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Impulsive motion of particles and polarization response of a plasma in a magnetic field
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A percussion on particles moving in a uniform magnetic field induces a distribution of charges in a
plasma. The accrued charge tensor q;& (x, t), which is the electric charge that has passed from t =0 to
t through the unit area normal to x; due to a percussion of unit strength exerted in the xk direction at
x=0 and t =—0, is computed. The tensor q, & is equivalent to the space-time polarization response of
plasma electrodynamics. 1n this derivation, neither the Vlasov equation nor Fourier-Laplace trans-
forms are employed. As an application, a priori bounds (i.e., independent of the distribution func-
tions and of Laplace transforms) for the growth in time of plane-wave modes of a magnetized plasma
are obtained by an operational method. The connection of the impulsion with statistical theoretical
concepts is also noted. The fluctuation-dissipation theorem is given in a classical-physics version and
it is found that the correlator of microscopic currents for noninteracting particles (j;j& )„, of a non-
equilibrium plasma is related to q), through (r)Ir)t)q;z = (5/5E)( j;j& ) „,&.

I. INTRODUCTION

The polarization field P(x, t) and the electric field E(x, t)
in a plasma are connected in the linear approximation
by P=X E, where X is the susceptibility integral tensor
operator'

X,)E) = f d~ f d'(h;)(g, r)E, (x (, t —r) . —
0

This equation expresses the most general linear, causal,
nonlocal relationship between two quantities E and P in
any time invariant and spatially uniform system. Here
h;)(x, t) is the polarization response tensor whose k, a)
Fourier-Laplace transform X;) (k, tu) = VkX.„h;)(x, t) (with
co =ip) is the complex susceptibility tensor. While the ten-
sor X;)(k,a)) derived from Vlasov-Maxwell equations for
collisionless plasmas is well known, ' the spatiotemporal
counterpart h;)(x, t) has seldom been examined, as most
questions have been studied by decomposition into plane
waves, while the literature for solutions with other geome-
trical dependences is scarce. We have noted that a direct
derivation of h by physical arguments in x, t can be ob-
tained considering the charges induced by the impulsive
motion of particles which suffer a percussion concentrated
at x=0 and t =0. The method is also useful for the study
of electrostatic modes in certain nonhomogeneous plas-
mas. The peculiarity of this method is that it does not
rely on Fourier-Laplace transforms and does not use the
plasma kinetic equation. It brings forth in a clear way the
basic elements of plasma polarization mechanisms. Given
the central position of P in plasma electrodynamics and
other topics of plasma theory, like the foundations of ki-
netic equations and fluctuations, it seems convenient to
have more than one independent approach to compute
this tensor available, in this case through the knowledge of
h. Moreover, the response tensor h is important also in
certain nonlinear investigations. As an example, we may
quote the interesting functional relationship which has

been found between the Hamiltonian of ponderomotive
forces and h.

The purpose of this paper is to apply the percussion
method to obtain h for a plasma in a uniform magnetic
field. The knowledge of h(x, t) permits the setting up of
the integrodifferential equation for any three-dimensional
electrodynamical problem

c curl curl E+4rr(r)Ir)t)& E+ (d Ir)t )E

4rr(d Iot)J, , —(2)

where o =OP/Bt is the conductivity integral operator and
J, (x, t) represents possible external currents, or the related
integral equation of the quasi-electrostatic approximation

(I+ 47') E= —4' f ' J, (x, t')dt' . (3)
0

Further on, we Analyze the case E(x, t)=E(t)exp(ik. x)
and derive a priori bounds for the growth in time of E(t).
By a priori we mean bounds valid for all possible distribu-
tion functions of the plasma. Since these bounds are de-
rived from properties of response functions obtained
without the use of Laplace transforms, they may also be
called pre-Laplace bounds. It is worth noting that, in the
absence of these bounds, one cannot in principle discard
the possibility of existence of solutions that grow too rap-
idly in time to be Laplace transformable. Backus noted
the problem and solved it for the case of Langmuir
modes, in the absence of a magnetic field, by deriving the
a priori growth bound exp( etc)o(a)z is the plasma fre-
quency). No instability can grow faster than this and, in
addition, it follows that all solutions fall within the
domain of the Laplace method. We extend here this re-
sult by giving bounds for several branches of the spectrum
of plasma modes in a magnetic field.

There is still another method which may give h;k ( x, t)
working in the spatiotemporal representation only. This
is provided, in the theory of statistical fluctuations, by the
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fluctuation-dissipation theorem. ' In thermal equilibrium
the space-time correlation function of microscopic
currents

(jiji )„,—:(j;(xi, ti)jt, (x2, t2))

(with x=xi —x2, t =ti —t2) for noninteracting particles is
related to the conductivity response tensor o;k (x, t)
=(a/at)1; (x, t) by"

sues, because the additional change of velocity due to the
magnetic field is 6v' '=(e/mc) f p

vs%'" dt' and there-
fore 6u; "'(0/i)u; )fp =26v; 'v;fp =0. Impulsive motions
with induced magnetic field included have been studied
for a plasma without external magnetic field. ' In the
present case we have

p' (x,v, t)= —(e np/m)D'"'(i3fp/i3vpt, . )

(j jp )„',= T,o;&(x,t),
(4)

X 6 x —f v(t')dt'
0

j;= ge, u;(t)6(x —x, (t)) .

