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We present an analytic approach to the Saffman-Taylor problem of predicting the width of a
viscous finger in a Hele-Shaw cell. Our first purpose is to provide a systematic description of the way
in which the singular perturbation introduced by capillary forces leads to a solvability mechanism for
pattern selection. We then show how recent experimental observations by Couder et al. may be in-
terpreted in terms suggested by this mechanism. In particular, we show that the remarkable changes
in pattern selection induced by bubbles trapped at the tips of fingers can be explained by assuming
that the perturbation caused by a bubble is effectively equivalent to a positive opening angle at the tip.

I. INTRODUCTION

Our purpose in this paper is, first, to present a relatively
simple and systematic description of the solvability theory
for pattern selection in the Saffman-Taylor problem' and,
second, to show how this theory can be used to explain
some remarkable experimental observations reported re-
cently by Couder and co-workers.>?

The Saffman-Taylor problem, that is, the problem of
predicting the shape of the fluid finger that forms in a
Hele-Shaw cell, is similar in many respects to the problem
of predicting the shape and speed of the tip of a dendritic
crystal growing in an undercooled melt.* Pattern selec-
tion in both of these problems turns out to be controlled
by surface tension, an ostensibly small but singular per-
turbation which converts an equation with a continuous
family of steady-state solutions into one for which such
solutions exist only for a discrete set of values of some pa-
rameter, for example, the finger width or the growth rate.
Among those configurations which satisfy such a solvabil-
ity condition, there generally exists just one which can be
identified as the dynamically selected state of the system.

The solvability mechanism in the Saffman-Taylor prob-
lem was first discovered in numerical investigations by
McClean and Saffman® and by Vanden-Broeck.® Analytic
versions of the theory subsequently were presented in
short, simultaneous publications by Shraiman,” Com-
bescot et al.,® and the present authors.” Although all
three of the latter papers reach identical and—we
believe—correct conclusions, they are each written from
rather different points of view. Our own paper,’ we now
recognize, is misleading at best; thus we feel a special obli-
gation to provide a clearer and more detailed account of
the situation.

The specific approach that we shall adopt here is essen-
tially the same as the one that we used in a recent discus-
sion of the dendrite problem.!® (See also Pelcé and
Pomeau'! and Ben-Amar and Pomeau.'?) It is closely re-
lated to the point of view presented by Shraiman’ and de-
pends, for a really deep understanding of its validity, on
the nonlinear analysis of Combescot et al.® In particular,
we derive a linear inhomogeneous integrodifferential
equation for capillary corrections to the shape of the
Saffman-Taylor finger and, from this, deduce via
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Wentzel-Kramers-Brillouin (WKB) methods a necessary
condition for the existence of solutions. Section II of this
paper should be understood as a reformulation of the
Saffman-Taylor problem in terms directly analogous to
those used in Ref. 10; the results are the same as those
presented in Refs. 7—9. Section III contains our interpre-
tation of Couder’s experiments®® in which he has per-
turbed the flow in the neighborhood of the tip of the finger
by trapping a small bubble at that point. As we shall see,
his results appear to be a strong confirmation of the solva-
bility mechanism for pattern selection.

II. SOLVABILITY CONDITION FOR THE
SAFFMAN-TAYLOR FINGER

Our starting point is the nonlinear integrodifferential
equation originally derived by McClean and Saffman® to
compute the shape of the steady-state finger. The system
of interest, shown schematically in Fig. 1, is an effectively
two-dimensional channel of width 2W and thickness
b << W along which a fluid of viscosity u is being pushed
by an immiscible second fluid of relatively negligible
viscosity. Both fluids are incompressible. The steady-
state configuration of this system is observed experimen-
tally to be one in which the inviscid pushing fluid forms a
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FIG. 1. Schematic diagram of the Saffman-Taylor finger.
Note that in our notation the channel has a total width 2W.
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finger of width 2A W along the center of the channel; and
the problem to be solved is to compute A as a function of
W, b, u, the speed of the finger U, and the interfacial ten-
sion . Observations of ordinary fingers—without
Couder’s perturbations at their tips—indicate that A is al-
ways greater than + and that it approaches 1 as a limiting
value as U becomes large.

