rule. The calculated phase shifts
and ion-ion structure factors are the essential ingredients
of the resistivity calculation. We also discuss the approxi-
mations in the method arising from the use of an average
atom in an average plasma model having spherical sym-
metry. Numerical results are given for ten different hy-
drogen plasmas, a Xe plasma, and an iron plasma to illus-
trate the method. The methods presented in this study
provide a self-contained and self-consistent approach to
the calculation of the electrical conductivity of plasmas of
arbitrary degeneracy, structure, and density, where all the
necessary ingredients are calculated in the LDA with the
nuclear charge, mean matter density, and temperature as
the input data.

APPENDIX: NUMERICAL METHODS

The evaluation of the resistivity requires the calculation
of integrals of the form:

2% 4
— 7 [P daas@ ot | (A1)
with
$(g, k)= (21 + 1)(e*™ —1)P;(cos) (A2)
I
depending on k and the momentum transfer
g =kV'2(1—cos0) . (A3)
Taking x =cos6 as a new integration variable, we get
Wik)= 3 (21 4+1)(2]'+1)sind; sind; cos(§; —&;)1I; ,
LI'=0
(A4)
Iy(k)= f‘ldx (1—x)S[kV2(1—x)]P,(x)P(x) .  (AS5)
|

9
=3 (21 +1)QI'+1) |sind, sind, cos(8;, —8,)—
LI'=0

2

WQI(Z)Qr(Z) Iy (k)

The functions I;(k) have been computed using a step
Ax =0.01 and interpolating the structure factor S(g) of
the DFT program by means of the four-point Lagrange
formula. This ‘“exact” calculation of the I;’s has been
performed for angular momenta /,/’<9. However, larger
values of / must be included in (A4) for high energies, i.e.,
large values of k. In order to save computing time, we in-
troduced a correction for large momenta in the following
way.

At high electron energies, it is appropriate to use the
classical scattering cross section for a screened potential:

2
A

—_ (A6)
q 2_+_ }\'2

UC[(q)=

with 4 =2mZe?/#* and A a screening constant to be
determined. In analogy with (A1), we can define a func-
tion @(k,q) such that

oulg)= 3 |8k |*. (A7)
One finds easily that
Bt~ g (A8
with
A2
z=1+ z—kz- .

Now, ¢(k,q) may be expanded in Legendre polynomials:

dlk,g)= r 2 (21 4+ 1)iQ,(z)P;(cosb) , (A9)

where Q, is an associated Legendre function.’> Now, for
the large angular momenta where this approximation is
relevant, the phase shift §;(k) is small and, consequently,

e (A10)

1~2i8, =i 0,(2)

k
(from the DFT results) for
=0 , 9, one fits the ratio 8q(k)/8g( to Qy(2)/Q53(2)
in order to determine z and then A’= 2k (z —1). Thus,
the “best” A is obtained as a function of k. The practical
formula to be used instead of (A4) is

Since §,(k) is known

_g°S(g)

(A11)
(g2 +22)?

2k2 fﬂ(

It has been checked that the fitted A(k) goes to the normal screening constant (linearized Thomas-Fermi screening con-
stant, reducing to the Debye constant when degeneracy effects are negligible) at very high energies.
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