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Needle crystals with nonlinear diffusion
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We study the free-boundary problem of the steady growth of a solid into its undercooled melt, al-
lowing the thermal diffusion coefficient to have an arbitrary temperature dependence. By developing
a novel approach to the Ivantsov method, we show that needle-crystal solutions can be found in two
and three dimensions. The calculation establishes that the only steadily advancing, shape-preserving
solidification fronts the method can produce, for linear or nonlinear diffusion, are parabolas in two
dimensions and elliptic (or circular) paraboloids in three dimensions. We discuss the limitations on
the Ivantsov method, pointing out that it is only capable of finding families of solutions of the prob-
lem, whose members are related by a rescaling of space and time. We show explicitly that including
a heat-loss term in the equations causes the method to fail, and argue that any term which introduces
a length scale into the problem will, in general, do likewise.

I. INTRODUCTION

Virtually all studies of dendritic crystal growth which
adopt the view of the problem as one of macroscopic heat
diffusion with a moving solid-liquid interface start with
Ivantsov's classic solution' of the free-boundary problem
of the steady growth of an isothermal, paraboloidal den-
drite. In this problem the thermal diffusion coefficient is
taken to be a constant (at least in the liquid phase) and a
constant latent heat is released at the advancing
solidification front. In this paper we extend this solution
to include an arbitrary temperature-dependent diffusion
coefficient. Using a novel geometrical approach to the
problem of a steadily advancing, shape-preserving
solidification front, we show that the only solutions to this
problem accessible to Ivantsov's method —which makes
no explicit a priori assumption about the shape of the
front —have paraboloidal (or, in two dimensions, parabol-
ic) solidification fronts.

A major shortcoming of the Ivantsov model of dendri-
tic growth is the assumption that the entire solidification
front is at the equilibrium melting temperature. As a
consequence of this assumption, the model has no natural
length scale, so that solutions occur only in families relat-
ed by a dilation transformation. This then leads to the
well-known difficulty that the undercooling determines, in
this model, only the product of the dendrite's tip radius
and growth velocity, not the two quantities separately. In
addition, this assumption leads to the solutions being un-
stable against infinitesimal perturbations of arbitrarily
short wavelengths, which indicates that the problem is
ill-posed. This difficulty is still present in the problem
with nonlinear diffusion, since the temperature depen-
dence of the diffusion coefficient does not define a length
scale. Intense theoretical effort " has gone into remedy-
ing this shortcoming by introducing capillary effects into
the problem. Similar effects should also relieve these
difficulties in the problem with nonlinear diffusion, but it
is not clear how the singular perturbation theory would

proceed: existing treatments first eliminate the tempera-
ture field from the equations by means of a Green's-
function technique; however, this approach is suited only
to linear equations and so is not obviously applicable to
the problem with nonlinear diffusion.

In principle, the nonuniqueness problem might be
remedied by including in the model any effect which
suffices to define a length scale, although it is not certain
that any particular effect of this sort will in fact remove
the nonuniqueness. To investigate this question, we in-
clude a heat-loss term, in the form of an arbitrary (linear
or nonlinear) function of temperature, in the diffusion
equation and again attempt to solve the free-boundary
problem. However, we find that with any such heat-loss
term present, the Ivantsov method fails to yield solutions.

It does not seem to have been widely appreciated that
the Ivantsov method is in fact quite limited. As men-
tioned above, it makes no explicit assumption about the
shape of the solidification front; however, as we will dis-
cuss below, it does make an ansatz which virtually forces
any solutions the method will find to occur in families re-
lated by simultaneous rescaling of space and time. The
method certainly leans heavily on the assumption that the
solidification front is isothermal, but we argue further that
in general the absence of a length scale is needed in order
for it to produce solutions.

