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Random walks with intersections: Static and dynamic fractal properties
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Static and dynamic properties of the fractal sets generated by free and k-tolerant walks are ana-

lyzed in detail. A rather complete picture is obtained for the set of the intersections of free random
walks, using correlation functions like the probability of visiting one or more sites m times. Monte
Carlo enumerations, jointly with rather sophisticated numerical analysis, are used to determine the
fractal dimension of the set of the self-intersections of k-tolerant walks. The results are used to throw
new light on the Flory argument for polymer chains with excluded-volume effects; the universal be-

havior of k-tolerant walks is explained in a coarse-grained reinterpretation of the Flory approxima-
tion. Diffusion on the same class of walks allows us to discuss also their universality with respect to
dynamical properties. In particular, a spectral dimension equal to —, is obtained for the free random

walk in d =-2 dimensions.

I. INTRODUCTION

In spite of their relevance for many problems of poly-
mer physics and lattice statistics, intersection properties of
random fractals did receive relatively little attention up to
now in the physical literature.

These properties are obviously connected with many
important issues, like the upper critical dimension of
geometric or magnetic problems, or the well-known Flory
approximation of polymer statistics. ' The upper critical
dimension of a model is known to depend crucially on the
properties of mutual intersections of two replicas of the
fractal under consideration. In the Flory approach, on
the other hand, one tries to estimate the repulsive energy
due to excluded-volume effects in a polymer (e.g. , linear,
or branched, etc. ) as being proportional to the number of
self-intersections of a free, unconstrained realization of the
chain.

This paper presents a systematic investigation of mutual
and self-intersection properties of random fractals on a
lattice. The purpose of this investigation is first of all to
clarify and base on a firm ground the fundamental laws
governing the fractal geometry of intersections of fractals.
To this purpose we present an extended set of analytical
and numerical results concerning, respectively, free ran-
dom walks and k-tolerant walks on the lattice. The dis-
cussion of free random walks is mostly based on well-
established results; what is to some extent original is the
way in which these results are used to highlight basic facts
about fractal properties of intersections, which were
somehow disregarded or misinterpreted by previous au-
thors.

This part of the work also contains a calculation of
multiple-point correlation functions for the free random
walk (see also the Appendix), which, to our knowledge,
was never produced before.

The k-tolerant walks are taken as examples of nontrivi-
al fractals allowing for self-intersections. For these walks,
our analysis has been based on numerical methods; in
particular, to test the fractal properties of self-
intersections, we had to analyze Monte Carlo enumera-
tion results with rather sophisticated extrapolation tech-
niques, e.g. , based on Pade approximants.

The main result of this first (static) part of this paper is
the nontrivial reinterpretation of the Flory approximation
for polymer statistics, given in Sec. V. Apart from show-
ing the deep connection existing between Flory's result
and a correct application of the fractal geometry of inter-
sections, this development has the very important merit of
clarifying for the first time the scaling-invariance proper-
ties behind the construction of the Flory free energy, and
the degree of universality which can be expected from the
predictions of the approach. As an example, we give for
the first time a correct Flory prediction for k-tolerant
walks, thus succeeding where previous attempts, based on
standard derivations, failed.

If the role of fractal-intersection properties of random
sets in static problems, like k-tolerant walks, can to some
extent be understood (and this paper hopefully brings a
substantial contribution to such understanding), the effect
of these properties on the dynamical problems on fractal
structures is much less clear. This is a subject of consid-
erable present interest, in connection with many impor-
tant physical issues, ranging from transport in disordered
structures, to low-frequency vibrational spectra of
biomolecules. '

A question which can, e.g. , be raised in this context, is
whether, when considering a k-tolerant walk, this model
should possess the same spectral dimension as a simple
nonintersecting self-avoiding walk (SAW). This dimen-
sion d, which is related to the properties of diffusion on
the structure, or to the density of vibrational modes, is
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II. SCALING OF MUTUAL INTERSECTIONS
AND SELF-INTERSECTIONS OF RANDOM WALKS

In this section we consider an arbitrary class of random
walks of unit steps on a regular d-dimensional lattice.
This means that the class of walks may correspond to
some prescription for an excluded-volume effect, or it may
be the class of free random walks. We associate a fugacity
K to each step. The two-point Green function is defined in
the standard way as

G(x, y)=
W

aw= Ix, yI

(2.1)

where
~

W
~

is the number of steps in the walk W and
38' is its boundary; x and y are arbitrary lattice sites. If
x=y, the sum has to contain also the zero-step walk.

It seems reasonable to assume that there exists some
characteristic length g, diverging as (K, —K) when K
approaches the critical fugacity K, from below. This
length has the property that

simply equal to 1 for a topologically linear structure
(SAW). One could suspect that, while the loop structure
compatible with the k-tolerance is not able to modify the
static fractal dimension of the SAW, it could have effects
on the dynamical spectral dimension. Sections VI and
VII present some original results of extensive simulations
of diffusions on self-avoiding walks with bridges on k-
tolerant walks and on free random walks in two dimen-
sions. These results are of relevant pedagogical value,
especially in connection with the problem of explaining
anomalous temperature dependence of E SR relaxation
times measured on proteins at low temperatures.

The results of Sec. VII, on the spectral properties of the
random walk in two dimensions, give, to our knowledge,
the first sharp and convincing numerical and theoretical
prediction concerning a very controversial and rather ob-
scure issue. This subject is, in our opinion, a most chal-
lenging one, on which one should test our fundamental
understanding of the whole subject of fractal dynamics.
Free walks on the lattice are perhaps the most elementary
conceivable random fractals. On the other hand, their
dynamical properties were still obscure in d =2. ' The
presence of logarithmic corrections in the asymptotic
laws, which we established, give somehow an a posteriori
justification for the difficult and controversial character of
this subject.

The paper is organized as follows. Section II describes
some basic definitions and properties of mutual and self-
intersection sets, which are then illustrated analytically in
Sec. III on free random walks and investigated numerical-
ly in Sec. IV in the case of k-tolerant walks. In Sec. V
these properties are used as cornerstones for a new
analysis of the Flory argument for the fractal dimension
of geometrical problems in general and self-avoiding and
k-tolerant walks in particular. Sec. VI is devoted to a nu-
merical investigation of the dynamical universality of the
same class of restricted walks, whereas Sec. VII describes
the dynamical fractal behavior of free random walks in
d =2.