The underlying physical equations of motion for this
model are relatively simple. The velocity v of the viscous
fluid is given everywhere by Darcy’s law:

bZ
12u

v= Vp=V¢, 2.1
where p is the pressure and ¢ is a velocity potential. In-

compressibility implies that ¢ satisfies Laplace’s equation:

V=0 . (2.2)
Boundary conditions at the surface of the finger are
v, = 94 (2.3)

on ’

where v, is the velocity of the boundary along its outward
normal and 9/dn denotes differentiation along this nor-
mal, and

(2.4)

where ¢, is the value of ¢ at the surface and « is the cur-
vature. At the walls of the channel, the viscous fluid is
conveniently assumed to obey pure slip boundary condi-
tions. Far behind the tip of the finger, the viscous fluid
remains at rest; far ahead of the tip, where this fluid is be-
ing expelled from the channel, it must be moving at a uni-
form speed AU.

Equations (2.2)-(2.4) would be formally identical to the
defining equations for the ‘‘one-sided” model of
solidification* if Laplace’s equation (2.2) were replaced by
the diffusion equation, that is, if ¢ could be interpreted as
a thermal field. Indeed, the two problems are isomorphic
to one another in the limit of infinitely fast diffusion or
infinitesimally slow motion; but one must be very careful
in taking these limits. In the present situation, where ¢
satisfies Laplace’s equation and has effectively an infinite
range in two dimensions, the motion of the finger is con-
trolled by its interaction with the walls of the channel.
This interaction turns out to play a role in the fingering
problem that is very similar to the role played by crystal-
line anisotropy for the dendrite.

McClean and Saffman® have used conformal methods
to transform this problem into a nonlinear
integrodifferential equation for the shape of the steady-
state boundary. They specify this boundary by writing 6,
its angle of orientation as shown in Fig. 1, as a function of
a real variable s. In their notation, s=1 at the tip of the
finger and s—O infinitely far back along one side;
0(1)= —m/2 (at the tip) and 6(0)=0. Their equation then
turns out to be

vqsi qsg'ﬁ =q —cos0 , (2.5)
ds

ds
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where the function g (s) is defined by

0(s")

1 —_Sp [lgyts)
ng (s) - fo ds' o (2.6)
and
2 2
_ bym 2.7)

V=
RuUW?(1—1)?

is the (presumably) small dimensionless parameter which
contains the surface tension. The function ¢ (s) is propor-
tional to the tangential velocity of the finger or,
equivalently, the tangential velocity of the viscous fluid at
the boundary of the finger in a frame of reference in
which the finger is at rest. Accordingly, g(0)=1 and
q(1)=0. The symbol P in (2.6) denotes the Cauchy prin-
cipal value. The reader should refer to the original paper
of McClean and Saffman® for a detailed derivation of
these results.

When the surface tension vanishes, v=0, (2.5) and (2.6)
can be solved explicitly to yield'
172

1=s , (2.8)

1+as

qo(s)=cosby(s)=

where a=(2A—1)/(1—A)2. In the Cartesian coordinates
(x,y) shown in Fig. 1, this solution becomes

2(l—MW
y=——""""Incos
T

™
. .9
AW 2.9

Note that this solution is valid for any value of the width
A in the physically meaningful range 0 <A < 1; thus, in
the absence of surface tension, we have a continuous fami-
ly of solutions and no explanation for the sharp selection
of A that is seen experimentally. There is no hint, at this
stage of the analysis, of why the value A= should have
some special significance.

Our next step is to let v be small but nonzero and
linearize (2.5) and (2.6) in the neighborhood of the solu-

tion (2.8). We define
0(s)=06u(s)+vO,(s) , (2.10)

and obtain an inhomogeneous linear equation of the form:

d*0, de,
v 152 +vP(s)¥+Q(s)91
0,(s")
+H(s)P ['ds'———~=R(s), (21D
0 (s"—s)
where
1 (1+a)
P(s)=— ———— 1% .
=~ S0 ras) 2.122)
(1+a)l/2(1+as)1/2
(s)= , (2.12b)
Qs $3%(1—s)
(1+a)!/? 1 3a
R (s)— ———=2 | (@212
() 25121 —s)"2(14as) |25 2(14as) 2120
1/2

- 7TS2(1*‘S)1/2 :
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Relevant boundary conditions are 6,(0)=60,(1)=0. If we
set v=0 in (2.11), the remaining equation is identical to
Eq. (29) of McClean and Saffman; that is, the solution of
the remaining inhomogeneous integral equation would be
the first term in a regular perturbation expansion for 8(s)
in powers of v.