In Sec. II we present the original Ivantsov method and
show that it admits a geometrical interpretation when re-
stricted to the problem of steady, shape-preserving
growth. Along the way, we show how the Ivantsov
method requires the absence of a length scale and so is
only capable of finding families of solutions related by a
scale transformation. We next make a change of vari-
ables, rewriting the problem using temperature as one
coordinate, with the other coordinates suggested by the
geometry of the problem. In Sec. III we finally make use
of the diffusion equation, only the boundary conditions
having been used thus far, and show how to obtain the
solution of the problem with a temperature-dependent
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II. BOUNDARY CONDITIONS AND THEIR EFFECTS

In the standard Ivantsov model of dendritic growth,
two boundary conditions are imposed on the solidification
front. First, the front must be an isotherm at the equilib-
rium melting temperature TM,

T(r, t ) = TM ——const. (2.1)

on the solidification front. Here r(t) represents the posi-
tion of the front at time t. The second condition is the
Stefan condition, which states that the rate of advance of
the front is governed by how quickly the latent heat
released there can be diffused away, so that we have

diffusion coefficient in two and three dimensions. We also
show that the method cannot find solutions if a heat-loss
term, which would introduce a length scale into the prob-
lem, is included, and that when such a term is absent the
only solutions which can be found are those having para-
bolic or paraboloidal solidification fronts. This, inciden-
tally, establishes that the solutions obtained by Ivantsov'
and by Horvay and Cahn in the case of a constant
diffusion coefficient are the only steadily advancing,
shape-preserving solutions for that problem which are ac-
cessible to the method. We discuss the results in the final
section.

tion (2.4), which need only hold at the solidification front,
to a differential equation which is required to hold
throughout the liquid region:

(2.5)

where F(T) is any differentiable function of temperature
whose derivative is equal to —Dc/L at T=T~. It is im-
portant to realize that this is an ansatz; it is not derived
from the diffusion equation, but rather is imposed
artificially and so represents a restriction on the solutions
the method can produce. Solutions of the original moving
boundary problem need not satisfy (2.5), but the method
is only capable of finding those solutions which do. This
is a very strong limitation on the method —it can only
find solutions of the problem for which each isotherm
moves with a normal velocity which is proportional to the
normal temperature gradient or heat fIux through the iso-
therm (although the constant of proportionality will differ
from isotherm to isotherm). To proceed with the method
and to investigate further the consequences of the ansatz
(2.5), we multiply by F'(T) and use the fact that F can de-
pend on position and time only through T, thus recasting
(2.5) into the form

(2.6)

LU„=(Dcn VT)L, (2.2)

where D is the thermal diffusion coefficient and c the
specific heat (both at the melting temperature), L is the la-
tent heat, v„ is the local normal velocity of a point on the
advancing solidification front, and n is the unit vector
normal to the front and directed into the liquid; the
parentheses denote the discontinuity in the bracketed
quantity across the front. A final boundary condition is
imposed at infinity, namely, that the liquid be under-
cooled far from the front,

T~TM —L b, /c ( TM ) (2.3)

at infinity in the liquid, where 5 is a dimensionless mea-
sure of the undercooling.

The first place in which the Ivantsov method uses the
isothermal front condition (2.1) is in taking the entire
solid region to be at the temperature TM. The tempera-
ture gradient in the solid is then zero and so it drops out
of the Stefan condition (2.2). Then by differentiating (2. 1)
with respect to t, we can write the normal velocity v„of
the interface in terms of the derivatives of T at a fixed
point in space just on the liquid side of the front. This
again makes use of the isothermal condition through its
consequence that the temperature gradient at the front is
parallel to n. The result enables us to rewrite the Stefan
condition in the form

We immediately see that this equation is invariant under
simultaneous rescaling of length by a factor b and time by
a factor b (or, equivalently, velocity by a factor b ').
Thus if we find a solution F(r, t) which describes a
solidification front advancing with velocity v, then
F(br, b t) is also a solution describing a front whose ve-
locity is v/b. Since the diffusion equation is also invariant
under these rescalings, any solution of the full problem
which corresponds to growth at one velocity is related by
a rescaling to solutions for growth at any other velocity.
If another term is included in the diffusion equation
which breaks this invariance, then we could conceivably
find a family of solutions F(br, b t) of (2.6) of which only
one member (or discretely many members) satisfies the
modified diffusion equation. However, when we include a
heat-loss term in the diffusion equation, we will find in-
stead that the method simply fails to give any solutions at
all.

In order to solve Eq. (2.6), Ivantsov used separation of
variables to find a general time-dependent linear solution'
and then found special solutions by envelope formation.
Since ours is the less ambitious goal of finding only
shape-preserving solutions which advance with constant
velocity, we will develop a more elegant method which
finds all such solutions of the full moving boundary prob-
lem which are consistent with the ansatz (2.5). For a
solution which advances steadily at velocity v, we have
dF/dr = —v. VF and so (2.6) becomes

=D(TM )c(TM )
I
VT

I

'
at

(2.4)

at T= TM in the liquid, which is the form we will use in
subsequent calculations.