G(x, y) —
~

x —y
' "F(

~

x —y ~
/g)

wP(x)= gK ' Xg (x) gK
Wo Wo

(2.3)

where the characteristic function g~ is 1 if W visits x,
and zero otherwise. 8'0 is a walk starting at the origin.
Scaling requires that for

~

x
~

~ co and K~K,

P(x)=
i

x
i

~f(
i
x

i
/g), (2.4)

where the function f(y) is expected to approach a con-
stant value for y~0. The exponent P is related to the
fractal dimension of the walk. Indeed, one has

QP(x)=(ffW (/), (2.5)

where
~~ W~~ is the number of distinct sites visited by a

walk 8'.
A possible definition of the fractal dimension of the

considered class of walks is through the relation

(2.6)

From (2.4), this implies that

P=d D. — (2.7)

On an intuitive basis, this means that P(x) in (2.4) deter-
mines the average density of sites visited by W0.

The average number of steps in the walks in our
grand-canonical ensemble behaves asymptotically (for
K~K, ) as

(2.&)

By the definitions of
~

W
~

and
~~ W~~, we must have

Dv(1. For free random walks in d )2, it is known that
Dv=1. Excluded-volume effects will only reduce the
number of multiple points, and we therefore expect this
equality to hold a fortiori on models with repulsive in-
teractions. We have only in d = 1 that for free random
walks (

~
W0

~

) -g' and (~~ Wp~~ ) -g, which gives D =1,
2

Let us now consider two independent walks, 8'& and
W2, from the same class with the same origin. We can
calculate the average number of mutual intersection points
as

as
~

x —y
~

co , (2.2)

where F (z) is an exponentially decreasing function at
+~ (X) ~

Another interesting correlation function' is the grand-
canonical probability for a walk to visit a given site x,
when it starts at the origin,
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Wl, W2

K ' ' QXg, (x)Xg, (x)

W) + W2
—]

lV& + IV2

Wl~ W2

= g [P(x)] -g as K~K, (2.9)

Equation (2.9) states that the fractal dimension of the mu-
tual intersection points of the walks is

D ( Wi (1 W2 ) = 2D —d, (2. 10)

which is a particular case of the codimension additivity
law. In its general form, " this law states that the fractal
dimension of the intersection set A (l B of two fractals 3
and B, with respective fractal dimensions Dz and Dz in a
d-dimensional space, is given by

D ( A fl B)= max[Dan +Dz d, O)— (2. 1 1)

If, on the contrary, we ask for the fractal dimension of
the set of self-intersection points of a single walk W (as-
suming that this walk allows such intersections), the sit-
uation is less clear. In the literature it is often assumed
that the fractal dimension of the set of sites that are
visited m times by W (m-multiple intersection points) is
the same as the fractal dimension of m independent re-
plicas of W. Using Eq. (2. 11), this means
max[mD —(m —1)d, O]. This replica idea, however, is
contradicted both by exact results for free random walks
(see Sec. III) and by extensive numerical investigations
of k-tolerant walks in d =2 and 3 (see Sec. IV).

To conclude this section let us generalize some of our
previous definitions to the set of multiple points. If
X'g~(x) is the characteristic function of the m-multiple

0

points, we define

III. EXACT RESULTS FOR FREE RANDOM
WALKS

It is quite instructive to illustrate the validity of some
hypotheses, made in Sec. II, in the case of free random
walks on a hypercubic lattice in d dimensions, for which
obviously

QG(O, x) =(1—2Kd) (3.1)

This means that K, =(2d) ', and from (2.8) we have

ZKd
( W~)= — '

~ K K;.
1 —2Kd K, —K

(3.2)

The Green function itself was derived by Montroll and
Weiss, and is given by

We must remark that in (2.9) we implicitly assumed
that the correlation length of 8'] A 8'2 was the same as
that of the separate walks. It is obvious that our con-
clusions are insensitive to changes in the definition of g, if
in the K~K, limit they reduce to a simple multiplicative
factor. In practical calculations we therefore will often
use other length scales proportional to g as, e.g. , the end-
to-end distance of a walk, or the mean radius of gyration
of a set of points. In the next sections, we will come back
to some of the properties for free and k-tolerant walks.

P (x)= gK ' X~g (x) gK
W0 W0

(2.12)

ip (x —yj
G(x, y)= —~ (2~)d 1 —2K g cosp

J
(3 —d)/2

Again assuming scaling, now with a correlation length
, one can argue that x —y

P (x)= x f(
i
x

i
/g ), (2.13)

where D is the fractal dimension of the set of m-multiple
points. The average number of such points is then

Q exp as K~K, (3.3)

(~~W~~ ) = yP (x)-g - as K (2.14)

G (x, y) = g Y~g (x)X~g'(y)K (2.15)

where 8 is a generic random walk, with arbitrary starting
point on the lattice.

In principle, g may be different from the correlation
length g, defined previously. In order to have a precise
definition of it, we should also study a suitable generali-
zation of (2.1), e.g. , the function

asymptotically g behaves as QK, —K, which means
1V= —.2'

In order to calculate the correlation function P (x), it is
sufhcient to consider the related function

W
aw= (o,x)

G (O, x) —5„0
G(0,0)

(3.4)

(see again Ref. 3). G, (x) contains the sum over all ran-
dom walks, whose final step visits x for the first time.
G, (0) is the sum over the nontrivial walks returning for
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the first time to the origin, and

G(0,0)= g [G)(0)]" .
n=0

(3.5)

Using the definition (2.3) it is easy to show that for x&0,
the following holds:

P(x) = ~ ~

lv y(1)( ) y~ x' yet- ~ 0

w
aw=)o, xj

G (O, x)
G(0,0)

W„ wo

(3.6)

We denoted by 8'„ the class of walks that start at x, and
we used the fact that they are just a translation by x of
the class WD. Since P(0)=1, the final result also holds
for x=0.

Montroll and Weiss proved furthermore that for
K~K, ,

P (x) =G(o, x)[G (0,0) —1] '[G (0,0)] (3.12)

Details of the derivation of this and subsequent formulas
are given in the Appendix. Summing (3.12) over x and
using the previous asymptotic expressions for G (0,0) and
G(o, x), one obtains that for K~K,

for d &2

&IIWII & -g ( in/) for d =2
for d&2.

(3.13)

for d &4, one sees that the infrared behavior of a P-
theory is directly related to the fractal properties of the in-
tersections of independent random walks.