We have departed from McClean and Saffman at this
point in that we have retained two terms in (2.11) that
contain explicit factors v and which, therefore, appear to
be of higher order in this small parameter. Our reason for
keeping these particular terms is that they contain deriva-
tives of 0, with respect to s, which means that they are
singular perturbations which cannot necessarily be dis-
carded without missing essential features of the problem.
Other nonsingular terms proportional to v in (2.11) have,
in fact, been omitted.

Before going on to a detailed discussion of the role
played by this singular perturbation, we find it convenient
to replace s in Egs. (2.11) and (2.12) by the independent
variable 7:

172
1—s

T (2.13)

1= —cotfy(s)=

In terms of the Cartesian coordinates shown in Fig. 1, 5
is the slope dy /dx which may be taken to vary from — oo
to + o as one goes all the way around the finger from
the right-hand side to the left, passing through n=0 at
the tip. We also find it convenient at this point to elimi-
nate the first derivative in the transformed version of
(2.11) by writing

e(n)z (1_}_32”2)1/2

(1A Ot (2.14)
Our new equation is
L) I re . OsmmOly)
d 2+Q1 )+7TPwad77—7-]T*—~R(7])’
(2.15)
where
5 4841472
( )=.__.___77_.~ .
0.(n (1+an2)z (2.16a)
A o ABY 1+ 1) 41 )
(1= , 2.16
Qx(m,7m (1482921 + B2 (2.16b)
5o _ MB3+B(*—2)]
Rim= (1482 (147924 (2.16¢)
and
A
1/2_
p=titay™=17% - 2.17)

Our extension of the range of 1 to include the negative
real axis in (2.15) requires that we consider only sym-
metric fingers so that 6, and © are antisymmetric func-
tions of their arguments. Again, in (2.15), we have omit-
ted nonsingular terms of order v.

In general, the conditions under which an equation of
the form (2.15) can be solved are very much more
stringent than they are for the related equation in which
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the derivative is missing. The mathematical situation is
easiest to visualize when one is dealing with a purely local
equation, that is, a differential rather than an integral
equation. In this case, one can imagine constructing a
solution by starting on some special limiting portion of
the curve, say, far down one of the sides of the finger, and
integrating forward. When the second derivative is
present, this procedure is likely to produce completely
unacceptable behavior near the tip and on the opposite
side of the finger. The reason is that the homogeneous
part of the equation has extra solutions which always are
rapidly varying and frequently are badly behaved. For
example, these extra solutions may diverge at large 7.
Only under very special circumstances will it be possible
to construct a physically sensible particular solution of the
inhomogeneous equation in which the badly behaved ex-
tra solutions are completely absent. The procedure of ac-
tually constructing a particular solution and checking to
see whether it is properly behaved has been carried out
explicitly for local models of interfacial pattern forma-
tion.!»!* These calculations have been performed both
numerically and analytically, and for both the fully non-
linear and the linearized versions of the local models. It
was these investigations in which the solvability mecha-
nism for pattern selection was discovered'>!® and which
have led us to postulate the existence of a similar mecha-
nism for the nonlocal Saffman-Taylor and dendrite prob-
lems.

The mathematical situation looks considerably more
difficult when, as in (2.15), the equation also contains a
nonlocal term. This integral cannot be assumed to exist
at all unless O is sufficiently well behaved. We are there-
fore unhappy with previous discussions, especially our
own,’ in which it was made to seem as if we were actually
constructing a solution for an arbitrary value of v with,
say, a nonzero mismatch angle at the tip or a divergence
along one side of the finger. Rather, it seems to us that
the best one can do with present analytic techniques is to
obtain a necessary but not sufficient condition for the ex-
istence of solutions. We shall do this formally by requir-
ing that the inhomogeneous term R on the right-hand side
of (2.15) be orthogonal to the null space of the linear
operator, say .L, on the left. Even this prescription, how-
ever, is an overstatement of what we are actually doing
because it implies that we can properly define the function
space in which we are working. The true state of affairs is
that we can, by WKB methods compute a null eigenvec-
tor 90 of the adjoint of £, £'©}=0, and then write

A(k,v)zf dnOiR = f dnel.Loe

= f*“dne,z;’feg:o. (2.18)

The third equality i m (2.18) defines what we mean by the
flomt operator L', This definition makes sense only if
O)) exists and is sufficiently well behaved that all of the in-

tegrals in (2.18) are convergent, and if the integration by
parts implied at the third step is legal. Finally, existence
of the desired solution © implies that the solvability func-
tion A must vanish. But the vanishing of A in no way
guarantees the existence of ©.