The Ivantsov method produces solutions of the original
moving boundary problem by promoting the Stefan condi-

I
VF

I

' v.VF=O, —

or, after completing the square,

(2.7)

(2.g)
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We may choose the x axis to point in the direction of v.
Using the notation x, y, z to denote unit vectors in the
directions of the Cartesian axes, we find that (2.8) is
equivalent to

2 VF =x+g(r), (2.9)

where g'(r) is any irrotational unit vector field. An irrota-
tional unit vector field, however, is a rather restricted ob-
ject. We can see how it is restricted by noting that since
its curl vanishes, we have a fortiori g'X(VX(')=0; using
vector identities and the fact that g' has constant magni-
tude, we can reduce this to

(g V)(=0, (2.10)

which means that g does not change in the direction of g,
i.e., g is constant along lines radiating outward from the
interface.

At this point we have a good deal of information about
the geometry of the isotherms. We know that the vector
field x+f is everywhere normal to surfaces of constant F,
which, since I' is a function of T only, are isotherms. In
addition, we have a simple characterization of the unit
vector field g. Motivated by this knowledge about the
geometry of the isotherms, we proceed to set the problem
up in the hodograph coordinates T, 0, and P, where 0 and

P are two angles which specify the direction of g'. To do
this we first choose an arbitrary reference surface
r=ro(0, $), most conveniently located within the solid re-
gion, such that the point ro(0, $) on this surface is the
point where the line of constant g whose coordinates are 0
and P would cross the reference surface. We then define
the unknown function R(T, O, Q) to be the distance along
this line of constant g from ro(0, $) to the isotherm at
temperature T. Thus the location of a general point in
space is given by

r(T, O, Q) =ro(0, $)+R (T, O, Q)g(0, &P) . (2.11)

u =(1+/ x)R(T, O, Q) (2.13)

will play a special role in the calculation. This comes
about because differentiating u with respect to 0 and ap-
plying (2.12) yields

Bu/BO= —(x+g) (Bro/BO), (2.14)

which is independent of T. A similar result is obtained
for Bu /BP. Thus we see that u can be written as the sum
of two functions, one of which depends only on T, the

At this point there is a considerable amount of arbitrari-
ness in the choice of ro and R; as the calculation
progresses, we will discover convenient ways of making
these arbitrary choices.

Since, by construction, the vector x+g is normal to iso-
therms and the vectors (Br/BO)r and (Br/BP) z. are tangent
to isotherms, we find

aR /aO= —(x+j).(ar, /aO+R ag/aO)/(1+j. x), (2.12)

and similarly for BR/BP. Using these results, we can see
that the new unknown function

other only on the angles 0 and P. However, we can ab-
sorb the function of angles into the reference point ro in
(2.11) and so without loss of generality we can take u to
be a function of T only. This implies in turn, through
(2.14) and its counterpart for Bu/BP, that both Bro/BO
and Bra/BP are orthogonal to x+g'.

Next we will rewrite the Stefan condition (2.4) in terms
of u. First note that for steady growth, (2.4) becomes

aT
C)X

)VT) at T=TM .I.U
(2. 15)

u '( TM ) = —2D ( TM )c ( TM ) /L v, (2.17)

so the Stefan condition becomes simply a condition on the
derivative of the new variable u.

The original free-boundary problem has now been re-
duced to the problem of finding a function u (T) which
satisfies the boundary condition (2.17) and, to satisfy (2.3),
diverges as T approaches TM Lb, /c(T—M) from above.
This function, together with the reference surface ro(0, $)
and the unit vector field g(0, $), must also allow a solu-
tion to the diffusion equation. We now examine how this
restricts the possible solutions further.