Next, we consider the set of m-multiple intersection
points of a free random walk. Montroll and Weiss
showed how one can calculate the average number of
points visited exactly m times in such walks with a given
number

I

W
I

of steps. Indeed, with a simple generaliza-
tion of the argument leading to (3.6), one gets

const for d ~2
G(0,0)~ in' for d =2

for d &2,
(3.7)

from which we deduce that in the same limit and for
(

I

x
I
/g) ~ ao we have

This implies that, asymptotically for & W &~ oo,

&IWI& ford&2

&
I

W
I

&
' ford&2.

(3.14)

I

x
I

' "f„(
I
x

I
lg) for d & 2

P(x) 'fz(
I
x

I
/$)( in/) ' for d=2

fg( I
xl &g)

(3.8)

This implies the well-known result' ' that the fractal di-
mension is given by

In d =1, the number &IIWII & is constant (no logarith-
mic correction).

For d &2 we can also determine the ratio between
& II Wll & and &

I

W
I

& as a function of m. Indeed, from
(3.1), (3.2), (3.12), and (2.14) it follows that

=[G(0,0)] l 1 —[G(0,0)]

D= min[d, 2] (3.9) as K~K, . (3.15)

Considering now the intersection of two independent
free random walks (see also Ref. 14), (2.9) immediately
leads to

Summing (3.12) also over m, we obtain the average num-
ber of distinct visited sites as

D( W& fl W&)= minld, 4 —d] for d &4 . (3.10) wll&=
'

&
I

w
I

&[G(o,o)]-', (3.16)

For d ~4, the intersection set is finite and has no fractal
properties.

It may be interesting to note that

&llw~ (l well&

from which we see that asymptotically for K~K, (or
&

I
wl &-~),

= g[G(o, x)] [G(0,0)]

d"pGpG —p d pGp
—2

(3.1 1)

&
I

W & ford&2
&IIWII& — &

I

W &[ln&
I

W
I

&]
' ford=2

& IWI &" ford&2.
(3.17)

where G(p) is the Fourier transform of G(x, y) [see Eq.
(3.3)]. (3.11) can simply be interpreted as the first-order
perturbation correction to the one-particle irreducible ver-
tex function at zero external wave vectors of a P -field
theory in its regular lattice representation. The link be-
tween scalar field theory and random walks is not new. '

Up to our knowledge, however, this link was never ex-
ploited for studying the intersection points of independent
walks. Since (3.11) diverges at K, for d &4 and is finite

Before drawing any conclusions from (3.13) concerning
the fractal dimensions of these intersection sets, we should
first investigate the correlation function G (x,y), in order
to determine the relation between g and g. It is rather
simple to obtain, in a heuristic way, the asymptotic behav-
ior of G (x, y) for the free walk in the

I

x —y I

~ oo limit.
Let us suppose that the walk starts at a given site u and
reaches a final site v, visiting both x and y m times in be-
tween. When the distance between x and y is very large,
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the probability that such a walk crosses this distance more
than once is very small; such walks that travel up and
down more than once indeed give a contribution of order
G(x, y)" with n & 1. The main contribution derives from
walks that can be divided in three parts: (a) a walk start-
ing at u and reaching x for the mth time at the last step,

(b) a walk leaving x without coming back to it, and reach-
ing y for the first time at the final step, (c) a walk starting
at y and reaching v after coming back (m —1) times to y.
Taking into account also the walks where the role of x
and y is interchanged, and summing over u and v, we ob-
tain

]n —1

G (u, x) G(x, x) —1 G(x, y) G (y, y) —1

G(x, x) G (x, x) G (0 0)2 G (y, y)
G(y, v)

as x —y ~

ce
G(y, y)

=2G(x, y) g G(0, z) '[G(0,0) —1] '" [G(0,0)] '"+' (3.18)

This demonstrates that, apart from a multiplicative con-
stant, G behaves asymptotically as G, from which fol-
lows that g =g. There is only one correlation length for
the free random walk. A more rigorous procedure for
deriving Eq. (3.18) is outlined in the Appendix.

From (2.14) and (3.13) it then follows that the fractal
dimension of the m-multiple self-intersections is

D = minI 2, 2d —2 I for d & 1, (3.19)

apart from a logarithmic correction in d =2. Comparing
this with (3.9), we remark that D, is equal to D for d & 2,
but D,„&D for 1 &d &2. However, D„ is never equal to
the fractal dimension of the intersection set of m indepen-
dent replicas, except for d =2. In Fig. 1 we graphically
combine various results obtained in this section for the
fractal dimensionalities of different sets. We see no reason
why a repulsive interaction could possibly change the fact
that mutual intersection sets have a different fractal di-
mension from the self-intersection sets.

IV. NUMERICAL STUDIES OF k-TOLERANT
WALKS

In order to confirm some of the statements and as-

sumptions made in Secs. II and III, we performed several
numerical studies on the k-tolerant walks.

First, we have generated 2-tolerant v alks with up to 50

(R,2) n"- (4. 1)

where v=0. 75+0.01 in d =2 and v=0. 58+0.01 in d =3
corresponding to fractal dimensionality D= —', and 1.72,
respectively. This point, however, was already made clear
in previous publications. ' '

Next, we have analyzed the number of double points on
these walks, in order to verify whether this number is pro-
portional to the length of the walk, as in the free random
walk case. We obtained indeed for the 2-tolerant walks
that

steps, both on the triangular and on the cubic lattice. Our
sample consisted of l. 6 X 10" (triangular), respectively
2. 10 (simple cubic) walks, and they were given relative
weights according to the method described by Rosenbluth
and Rosenbluth' for the self-avoiding walks. A prelimi-
nary calculation was based on a 4)&10 sample of walks
with up to 45 steps on the square lattice. For each num-
ber of steps, up to the maximum, we calculated the aver-

age end-to-end square distance, and the average number
of double points. We have developed special methods of
series analysis, suitable for treating series generated by
Monte Carlo methods. Using these techniques, which will

be described in detail in a separate paper, we first of all
confirmed that these 2-tolerant walks belong to the SAW
universality class, since the end-to-end square distance
after n steps behaves as

D om

DI'A1 ~WP j

f2 «)—:( 11 ~2 11
)

& w = I

where

(a ),.~„.,„,—0.226+0.001,

)t iangu]ar=

(a)~imp]e cubic=0. 168+0.001

(4.2)

(4.3)

(4.4)

(4.5)

I

0 1 2 3 4 d 5

FICs. 1. Fractal dimensions D ( ———) of free random

walks, D (8 ~ 0 8 2) ( —- —~ —) of the intersection set of two

such independent walks, and D ( ) of the set of m-

multiple self-intersection points, as functions of the Euclidean
dimension d.