2328

Only the integral kemel in (2.15) fails to be self-adjoint.
Thus, the equation for 60 is

del _ 1. pe ., GOl
> +0imefm——P [* dy=—"" =0

(2.19)

From this point on, our analysis is essentially the same as
in Ref. 10, although some of the detailed results are
dlﬁ'erent We suppose that the solutions of (2.19), say
©}.(n), have the WKB form, exp[W(77)/V/v], where the
V. (1) remain finite and smooth in the limit v—0. Fur-
ther, we suppose that the W (7) have points of stationary
phase 7. in the upper (lower) half of the complex 7 plane,
and that the integral in (2.19) can be evaluated in the limit
of small v by deforming the contour of integration into
the path of steepest descent through the appropriate 7.
The latter condition requires ReW,(7.)<0. Then the
only contribution to the integral that is not exponentially
small of order exp[W.(7+)/V'v] is the part that comes

from integrating around the pole at »=7%'. In this way,
(2.19) becomes
2 B

VWGOi+Qi(7])Ggi(17)=O (2.20)
where

_ 484(1+in)32(1 F in)17?

0. m)= B*(1+in) 2(122117) ‘ 2.21)

(1487
The WKB solutions of (2.20) are
1 —
0+\7 Q L}—/ (77) +

where

Valm==i ["dn' @ V)
(1£in")**(1 Fin)'/*
1 + Blan

The points of stationary phase of Ggi(n) occur at
Tj+=1ti as required for self—consistency of the above cal-
culation. Note that (n)—\l’* () and that
Y (—n)=Y_(n)=V%(n); thus the ©] +(77) form a com-
plex conjugate pair. Both of the ©(.i(n) vanish like
|7 |1/2=Y2 in the limit | 7| — o, a result which is im-
portant in order to assure convergence of the integra-
tions in (2.18). [The null eigenvectors of the original
operator L diverge like |7 |1/ 2+V2 These power laws
are quite different from the exponential behavior found
in the dendrite problem. See Eq. (2.20) in Ref. 10.] The
antisymmetric combination of the ©g. appropriate for
use in the solvability condition (2.18) is

=22if" [ "dv’ (2.23)

93<n>=%[egmn—ez_(n)]=1meg+<n). (2.24)

Finally, we have
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Arw= [

L a6t . mi
== f_w dn e}, (mR(n)

* dn Imeg(n)ﬁ(n)

= f dn F(mexp[¥ . (7)/Vv]=0, (2.25)
where
m3+8 02 —2)] [1—ip |
F(yg)=——t= — — 2.26
V2B(1+79%)3% | 1+in 2.26

In writing (2.25), we have used the antlsymmetry of R(n)
and the various symmetries of the 60+(77) deduced above.

In the limit of small v—the case of physical interest—
A(7,v) can be evaluated by the method of steepest des-
cent. We have already used the fact that W (n) has a
point of stationary phase at n=7=+i with Re¥ (/) <0,
and we now may expect that the integral in (2.25) will be
determined by the behavior of the exponential function in
the immediate neighborhood of that point. F(n) has no
singularities on the real axis, therefore we may deform the
entire contour of integration into the upper half of the
complex 1 plane. From (2.23), we see that this point of
stationary phase is also an algebraic branch point, and
that ¥, has an additional nearby logarithmic branch
point at n, =i /p.

Appropriate contours of integration for the evaluation
of A are shown in Fig. 2 for two qualitatively different sit-
uations, A <4 and A> 1. In the first case, 1/8> 1, and
the contour does not pass near 7,. We can perform the

integration by expanding ¥ about n=i:
g [2 1/4 52 ,
V., (n)=—RUyA)—= | = 14
o 7| -2 |70
(2.27)
where
374 1/4
=2 [ ai=w 1w (2.28)
0 1—pB%u

We find

0 Re m OT Re m

(@) <172 (b) A>1/2

FIG. 2. Contours of integration for evaluating the solvability
function A.
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}\.6/7(1—2}\.)1/14 BZIO()\') )\,—%OCVZ/3 . (2.31)

AR V) =N————— 77— -, (2.29)
(1=A)wv Vi This relationship determines the smallest value of A at

where N ~2.008. From experience with local models,'*!*

we know that the constant N in formulas of this kind is
not determined accurately by the linear theory. The actu-
al value of N is of no importance in the present context
but some estimate will be needed later. Equation (2.29) il-
lustrates the singular nature of the capillary per-
turbation— A has no regular series expansion in powers of
v—and also implies the absence of solutions at nonzero v
for A < 1.