III. DIFFUSION EQUATION

So far, we have only used the boundary conditions on
the free-boundary problem and the ansatz (2.5). We now
consider the diffusion equation in the liquid region, which
for steady-state growth reads

O=V [D(T)VT]+v —1(T),aT
0x

(3.1)

where I (T) is a heat-loss term which has an arbitrary
temperature dependence. For example, we could take I
to be oe(T)(T —T„), with T„ the ambient temperature
and e the emissivity of the liquid, thus describing radia-
tion. This term, whatever it may be, has units of
(temperature/time) and so can be used to define a natural
length scale for the problem. However, we will show that
in order for the Ivantsov method to lead to solutions of
the problem, I must be identically zero.

We will first work the problem out in two dimensions.
The unit vector field g now depends only on the single
coordinate 0. %'e define this coordinate by writing

g'=x cosO+y sinO . (3.2)

Note that 0 is not necessarily the angular coordinate ap-
pearing in ordinary cylindrical coordinates, but rather is a
general coordinate which gives the orientation of the unit
vector field g. Since, as we saw above, dro/dO must be
orthogonal to g+x, and since the vector (d /dO)(g/I
+g x) is orthogonal to g+x, we can write

dro/d0=Q(0)(d/d0)[g'/(1+ f x)], . (3.3)

Since x+g must be orthogonal to isotherms, the gradient
of T must be parallel to it, so we have

VT =(x+g)/(x+ g). (Br/BT) = (x+g')/u', (2.16)

where the prime denotes a derivative with respect to T.
Substituting this into the Stefan condition (2.15) yields
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where Q is an unknown function of 0. We have already
written the gradient of T explicitly in Eq. (2.16). It is
now a standard problem in tensor analysis' to write the
second-derivative term in (3.1) in the (nonorthogonal)
coordinates T and 0, starting with the expression (2.11)
for the position vector, differentiating and using (2.14) and
(3.3) to find the components of the metric tensor. After a
certain amount of manipulation we find that the diffusion
equation (3.1) takes the explicit form

X [u +f(0,(h)u+h(0, $)], (3.8)

where the Q;, are as-yet undetermined functions of 0 and
After a tedious calculation, the diffusion equation (3.1)

can now be put in the form

O=D[2u+f(0, $)]+ —2 +2, +U-Du" D' r(T)u
g' Q 1+cos6

O=D+ —2 +2, +U — [u(T)+Q(0)] .
Du" D' I (T)u'

u' 1+cosO

(3.4)

where f and h are given by

f(0 4)=Q11+Q22

Q 11Q22 Q12Q21

(3.9a)

(3.9b)

=x cosO+ y si'n0 cosP+ z sin0 sing . (3.6)

We then note that the vectors (8/BO)(g'/I+)'. x) and
(8/BP)(g/1+)' x) are both orthogonal to g+x, and are
singular only at 6=~. Then since, as we have seen,
Br11/BO and Bro/Bp must be orthogonal to g+x, we may
write

By solving (3.4) for Q(0), differentiating with respect to T,
and noting that the result must vanish identically, we see
that (3.4) can hold only if we have I =0. Thus the heat-
loss term, which would have introduced a length scale
into the problem, must in fact be absent in order for the
Ivantsov method to yield solutions.

We now look for solutions of (3.1) with I =0, but still
keeping an arbitrary diffusion coefficient D(T). The only
0 dependence remaining in the diffusion equation (3.4) is
then in Q(0) and so Q must be a constant. Thus drold0
must be a constant multiple of the vector (d/d0)(g/I
+g'. x). However, according to (2.11), this can be ab-
sorbed into u ( T) by simply adding the constant Q to it.
Thus without loss of generality we may take ro(0) to be a
constant. This implies that all the lines of constant g' ap-
pear to radiate from a single point (which we may take to
be the origin), and leaves us with the result

r( T, 0) =u ( T) ( x cos0+ y sin 0) /( 1+cos0),

which shows that the isotherms are parabolas with ver-
tices along the positive x axis and foci at the origin. Note
that the vector (d/d0)(g/I+/. x) which we used in set-
ting up the calculation is singular only at 0=~, which is
safely inside the solid region.

Now that we have found the isotherms, the final step of
the solution is to label them with temperature values by
solving for u(T). We will defer the discussion of this final
step, however, until after we have looked at the three-
dimensional problem.