In contrast to the free random walk case (3.11), however,
there is no logarithmic correction in d =2. This can im-

mediately be seen from Table I, where we collected for
some values of n the corresponding values of f2(n) jn and

f, (n)( ln n)/n for the triangular lattice. Only the first

numbers seem to tend to a constant value.
We have also generated some 5-tolerant walks on the

square lattice. It is obvious, though, that here one has to
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TABLE I. Some values of f2(n)n ' and f, (n)n ' In'n,
where f2(n)= & IIWllz&~ ~

~
~

„, for 2-tolerant walks on the tri-
angular lattice. The first column extropolates to 0.214.

Obviously, we have that

5

mA =1 (4.9)

f, (n)n -' fi(n)n ' ln'n
m =1

10
20
30
40
50

0.189 54
0.202 58
0.206 72
0.208 76
0.209 84

1.0049
1.8181
2.3914
2.8408
3.2113

{4.6)

we obtain estimates for | that for short lengths start
around 0.5 (the free random walk value), but for higher n

and m these estimates are around 0.7. Extrapolations
yield indeed values v=0. 75+0.02, so that we may con-
clude that there is no doubt left about the fact that k-
tolerant walks for finite k belong to the SAW universality
class and have the same fractal dimension.

On the same sample of 5-tolerant walks, we have also
verified whether the number of m-multiple points (m ( 5)
on a 5-tolerant walk grows linearly with the number n of
steps in the walk. This law seems indeed to hold, al-
though again the linear behavior manifests itself only at
higher n values than in the 2-tolerant case. Our extrapo-
lations for the 5-tolerant walks on the square lattice yield

(4.7)

with

go to much higher lengths of walks, in order to detect the
SAW nature of these walks: short 5-tolerant walks
behave almost like free random walks. Therefore, the
techniques of series analysis up to 50 terms seemed not
appropriate. We generated samples of 10 walks for each
of the lengths n =10, 20, 30, 50, 200, 300, and 500. Us-
ing the formula

5

A (n;m„mz)= A (4.1 1)

In contrast to A, however, these coefficients
3 (n;m l, m2) do not tend to finite values when n goes to
infinity (except for m, =0 or m2 ——0), but they decrease to
zero (see Table II). From a log-log analysis, one may
deduce that for n ~ oo,

A (n;m, , m2 ) n{—if m i m2~0), (4.12)

where a =0.5+0. 1. This estimate was obtained from
3 (n;1, 1); the other m values produce larger uncertain-
ties. This value of a may simply be understood from the
codimension additivity rule. Indeed, we remarked above

that

[compare Eq. (3.15)]. It should be remarked that the de-
crease of the A values with increasing m is qualitatively
similar to the behavior predicted by (3.15). An approxi-
mate quantitative similarity can be obtained, when we as-
sume for G (0,0) a value in the neighborhood of 2.0.

In order to stress the difference between the self-
intersections and the mutual intersections, we have also
investigated the sets of mutual intersection points of these
5-tolerant walks. Since they all start at the same origin,
we neglected the first 10 steps of these walks, minimizing
in this way the bias introduced by this common starting
point. In analogy with (4.7), we define for two indepen-
dent walks W and W' the number of m&-multiple points
of W, which are at the same time mz-multiple points of
W' as

&IIII', &II'-', ll&( ~i=~~~= &
n~(n mi mz) {41N

It is clear that

A
&
=0.2495 +0.0005

A 2
——0. 1431+0.0005,

A 3 ——0.0759+0.0001,

A 4 ——0.0378+0.0001,

A ~
——0.0172+0.0001 .

&ll~ II&( w =.)-4'-n,
and thus, from (2.11),

(4.8)

n A (n;mt, m2)-g —n

which means that

(4.13)

(4.14)

TABLE II. Some numerical estimates for A (n;m l, m2), the average density of common m &-

multiple and mq-multiple points of two independent 5-tolerant walks of length n on the square lattice.

10 30 50 300 500

A (n;1,0)
A (n;1, 1)
A (n;1,2)
A (n;1, 3)
A (n;1,4)
A(n;1, 5)

0.404 49
0.707 76
0.025 98
0.007 89
0.001 66
0.000 21

0.292 547
0.038 753
0.018 617
0.008 090
0.003 113
0.001 180

0.265 728
0.030 692
0.015 268
0.007 466
0.003 274
0.001 256

0.234 88
0.014 368
0.008 264
0.004 279
0.002 078
0.000 914

0.231 97
0.010436
0.006 376
0.003 504
0.001 691
0.000 699
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(4.15)

For d =2 and D = —,, this gives a = —,'.

V. MUTUAL AND SELF-INTERSECTIONS
AND FLORY APPROACH TO EXCLUDED-VOLUME

PROBLEMS

N-g as N~co (5.1)

with

D =(2+d)/3 (5.2)

for d (4 (and D =2 for d & 4).
The derivation, sketched above, is the standard one for

the result (5.2), whose spectacular agreement with the
properties of the d-dimensional SAW is well known. Par-
ticularly surprising is the fact that, essentially on the basis
of mean-field arguments, one obtains a remarkably accu-
rate prediction of nontrivial scaling behavior.

Flory approximations are a well-established tool in
polymer physics and lattice statistics. Their success is
often so remarkable and unexpected that naturally the
problem arises of understanding the deep reasons for it.
These reasons should somehow underlie the relatively
simple standard derivation of Flory formulas.