For the second case shown in Fig. 2, A > 1, the station-
ary point 7 =i must be interpreted as a complex conjugate
pair of points on either side of a branch cut running from
1N, =i/B to + iow. Accordingly, as shown in the figure,
the path of steepest descent must include a section which
goes from =i —8 (8§— +0), around the branch point at
i /B, and back up to i +8&. If this section of the contour is
long enough to contain many oscillations of the integrand,
then A itself is an oscillating function of its arguments.
On the other hand, as A approaches 4, the branch point
comes close enough to the point of stationary phase that
the analytic structure is not resolved by the integrand and
no oscillations occur in A. This analytic mechanism is
precisely the same as the one that produces zeros in the
solvability function for both local'>»'* and nonlocal'®~'?
models of dendritic solidification. The quantity B*—1
turns out to be a mathematical analog of the crystalline
anisotropy. The general form of A as a function of v for
these two different choices of A is shown schematically in
Fig. 3. Note that A has infinitely many zeros for A > 1.

The crossover between oscillating and smooth behavior
of A occurs when the imaginary part of ¥_ /V'v changes
by an amount of order unity as 7 moves from one side of
the cut to the other at 7=i. Integrating (2.23) around the
pole at ' =mn, =i /3, we find

) . . (2A—1)>*
%lir%)[\l’+(l +8)—¥, (i -——8)]227Tl“(—1_T (2.30)
from which we obtain, for A near 1,
AN
A<1/2
A>1/2
C ‘vA V)

FIG. 3. Qualitative behavior of the solvability function A for
relative widths A < T and A > 1.

fixed v or, alternatively, the largest v at fixed A for which
a steady-state finger exists. Detailed estimates for both
the numerical coefficient in (2.31) and the relationship be-
tween A and v on other branches of the solution have
been presented recently by Tanveer.!” The final step in
the argument is to identify the crossover condition (2.31)
as the actual selection criterion. As in the case of the
dendrites, we argue that the solution with the smallest A
is most likely to be dynamically stable—that broader
fingers with flatter fronts would be subject to the same in-
stabilities of the flat surface as those which produced
fingers in the first place. We emphasize, however, that
none of this analysis touches directly on questions of
dynamical stability. (For discussions of the stability of
viscous fingers, see Bensimon et al.'® and Kessler and
Levine.')

III. TIP PERTURBATIONS

Couder and co-workers®® recently have made an im-

portant experimental discovery that graphically illustrates
the main features of the solvability mechanism. What
they have found is that a small bubble of the inviscid,
pushing fluid may become trapped at the tip of a finger
and that, when this happens, the properties of the finger
are changed in remarkable ways. In particular, the pres-
ence of the bubble allows a finger in a channel of width W
to have a relative width A which is appreciably less than 1
and which decreases toward zero as W becomes large.? A
related observation pertains to fingers in a radial geometry
where, ordinarily, all fingerlike protuberances are unstable
against tip splitting because of the absence of sidewalls.
When a bubble is trapped on such a finger, the tip stabi-
lizes and moves outward like a dendrite, leaving a train of
regularly spaced sidebranches behind it.>

Just how a bubble can become attached to the tip of a
finger is not clear at present. The experimental photo-
graphs indicate that there is a thin film of the viscous fluid
separating the bubble from the finger. (In these experi-
ments, both the finger and the bubble are nitrogen gas,
and the viscous fluid into which the finger is being pushed
is silicone oil.) The tip of the finger appears to be slightly
depressed in a way that somehow must prevent the bubble
from falling off to the side. This configuration is sketched
schematically in Fig. 4. For our purposes, all that we
need to know is that the flow of the viscous fluid is per-
turbed near the tip. Our proposal is to represent this per-
turbation in a purely phenomenological way by a nonzero
effective opening angle Af as shown in the figure. The as-
sumption of a nonzero A6 has become a familiar
mathematical device n numerical formulations of the sol-
vability principle.*?° In general, one can compute shapes
of steady-state fingers for arbitrary values of A and v if
one allows A6 to be a free parameter. Then the condition
that the tip be smooth, AG(A,v)=0, is a solvability condi-
tion. In fact, it must be the same as the solvability condi-
tion derived above; that is, A@ must be proportional to A.