The calculation for needle crystals in three dimensions
parallels that for two dimensions. We specify 0 and P by
choosing g' to have the explicit form

X [—x tan(0/2)cos2$+ 2y cosP —2z sing],

(3.10)

where we have chosen ro (0=0) to be the origin and set

A= —C (3.1 1)

With this form for ro, the isotherms are easily seen to be
elliptic paraboloids. The eccentricity of the elliptical cross
section of the isotherm at temperature T is [2C/u(T)
+C]', with the major axis in the y direction and the
minor axis in the z direction. In order for the line 0=~,
along which the tangent vectors used in (3.7) are singular,
to lie entirely within the solid region, we must also choose
C (u(TM ).

The one remaining task is to solve the diffusion equa-
tion (3.4) for the two-dimensional problem or (3.8) for the
three-dimensional problem, with I and f equal to zero
and h constant in (3.8). Both of these equations can be
rewritten in the form

As in the two-dimensional calculation, we next solve (3.8)
for h. We then differentiate the resulting equation with
respect to T; since h is independent of T, this leaves us
with an equation in which h does not appear and which
we can then solve for f. We then differentiate this second
equation with respect to T, thus obtaining a third equa-
tion in which the only terms depending on angles come
from the I term in (3.8). From the form of this third
equation, we see that I must vanish for the three-
dimensional calculation to go through, just as it had to
vanish in two dimensions. The second equation then
forces f to be constant and the first in turn implies that h

must also be constant. In the Appendix we observe that f
can be taken to be zero and show that the compatibility
condition for Eqs. (3.7a) and (3.7b) and the conditions
that f and h be constant force h to be negative and imply
that the reference surface ro must be given by

ro(0, $)=(C/2)tan(0/2)

ar, /aO=Q„a/aO[j/(1+j x)]

+Q „a/ay[ j/(1+ j.")],
Br /BP=Q, B/BO[g/(1+/. x)]

+Q22a/ay[a /( I+g x)],

(3.7a)

(3.7b)

u" u'(dW/du )

u' 2W(u) D
VQ

2D
(3.12)

where W(u) is u for the two-dimensional problem or
u +fu+h =u —C for the three-dimensional problem.
The similarity between the equations for two- and three-
dimensional needle crystals suggests that the diffusion



236 DOUGLAS A. KURTZE 36

equation will take the form (3.12) in any number of di-
mensions, with II'(u) being the secular determinant of the
matrix QJ defined by analogy with (3.7). We have not at-
tempted to confirm this conjecture.

For the standard problem of constant D, Eq. (3.12) can
immediately be integrated once; then after using the
Stefan condition (2.17) to fix the constant of integration,
we may integrate again to find

TM L ~«(TM)+ v'~[&(TM) je
2Dc

~ f 00 —vu l2D( gr( ))
—i/2 d (3.13)

0= D(T)
du du

1 din W dT
(3.14)

with the boundary conditions T~TM —L 6 /c for u ~~
and d T /du = —Lv /2Dc at the value of u for which
T=TM. Here din@'/du is 1/u for the two-dimensional
problem and 2u /( u —C ) for the three-dimensional
problem. Thus one can solve the two- and three-
dimensional problems by solving the nonlinear ordinary
dilferential equation (3.12) or by solving the one-
dimensional free-boundary problem (3.14).

which reproduces the results of Ivantsov' and of Horvay
and Cahn.

When D(T) is not constant, there is no analytical first
integral of (3.12). However, we can maneuver it into a
more familiar-looking form by changing variables back
from T to u, which, according to (2.11) and the discussion
following it, is proportional to the positions of the x inter-
cepts of the isotherms. Equation (3.12) takes the form

we have seen explicitly that if we include heat loss in the
problem by adding an arbitrary function of temperature to
the diffusion equation, then the Ivantsov method fails to
find solutions of the free-boundary problem for steady
growth of a shape-preserving dendrite.

McFadden and Coriell' have extended the Ivantsov
problem in three dimensions to include Quid How induced
by a density difference between the solid and liquid
phases. Their solution was obtained by assuming that the
interface remains paraboloidal; the incompressible
Navier-Stokes equations were then written in terms of a
velocity potential and separated in parabolic coordinates.
This introduces an extra dimensionless parameter, the
density ratio, into the equations, but does not give rise to
a length scale and so does not break the dilational symme-
try of the problem. It should also be possible to include
this effect in the calculation presented above.