One of the main results of the present paper is the
clarification of the close connection between the Flory ap-
proach, and the statistical geometry of intersections of
random fractals. In the authors' opinion, such connection
is a first important step towards a credible justification for
the success of the approach. What we are going to
present below, amounts to an alternative new derivation
of the results given by the Flory approximation: this
derivation has also the considerable advantage of making
the application of the method correct and successful, even
in cases in which standard treatments run into serious
ambiguities and difficulties. This is in particular the case
for some recent attempts to treat k-tolerant lattice walks,
or kinetic growth walks. '

The concept of self-intersections of a random fractal is
at the basis of the Flory estimate of the free energy for a
polymer in a good solvent. Let us consider the example
of a linear polymer, which is well schematized by lattice
random walks in d dimensions, subject to the constraint
of not visiting any point more than once (self-avoiding
walks). The free energy at a given temperature and num-
ber of monomers (proportional to the number N of steps
in the representative lattice walk) is parametrized in terms
of the end-to-end elongation g. The repulsive energy, due
to the monomer-monomer repulsions is simply estimated
as proportional to the average number of self-intersections
that a free random walk, with the same elongation
would possess. This number is thus -N g, i.e., the
number of monomers times an average monomer density
Ng, since g determines the spacial size of the chain.
From this mean-field repulsive energy, one must subtract
the elastic entropy —g N ', appropriate for a free ran-
dom walk of elongation g. Extremalization of this free
energy with respect to g leads to the results

F=—Fo(l)+a 2V

l l u'l
'2

+b v'~

(+1 )4 —d

(5.3)

where a and b are suitable dimensional factors, possibly
embodying a weak dependence on l.

It is quite remarkable that the basic g' and N depen-
dences in Eq. (5.3) are the same as in the usual Flory free
energy, since the parameter l is essentially disappearing
from the expression. As a consequence, the above deriva-
tion, whose advantages will be made more clear below,
leads to the same SAW fractal dimension as the standard
Flory argument. We learned, at this stage, that there is a
nontrivial scaling-invariance property hidden in the usual
form of the Flory free energy. This scaling invariance,
highlighted here by a proper application of laws of the in-

It is crucial to notice that the Flory estimate of the
repulsive energy as -N g

" is apparently inconsistent
with the properties of self-intersections discussed in Sec.
IV. We know, e.g. for d & 2, that the number of multiple
points of a random walk should be proportional to N.
The repulsive energy —N g

" can be written as —g
so that, consistent with the law of codimension additivity,
it should rather be interpreted as being proportional to the
number of mutual intersections of two independent repli-
cas of the random chain. The apparent contradiction be-
tween the above two aspects (mutual versus self-
intersections) can be reconciled in the light of our new
derivation.

In order to obtain the Flory free energy of a self-
repelling chain of Xmonomers, let us first consider explic-
itly the case d &2. The crucial ingredient of the new
analysis is a coarse-graining of the description. We imag-
ine we divide our chain into X/1 segments of I steps, with
X»I »1. The free energy will then be equal to the sum
of the free energies Fo(l) of each separate segment, plus
the extra contribution due to the interactions among the
segments, and the entropy of their configuration. The first
term is independent of the actual end-to-end elongation g
of the walk. In the spirit of the Flory approach, we treat
the segments as free random walks of typical elongation
&1. The segments can be conceived as steps in a coarse-
grained walk. The mutual repulsive energy among seg-
ments is basically given by the average number of
segment-segment encounters, (N /l ) ( g/&l ), multi-
plied with the average number of mutual intersections
among two di6'erent segments, which come into contact.
In this estimate, the end-to-end elongation has to be mea-
sured in terms of the typical segment length &l, in order
to give the density of segments. Since each segment is it-
self a fractal with fractal dimension 2 (d ~ 2), we can esti-
mate the number of intersections between two segments in
contact as proportional to (&1 ) +, where we applied
the law (2.11) of codimension additivity. The entropy of
the segments can finally be given as that pertaining to a
Gaussian chain of X/l segments, and total elongation
g/&l, i.e., —(g/&1 ) /(N/l). The total coarse-grained
free energy can thus be written as
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tersection geometry of random fractals, is analogous to
the property of the free energy of, e.g. , a magnetic system
near the fixed point of a renormalization-group transfor-
mation. There is little doubt that the scaling-invariance
principle expressed by Eq. (5.3) should be largely respon-
sible for the accuracy of the Flory predictions.

In order to understand why the above argument also
works for d ~2, where the multiple points in a free ran-
dom walk behave quite differently from the d & 2 case [see
Eq. (3.19)], it is convenient to investigate in a more de-
tailed way the validity of (5.3). This will at the same time
clarify the application of our approach to more controver-
sial cases, like k-tolerant walks. Indeed, in supposing that
the interaction between two segments of the walk is pro-
portional to (&I ) ", we actually omitted to discuss the
precise way in which this proportionality constant builds
Up.

Suppose that we are dealing with two-body monomer-
monomer interactions (which is the natural assumption
with self-avoiding walks). It is clear that contributions to
the segment-segment repulsions arise, in general, from
contacts of m-multiple points in one segment with n-
multiple points in the other segment. Each such contact
gives a contribution to the total segment-segment repul-
sion, roughly proportional to nm. Let us introduce a
fractal density C(l, m) for m-multiple points, such that the
number of such points on a segment of length l is

&
~~ W~i ),=C(l, m)(&l ) (5.4)

the densities C(l, m) must satisfy

g mC(l, m)=l (5.6)

The repulsive energy of a segment-segment contact can
then be estimated as follows, using the codimension addi-
tivity rule (2.10),

g g mnC(l, m)C(l, n)(Vl )
m n

(5.7)

For d )2, the C(l, m) are exponentially decreasing with m
[see (3.15)]; for d (2, however, the C(l, m) become in-
dependent of m in the l~ ~ limit, and the intrinsic cutoff
m (l has to assure the convergence of the summation
(5.6). In both cases, we recover a factor (&l ) for the
segment-segment repulsion, and (5.3) is generally valid.

The above derivation again shows how the important
facts concerning intersections of free random walks, sum-
marized in Sec. IV, are crucial for a correct discussion of
the coarse-grained Flory free energy.

The usefulness of this scheme of reasoning can best be
exemplified by considering the problem of k-tolerant
walks on the lattice. These are defined as walks with the
constraint that each lattice site may be visited at most k
times (k =1,2, . . . ). k =1, of course, gives the SAW
case. For k ) 1, the model represents a way of schema-

where D is the fractal dimension of these multiple points
[see Eq. (3.19)]. Since

(5.5)

&~) w =„-n", (6.2)

where R is the end-to-end distance of a walk.
The sites of a walk have a natural ordering by an index

j, referring to the consecutive steps in the walk (intersec-
tion points then have multiple indices). If we suppose that
a particle can diffuse only along this natural path, without
profiting from the self-intersections, i.e.. with equal prob-
abilities for going from site j towards j —1 or j + 1, it then
moves a distance bj=n —&t after t diffusion steps (we
call t the "time"). This means that the particle moves over
a Euclidean distance R -n —t, where d =2d is/d 1/dt's

tizing an excluded-volume effect different from the SAW.
A question debated in the recent literature has been
whether the asymptotic properties could be different for
different k's. While there seems to be no doubt that the
answer to this question is negative, on the basis of nu-
merical and renormalization-group evidence' it remains
an open question how one can understand this property
within a Flory strategy.