One particularly simple way to estimate the relation be-
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tween A6@ and A within the linear theory is to rewrite
(2.15) in the form

2 _ w (9,m")0(7n")
.9 92 +Q1(n)e(n)+ipf dn'w—,n—
dn T Ve n—n
. d
_R(n)-}-AOdn 8n) . (3.1

The new term on the right-hand side containing the
derivative of the & function might be thought of as
representing some sort of sharply localized perturbation at
the tip of the finger; but the argument for writing this
equation is more general. As can be seen by integrating
(3.1) twice across an infinitesimally narrow interval in-
cluding =0, the new term amounts simply to a con-
straint that the first-order correction, v, as defined in
(2.10), have a discontinuity of size A6 at the tip. We argue
gue that, no matter what the actual physical origin of the
perturbation, if it is legitimate to deal with it in a linear
approximation, then the equation for © must have the
form shown in (3.1) with, perhaps, 8(7) being replaced by
some less sharply localized function of 7.

The main uncertainty is how the opening angle A6
might depend on various parameters like U, W, A, etc.
We shall see that A6 enters our predictions of experimen-
tal results only as the argument of a logarithm. As a re-
sult, its precise value is not going to be very important for
the simple purpose of demonstrating that a nonzero (posi-
tive) A@ produces fingers with A <1 in qualitative agree-
ment with experiment. We find it more interesting, how-
ever, to try to be a bit more quantitative by examining a
suggestion made by Couder et al.?> Their idea is that the
tip of a viscous finger in a sufficiently wide channel might,
like the tip of a dendrite, be insensitive to the walls of the
system. More specifically, the curvature « of the tip
might be determined only by the flow rate U (via the di-
mensionless capillary number pU/y) and not by the
channel width W. In what follows, we shall modify their
assumption slightly by assuming that it is A6 rather than

~ /’

\\
x

FIG. 4. Schematic illustration of a finger with a bubble
trapped at its tip.

x which depends only on U /y. (A6 might depend also
on the ratio of the size of the bubble to the thickness of
the cell. However, only a narrow range of bubble sizes is
reported to work in the experiments.)

Our next step in the analysis is to multiply (3.1) on the
left by eg(n) [see (2.24)] and integrate over 7. The result
is

1/2

de}
A6 . (3.2)

dn

A(A,v)=A0 =

2
=0 v

The crucial point is that, for positive values of A6, we
now have a solvability condition that can be satisfied for
A< % That is, because the right-hand side of (3.2) is posi-
tive and nonzero, we can use the upper curve for A in
Fig. 3 and its analytic approximation in (2.29) to find a
new relation between A and v for fixed A6.

There are several useful ways in which to display this
relation. The most direct is

B (L)

AO=N(H)'2A17(1—24) 14 PBexp =
v

(3.3)

Because v is experimentally of order 10~3 and all other
parameters entering (3.3) are of order unity, A6 must be a
small angle. It is at this point that the uncertainty in N
due to the linear approximation might make some
difference; but it should be clear here that our results are
going to depend most strongly on the behavior of the ex-
ponential term and only relatively weakly on the actual
values of A8 or N.

A second useful form of this relation is obtained by tak-
ing the logarithm of both sides of (3.3) and rearranging
the ingredients of v shown in (2.7). The result is

172 22
(1—2)

11

_ L |uU
W W,

Y

Iy(A), (3.4)

where the length W, is given by

b
(12)1/2

N
A6

1
2

0=

In
(1—=)A*Ww

1/28
] | 5.9

Here we have separated the various terms inside the loga-
rithm in such a way as to emphasize the specially weak
dependence of W, on all but the first factor, A6/N, which
we assume to depend only on pU/y. We can now check
the consistency of this assumption by computing W, from
(3.4) using measured values of A and W at fixed U. A set
of four such experimental points (A, W), taken from Ref.
2, is shown in Fig. 5 for the case U=6 cm/sec. Other
relevant parameters are ¥ =20.9 dyn/cm, u=0.965
g/cmsec, and b=0.1 cm. All three of the data points for
the wider channels, W=2.0, 3.0, and 6.0 cm, yield
Wy=0.26+0.01 cm. For W=1.0 cm, we find W;=0.28
cm. The solid curve in Fig. 5 is a graph of Eq. (3.4) plot-
ted for W;=0.26 cm. The apparent agreement between

172 [ (1—20)b yl/l“'
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FIG. 5. Relative width A as a function of the total width of
the channel 2W. The experimental points are those of Couder
et al. (Ref. 2), and the theoretical curve is a graph of Eq. (3.4)
with W,=0.26 cm.

theory and experiment for the W dependence of anoma-
lously small A’s seems to us to be nontrivial evidence in
favor of the proposed selection mechanism.