The calculations presented here also give the somewhat
surprising result that the parabolic dendrite in two dimen-
sions and the elliptic paraboloid in three dimensions,
which have already been found for constant diffusion
coefficients by Ivantsov' and Horvay and Cahn, are in
fact the only shapes of steadily advancing needle crystals
which the method can find, either for linear or nonlinear
diffusion. This is not to say that other shapes, such as
three-dimensional "paraboloids" with more complicated
cross sections, do not exist in steady state. However, it
does establish that such solutions, if they exist, cannot be
found by Ivantsov's method with the ansatz (2.5). It may
be possible to find such putative solutions if one can work
out the calculation using a different ansatz, or it may be
necessary to develop some different approach to the free-
boundary problem.

IV. DISCUSSION

One of the first steps in the Ivantsov solution of the
moving boundary problem of solidification of an under-
cooled liquid is the positing of the ansatz (2.5), which
eventually leads to a relation between the isotherms ob-
tained for different interface velocities. Moreover, the
form of (2.5) implies that any isotherm, for any solution
produced by the method, is a valid candidate for the
solidification front. If we now imagine assigning tempera-
tures to these isotherms, starting at infinity and working
our way back toward the dendrite, we see that any iso-
therm will actually be the solidification front for some
suitable undercooling. Thus the method actually locates
families of solutions, rather than individual solutions of
the problem. Viewed in this light, it is not surprising that
it is possible to solve for needle crystals with nonlinear
diffusion, since having a temperature dependence of the
diffusion coefficient would only change the labeling of the
isotherms, but would not change the isotherms them-
selves.

The fact that any isotherm found by the Ivantsov
method will be the solidification front for some undercool-
ing, combined with the dilation symmetry of (2.5), strong-
ly suggests that the method will fail to produce solutions
if any term is included in the equations which breaks this
dilational symmetry and defines a length scale. Indeed,

ACKNOWLEDGMENTS

The author wishes to thank Dr. Wim van Saarloos, Dr.
John D. %'eeks, and Professor Gabriel Kotliar for helpful
and illuminating discussions, and the Aspen Center for
Physics (Aspen, CO), where much of this work was car-
ried out, for its hospitality. This material is based upon
work supported by the U.S. National Science Foundation
under Grant No. DMR-83-11053.

APPENDIX: REFERENCE SURFACE
FOR THREE-DIMENSIONAL NEEDLE CRYSTALS

We first note that since Q»+Qz2 is forced to be con-
stant, we may set it to zero by adding an appropriate con-
stant to u (T) This satisfies . the condition on f. Next, we
write out the compatibility condition for Eqs. (3.7a) and
(3.7b) by equating the P derivative of the first and the 9
derivative of the second. This yields a vector equation,
from which we may extract three distinct pieces of infor-
mation by forming its scalar product with three linearly
independent vectors. Having made the explicit choice of
coordinates 0 and P embodied in Eq. (3.6), we choose
these three vectors to be g+x, x, and (8/BP)(g/1+/. x).
The first gives us

Qz, ——Q, &sin 8 .
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Then, using this and Q~~ ———Qzz, we obtain from the oth-
er two

where the arbitrary function p arises as a constant of in-
tegration. Together with (A4) this gives

(i3Qqq/BP)+sin O(BQ~q/BO)+(2+cosO)(sinO)Q, =0, Q, p
——C/sinO(1+p )', Q~~=Cp/(1+p~)'~~ (A6)

sinO[(aQ„/aO) —(aQ„/ay)]+2Q„=0 .

The condition on h now reads

Qzz+Q fzsm O=C

(A2)

(A3)

(A4)

p [(dp /d P)+ 2( 1+p ')]=0 . (A7)

The solution p =0 must be discarded, since it fails to
satisfy (A2). Integrating (A7) then gives

Note that Qzz depends only on P. To determine p(P), we
substitute these expressions into (A3), obtaining the equa-
tion

Qqq =Q~q(sinO)p(P), (A5)

where C is an arbitrary constant; the constant value of h

is —C . Differentiating this with respect to P, substitut-
ing for the P derivatives of Q, z and Qzz using (A2) and
(A3), and integrating over O leads to

p(4) = tan[2(0 —40)], (A8)

where $0 is a constant of integration which can be set to
zero by rotating the y and z axes through an angle Po.
Thus we have obtained explicit equations for Bro/BO and
Bro/BP which, when integrated, yield (3.10).
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