Recently, a proposal was made for a Flory free energy,
in which the repulsive term was estimated as being pro-
portional to N(N/g ) . This choice, which is very natu-
ral within the standard deviation of Flory formulas, is,
however, implying a k-dependent D, different from (5.2),
and in open contradiction with the numerical and series
results.

A way out of this contradiction can naturally be ob-
tained in the framework of our coarse-grained Flory ap-
proach. We know that, even if the excluded-volume
effects are felt microscopically only at a (k + 1)-body lev-
el, the fractal dimensions of multiple self-intersection
points, contributing to expressions like (5.4), is the same
for all multiplicities. Thus, whatever the value of k, up to
trivial k-dependent rescaling factors, the total repulsive
energy between two segments is still proportional to

di2, as in the SAW case and the usual result (5.2) ap-
plies.

In this way we realize that the coarse graining, at the
basis of the present derivation of the Flory free energy, is
most adequate for putting in evidence the universality
properties of different microscopic excluded-volume
mechanisms.

Along lines very similar to those presented here, it has
also been shown' that other, dynamic, walk problems,
like kinetic growth walks, fall into the same universality
class of static self-avoiding walks. This circumstance,
which is supported by recent numerical estimates of D,
was previously excluded, also on the basis of an applica-
tion of the Flory approach in a standard form which
suffered from much the same inconsistencies as that of
Ref. 4.

VI. THE SPECTRAL DIMENSION
OF RESTRICTED RANDOM WALKS

Let us consider the diffusion of a particle on a random
walk, whose fractal dimension is D. In general; D may be
different from d =v ', where d is defined through

(6.1)

[compare with Eq. (2.6)], or equivalently
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the diffusion exponent. This trivial situation will be called
"normal diffusion, " in the sense that it occurs on a struc-
ture with the topology of a line.

This result is more transparent in terms of the vibra-
tional problem. Indeed, after substituting the first time
derivative by a second derivative, the diffusion equations
map into the equations of motion for masses, where the
hopping rates become elastic constants. ' The behavior
of the density of vibrational states p(co) at low frequencies
07 defines the spectral dimension d (Refs. 22 and 5)
through

P(CO ) C0

This satisfies the scaling relation

d =2d/d„.

(6.3)

(6.4)

The fact that, in the "normal" case d =2d implies the
obvious result d = 1.

More interesting, and less trivial, is the case of a parti-
cle that can profit from the self-intersections of the ran-
dom walk by freely diffusing along all bonds visited by
this walk. For k-tolerant walks (k & 1), the analysis of
Sec. V, and the fact that these walks belong to the SAW
universality class, ' indicates that loops are irrelevant to
the asymptotic critical behavior. A natural question is
whether these loops are also irrelevant for the dynamical
properties of these fractals. The extensive numerical stud-
ies, which will follow in Sec. VIA, confirm that this is
indeed the case.

In Sec. VI B we also analyze the problem on a SAW of
a particle, which is allowed to jump to all neighboring
sites visited by the walk, even if these sites are not directly
linked by single walk steps to the actual site. Coarse-
graining arguments would predict that this problem
should have the same spectral properties as the diffusion
on a k-tolerant walk.

A. Spectral dimension of 2-tolerant walks

( R 2( t ) ) t 0.7+0. 1 (6.5)

As explained in the beginning of this section, on a SAW
we must have

(6.6)

We constructed on the square lattice a large sample
(200000) of 2-tolerant walks of 200 steps, and we simu-
lated 50 independent diffusion processes of 50 steps on
each of these walks. The prescription for the diffusion
was such that on a twice-visited point the particle got a
probability of 25% for going into the direction of each of
the four paths joining this point, even if two of these paths
were identical. (We believe, however, that our results do
not depend on such details of the diffusion mechanism. )

On the constructed diffusion, we calculated the average
square distances (R (t) ) after t steps, where in averaging
we took into account the relative weights of the 2-tolerant
walks. '

The standard method of analysis, if applied to this
series (R (t)) for 1 &t &50, show in a consistent way
that asymptotically

and in d =2, this means t . Within the obtained accu-
racy we see no difference between the asymptotic behavior
of the diffusion on a SAW and on a 2-tolerant walk. Re-
lation (6.4) then leads to a spectral dimension d =1, also
for these 2-tolerant walks.

B. Spectral dimension for SAW with extra hopping

A SAW may return to the neighborhood of a point that
was already visited. If we look upon such a near return
in a coarse-grained way, or if we would apply some kind
of cluster-renormalization procedure, this must resemble a
self-intersection of the walk. This argument, which is at
the basis of the intuitive proof for the fact that k-tolerant
walks and SAW's belong to the same universality class,
would also predict that the asymptotic properties of the
diffusion on a SAW should be rather insensitive to small
relaxations in the diffusion restrictions. We can, e.g. , give
equal probabilities to jurnp to all nearest-neighbor sites
visited by the SAW, whether they are directly linked to
the present site by a single walk step or not. We have
tested this model, in which hopping over such bridges is
allowed, by generating 50 diffusions of 50 steps on a large
sample (100000) of SAW's of length 200 on the square
lattice. Our methods of series analysis indicate here

(R 2(t) ) t0. 77+0.05 (6.7)

VII. SPECTRAL DIMENSION OF FREE
RANDOM WALKS

The diffusion of a particle on a free random walk,
where multiple intersections can be exploited to move be-
tween different parts of the walk, is more controversial
than the problems treated above. The dynamical proper-
ties connected to free walks seem to present some surpris-
ing aspects, in contrast to their well-understood static
properties.