In order to obtain some information about the U depen-
dence of W, and A0, we have evaluated the above formu-
las, Egs. (3.3)-(3.5), using values of A, W, and U taken
from the experimental data displayed graphically in Ref.
2. Our results are shown in Fig. 6 in the form of a graph
of In(A@) as a function of pU/y. (We have used
N=2.008 for this purpose.) The width of the shaded re-
gion in the figure is a rough measure of our uncertainty
which is due, in part, to the scatter in the data but, more
importantly, may indicate a breakdown of our assump-
tions at small W. Note that the values of A6 deduced in
this way decrease from about 0.15 at uU /y =0.1 to 0.028
at uU/y=0.5. This downward trend at large velocities

T T T T
_.2 - —
In(A8)
_3 - —
-4 1 1 1 1
(0] O.l 0.2 0.3 04 05
w7y

FIG. 6. Estimated variation of In(A6f) as a function of the
capillary number (U /y) obtained from data in Ref. 2. The ex-
perimental points lie roughly within the shaded region.
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may have some dynamical significance, but the small size
of AB argues against the literal interpretation of this quan-
tity as an observable angle.

We return finally to the observation of Couder et al.
that their graphs of A versus U for different values of W
collapse onto a single curve if they plot, instead of A, the
curvature of the tip of the unperturbed finger as a func-
tion of U. That is, they plot

_ a1—A)

T ow (3.6)

where y(x) is taken from the Saffman-Taylor solution
(2.9), and they find (roughly) that « is a universal function
of uU/y independent of A or W. Our theoretical predic-
tion for the right-hand side of (3.6) is

1/2

T Io(A) .

“ow,

K (3.7)

pU
14

This is not precisely the experimental conjecture because
the factor I, depends, albeit weakly, on A. However, the
experiments reported so far almost certainly were not ac-
curate enough to have detected the A dependence predict-
ed by (3.7). Graphs of the right-hand side of (3.7) for
various values of W do lie within the scatter of the experi-
mental points because, in effect, the U dependence of W,
has been adjusted to make that happen.

The limit A—O0 is specially interesting in (3.7) because,
according to (3.4), it corresponds to the absence of
sidewalls, W — «, and ought therefore to be appropriate
for understanding how trapped bubbles produce anoma-
lous dendrite-like fingers in the radial experiments.}
Equation (3.4) implies that the product A2W remains finite
in the limit W — o . The function Iy(A) is well behaved in
this limit: I4(0)=1.231; and the argument of the loga-
rithm defining W, in (3.5) is likewise well defined if AW is
finite. The similarity to the dendrite theory seems not to
be completely precise, however. In the latter theory,!0~1?
the solvability principle determines a special value o * of a
dimensionless group of parameters, o =dx*D /U, where
dy is a capillary length proportional to the surface tension
and D is the diffusion constant. As noted above, crystal-
line anisotropy plays a special role in fixing o*. By com-
paring Egs. (2.1)-(2.4) to the analogous equations for the
dendrite problem, we find that the direct analog of o for
the viscous finger is the group & =y«*b2/12uU. We use
(3.7)—and then (3.5)—to obtain

bl |

2W,

seo L _0.379
B [In(AG)]?

(3.8)
12

In the dendrite theory, o* is supposed to be independent

of U, at least in the limit U—»0. It is conceivable that the
same thing happens to & * in (3.8), but we see no evidence
for such an effect. Moreover, we see no reason to believe
that theories of pattern selection for these two physically
different systems—fingers with bubbles and dendrites
with crystalline anisotropy—should be identical at this
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level of detail.

In conclusion, the qualitative change in the dynamics of
viscous fingers caused by bubbles attached to their tips
seems to be a clear demonstration of the general principles
of the solvability theory. Positive values of the effective
opening angle A@ produce fingers with relative widths A
less than J; the further assumption that A6 depends only
on the velocity U leads to quantitatively satisfactory one-
parameter comparisons between theory and experiment.
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