As an example, let us consider the two-dimensional free
random walks. The results of Sec. III show that, apart
from logarithmic corrections, the number of multiple in-
tersections is of the same order as the number of steps,
and these intersection points are distributed uniformly
over the volume of the walk. Since these walks are space
filling (d =2), one is tempted to conclude that also
d, =2=d. There is, however, some evidence that things

again compatible with (6.6), d =2d and d = l.
We have also tried to generalize this hopping possibility

by allowing jumps over larger distances with decreasing
probabilities. In this way we hoped to recover the
nonuniversal spectral dimension that was found analyti-
cally in deterministic fractals with long-range interac-
tions. At every step of the diffusion we scanned up to
five concentric shells of neighboring sites, and allowed
jumps to all the sites from these shells, that belonged to
the original SAW, while the jump probability depended
on the number of the shell. We were, however, unable to
discover in this way a deviation from the previous result
d =1. It is not clear whether this is due to the limited na-
ture of our simulations or to a true absence of nonuniver-
sality in such long-range jump models.
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are not so simple. Although the probability that a
infinite random walk (RW) in d =2 reaches some arbi-
trarily chosen lattice site is equal to unity, nevertheless
each individual walk of finite, but eventually very large,
size does contain a large number of vacancies and holes,
both in occupied sites and in visited bonds. If the struc-
ture of these vacancies acquires some self-similarity over a
wide range of length scales, as is suggested by inspection
of some samples of these RW's, this may result in an
anomalous spectral behavior. Such a behavior would be
manifested in a range of t-values with an upper boundary

d /2t,„-R -N (where N is the number of steps in the
RW). The asymptotic spectral behavior has to be under-
stood for large t values, but with t « t „.We have un-
dertaken an accurate numerical analysis of this problem,
and we tried to suggest a possible heuristic understanding
of the results.

A. Numerical analysis

B. Heuristic argument

It is possible to present a heuristic explanation for the
results obtained above, on the basis of the relation be-
tween the spectral dimension d and the resistivity ex-
ponent g, defined through

A(r)-r~, (7.3)

g=d —d, (7.4)

as a consequence of the Einstein relation for the conduc-
tivity o. as a function of the density n and the diffusion
coefficient D,

where Q(r) is the electrical resistance between two points
at distance r on the fractal, if the bonds of the fractal
structure are replaced by identical resistances (each bond
gets one unit resistance, independent of the number of
times it was visited by the original random walk). It is
known that

We have generated a sample of about 5000 free random
walks of 20000 steps on a square lattice of 512' 512 sites
with periodic boundary conditions. On each one of these
random walks we generated 100 diffusion processes of 100
steps each. The rules for this diffusion were as follows.
After every step, we counted the number of outgoing
bonds visited by the original walk (in either direction), and
the next step was taken with equal probabilities for each of
these visited bonds. This means the following.

eg= nD.
k~T

(7.5)

Indeed, since

TABLE III. Estimates for the exponent P from Eq. (7.2), and
their variance o over a central section of 50 elements of the Fade
table to (7.1), as a function of the exponent a.

We then calculated (R„), the average square distance
after n steps for all these diffusion paths.

Since the standard methods of series analysis proved to
yield rather varying results, and since logarithmic correc-
tions are known to be present for the free random walk in
two dimensions [see Eq. (3.14)], we suspected logarithmic
corrections also in our results. In the spirit of the method
used, e.g. , for two-dimensional percolation, we investi-
gated the (N, M)-Pade approximants to

(1 —x) ln g x "(R„)(inn )
d

dx
x =1

(7.1)

and we found that these Pade tables showed a very small
variance only for a small range of a values (see Table III).
From these tables, and from other methods of analysis ap-
plied to the series built with the coefficients (R„)( inn)
we conclude that

(R„)—n~( inn) (7.2)

where a =0.70+0.05 and @=0.65+0.02. These numbers
suggest that, apart from a logarithmic correction, the di-
mension of the diffusion walk is given by d =3, and con-
sequently its spectral dimension by d = —', . From the
above numbers, it seems indeed reasonable to conjecture
that a=P= —', .

(1) the step probability is independent of the number
of times such a bond has been visited,

(2) jumps to neighboring visited sites are not allowed if
the connecting bond was not visited by the random walk.
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D= —(. (t))d 2

dt
(7.6)

and

(7.7)

we know that the diffusion constant at a distance r on the
fractal will scale as

D —t "' -r (7.8)

The density n obviously behaves Iike

d d (7.9)

and thus

d —dw+2 —d
g ~r (7.10)

On the other hand, the resistance II(r) between two points
at a distance r is related to the conductivity through

A(r) ——/r —r "'r d ) d„, —d

0
(7.1 1)

which yields (7.4).
In order to have an independent estimate of A(r), we

use the following picture. If the fractal is suffIciently
dense, which is certainly the case for random walks in

d =2, we can imagine that between two points 3 and B
at a distance r on the fractal, there exist several indepen-
dent paths that can carry electrical current, when a volt-

age is applied. We may delete from the fractal all parts
that do not transfer this current, sue@ as dead-end
branches and links between equal-potential points. We
may then suppose that the remaining structure

which is, however, fully consistent with the results given
below. It is rather natural to accept that the repulsive en-
ergy of a polymer on a fractal should in general be es-
timated as -N /g", where N is the number of steps, g the
elongation of the SAW, and d the fractal dimension of the
random set, on which the SAW is constructed. In our
case d =2. Assuming such interaction energy implies a
natural generalization of the codimension additivity rule,
used for the segment-segment intersections, to a case in
which the embedding space is itself a fractal. What is less
obvious, in the case of a SAW on a fractal, is the choice of
the entropic term. In the recent literature, some proposals
have been made ' but there seems to be no fully satisfac-
tory prescription valid for all cases. The crucial question
is whether one can still assume a purely Gaussian distribu-
tion for the end-to-end elongation of a random walk on
the random fractal or not. Arguments were recently pro-
duced in favor of stretched Gaussian distributions. The
Flory results obtained by such assumptions, however, are
often not very satisfactory. On the contrary, we recently
obtained evidence that, at least in the case of fractals with
d not too different from d, like suitable Sierpinsky gaskets
in d =2 and 3, or the backbone of the incipient infinite
cluster of percolation at threshold in d =2, an assumption
of a Gaussian distribution gives remarkably good results
within the Flory context. On the basis of this assumption,
which turns out to be most plausible for the case of the
random walk in two dimensions, one can estimate the en-

2/dw
tropic term as —g /N . The denominator in this ex-
pression is the mean square displacement of the random
walk on the fractal, and d is related to the usual dimen-
sions by the relation d =2d /d. The Flory free energy

(1) still has a number of bonds proportional to r (also
in percolation, the collection of these paths is having al-
most the fractal dimension of the whole cluster),

(2) consists of a number of independent paths, which
look very much like self-avoiding walks.

NF=a +b
gd N2d/d

leads to

2+d 2+d
2+d/d 2(1+d„, ')

(7.16)

(7.17)

Each path is constructed of a number of bonds given by

n -rsAd
b (7.12)

d d —dsAwN-r /nb -r (7.13)

The total resistance of this network is then

where ds&w is the fractal dimension of a SAW on the free
random walk structure. The number of such paths
should then be given by

While we are conscious that a formula of this kind can
hardly give satisfactory results for arbitrary ranges of d
and d, we know that its application to Sierpinsky gaskets
in d =2, e.g. , gives agreements with exact results for

ds~w within less than 1%. The same occurs for the back-
bone of percolation clusters in d =2.

Coming back now to the previously obtained equation
(7.15), this produces in combination with our Flory ex-
pression for ds&w a self-consistency condition on d . Ap-
plication of Eq. (7.17) imposes

nb SAW

N

In combination with (7.4), this means that

2dsAw ——d„.

(7.14)

(7.15)
or

d 2+d
2(1+d ') (7.18)

Since the paths joining the two points are self-avoiding
walks on the fractal, we can try to construct a Flory argu-
ment for obtaining ds&w. In this case we are not going to
express in detail the coarse-graining procedure of Sec. V,

d~+ 1 =2+d, (7.19)

from which follows g= 1. If, furthermore, d =2, as is the
case for free random walks, we then immediately obtain
d =3, d = 4, and this agrees with our numerical result
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described above.
A value g = 1 has been obtained independently by direct

numerical investigation of the resistance A(r) (Ref. 8) in a
model where a resistivity q

' was attributed to each bond
that was visited q times by the random walk. In the mod-
el used in our numerical investigation and in the heuristic
argument we should give equal resistances to all visited
bonds. It turns out that the results are rather insensitive
to such details.

[g—1 ~]—1

88'= [x,yl

Wl rr
gg Jz

zE 8'
(A4)

where n, is the number of times that the free walk visits
the site z. The correlation function P (x), defined in
(2.12), can then be written as

P (x)= g G(0, y)

VIII. CONCLUSIONS x, g[&-' —w];„'m! &j ,j =1—6
(AS)

In this paper, we have treated several fundamental
properties of free and restricted random-walk fractals.
We pointed out the important diA'erence between the frac-
tal dimensions of the set of self-intersection points of such
fractals and the set of mutual intersections of two in-
dependent fractals. Our statements were confirmed by
numerical simulations.

We have resolved an apparent controversy in the inter-
pretation of the standard Flory approximation, where the
repulsive-energy term seems not to be proportional to the
number of self-intersections of the free walk. By a
coarse-graining argument we argued that the standard
picture is consistent with repulsions arising from mutual
intersections between different independent segments of
the same walk.

The universality of the class of self-avoiding and k-
tolerant walks has been extended to their dynamical prop-
erties, through numerical investigations of the diffusion
problem on such fractals. The same dynamical problem
was finally studied on the free random-walk fractal struc-
ture in d =2, where we were able to give strong evidence
for the conjecture that d =3 and d = —', , up to logarithmic
corrections, which may confuse a too-primitive analysis.
A heuristic argument for such dynamical behavior was
presented, based on an extension of the Flory approach to
self-avoiding walks on fractals, and on an intuitive picture
for the resistivity in such disordered systems.

In order to deduce some practical results from these
equations, we introduce an n-component vector field P„at
every site I, coupled to external fields hx. Using the
Hamiltonian

&[/, hj=——,
' g g y„[J ' —%']„„q„—g g q„h„

x, y a=1 x a=]

x, y

—g g)„.h„, (A6)

one can easily prove the equation

where Dy =H,d "y,.
We choose j,=1 for z&x and j„=j, and we use the

identity

2exp ~ ipx

82
[7 ' —4']„„'=lim f2)y exp( —&[gr, hI )

0 Bh„) 0hyi h =0

(A7)

APPENDIX: THE CORRELATION FUNCTIONS
OF THE RANDOM WALK

J
2~(1 —j)

n/2
2

d a exp — +ia qp„
n J a

1 —j 2

~

K if
~

x —y ~

= 1 (nearest neighbors)
K„ 0 otherwise (A 1)

In this appendix we want to derive in more detail some
correlation functions introduced in Secs. II and III. We
define the following matrices (for x and y arbitrary sites
on the lattice):

in order to write for this set [j, I,

fSly exp( —&[qr, h) )

(A8)

and
=C" d "a exp —,

' by-b G y, z—
2 1 —J

2„y——J„5„y . (A2) (A9)

It is rather straightforward that the Green function
defined in (2.1) may be written as

where

G (x,y) = [1—%']„„' (A3)
b, =h, +ia5, „ (A 10)

and, more generally,
and C is a constant independent of the fields h. From
this equation, we easily obtain
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82
J2)qr exp( —&)

01 yl h=o

=C" 'a exp ——'a G x, x +
1 —j

&& [6(O,y) —a, G(O, x)G(y, x)], (Al 1)

Using this result in (A5) we obtain

gm
P (x) = — ' G(0,0)+m! ()j

'
1 —j

m —1

G (O, x) G (0,0)—1

G (0,0) G (0,0)

j=o

(A13)

and taking the n ~0 limit,

6 (0,0)+j/(1 —j)

This is Eq. (3.12).
A tedious but straightforward calculation along the

same lines leads to 6 (x, y), defined in (2.15). Let us
demonstrate this, e.g. , for m =2. We choose j,= 1 for
z&x or y. We may then write

G2(x, y)= g 1

U&V

2 2
lim C' d'a d' exp —,'bGb-

Bj Qj o dh
&

()h
~

2 1 —J

where b, =h, +i (a6„,+@6„,). From Eq. (A14) one may deduce that

p' jv

2 1 —
Jy h=0;j =j =0

(A14)

G2(x, y) = —,
' QG (O, z)

a a
c)G (0,0) c)G(x, y)

+ G (x, y)+26 (x,y)[G(0,0)+G (0,0) —G (x,y)]
[6 (0,0) —G (x, y)]

(A15)

G~(x, y)=2 g G(O, z) ' ' 6(x, y)2 G(0, 0)—1

6 (0,0)

+O(6 (x, y)) as
~

x —y
~

oo . (A16)

Since 6 (x,y)~0 in the x —y ~

~ ao limit, it follows im-
mediately from (A15) that

The formalism presented above allows also to calculate
more general correlation functions for free random walks;
it can, e.g. , be applied to random walks, which visit a
given set of points [x; I, (i =1,2, . . . , N) a given number
of times n ~, n2, . . . , nz.
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