Here the sum runs over all the particles a of a given
volume, the bracket indicates the statistical average, and
T, is the temperature (in energy units). Therefore, we
shall also consider the relationship between the percussion
and the fiuctuation approaches in obtaining o.;q(x, t) and
their equivalence. Since the percussion method may be
applied to nonequilibrium distribution functions, we shall
extend the fiuctuation-dissipation formula (4) to cover
these cases within the limits of the correlationless approxi-
rnation. Finally, we shall explicitly show the equivalence
of h(x, t) derived by the percussion method and the stan-
dard complex susceptibility X(k, cu ).

II. IMPULSIVE MOTION

Delta-like electric fields 8';"'= 6'"'6;&6(x)6(t), k= 1,2,3,
generate impulsive motion' of charges that pass through
x=O at t=O. Particles with charge e and mass rn suffer a
velocity jump b, u =(e/m)P' 6;&6(x) without changes in
their position. The strength of the percussions is denoted
by 6' '. We assume that the plasma is neutral and focus
the attention on one species of particles only. The veloci-
ty distribution function at the origin, at t =0+, is
f(vp)=fp(vp —hv "'). Here fp is normalized to one and
n0 is the particle density. Thus the corresponding charge
density per unit of velocity space is

p'" (xp, vp, O) =enpfp(vp)+enp[fp(vp —bv "')—fp(vp)) .

The first term does not contribute to the net charge since,
in the total balance, it is neutralized by similar additions
from all the other species. Considering the first order in
6' ', we have

p'"'(xp, vp, 0)= —en p bu "'(8/8 up; )fp,
where x0, v0 denote the initial position and velocity of a
particle which is at x=xp+ fpv(t')dt', with velocity v(t)
at the present time. We ignore here, for simplicity, the
contribution to 4v' ' of the magnetic field induced by the
impulsive electric field 2jl'"'= —c fprot@I"'dt'. This re-

stricts the validity of the treatment to the quasielectrostat-
ic approximation of plasma electrodynamics when

fp =fp(ui, u~~ ) is a nonisotropic function. Otherwise, the
results may be approximate to a degree indicated by the
inequality v/c &&1, where U is a typical particle velocity.
However, when fp=fp(u ), isotropic, no limitation en-

for the charge density at time t, per unit of velocity space,
generated by the percussion.

We define now the accrued charge tensor q;i,-(x, t) as the
electric charge that has passed, from I =0 up to the
present time t, at the position x, through the unit area
normal to x;, generated by a percussion of unit strength
exerted in the x~ direction at x=0 and t=0. This tensor
is given by 8' 'q;i,. (x, t)= f p J (x, t')dt', where J I are
the current densities generated by the 6-function-like
fields 6I"'. We can see then from Eq. (1) that q;i, (x, t) is
equivalent to h;&(x, t), the polarization response tensor.
The crux of the percussion method is that the accrued
charge tensor can be computed directly by simple geome-
trical and kinematical considerations.

III. THE ACCRUED CHARGE TENSOR

We take the z axis in the direction of the external mag-
netic field B0 and evaluate the elements of the accrued
charge tensor at a point P with coordinates x(P) = (I, O, z).
Then, a rotation around the z axis gives the values of q;k
for arbitrary x. First, we consider the effect of the percus-
sions 4'" and @' ' along x and y, respectively, which
modify the position of the gyration centers of the parti-
cles. Referring to Fig. 1, where the projection of the
motion on the plane x,y is represented, we see that the or-
bits which pass through x=O and x(P) have their gyro-
centers C on the plane x =l/2. The impulsive field @'"
produces changes b, u i' ———(e /m )sin0, b, v„' = (e /m )cosO
on the tangential and normal velocity components, respec-
tively, of a particle with gyrocenter C at y =R sinO. Here
we have taken e"'=1 and R =vj/A is the Larmor ra-
dius of the particle (fl, =eBplmc). After the percussion,

FICs. 1. Projection on the (x,y) plane of the orbits of particles
that pass through the points x=0 and x(P) =(l, O, z).
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the radius R is modified by ~R =Au&/A and the line OC
rotates at an angle e= —Av„/vq. Hence, to first order in
the impulsive field, we have (R + b R )cos(0+ e)
=R cos0= l/2. Therefore, the impulsive motion does not
modify the plane x = l /2 of the gyrocenters. The
aforementioned statements hold for 0 in the interval
( —~/2, rr/2), where negative values of 0 correspond to
centers C located at negative values of y in Fig. 1. The
velocity component u j varies accordingly from a
minimum value v =lA/2, when C is on the x axis
(0=0), to vt ——oo when C is at infinity (0=+sr!2). A
particle which passes through x=O at t=0 arrives at
x(P)=(1,0,z) at time t only when the following relation-
ship holds between u and v] . Let s be the integer number
of half turns of the particle in the magnetic field from
t=O to time t. Then, At =~+20+s~ for 0&0 and
At =~+.20+(s —l)n for 0&0. Since v~ t =z,

vt (t) = u /
~

sin(At/2)
(7)

v~~
—u ~ (vJ )=(zA/2)/[arcsin(u /ut)+s'tr/2], s even

=(zA/2)/[ir —arcsin(u /ui)

+(s —l)m/2], s odd .

Similar arguments for @' ', which produces the velocity
jump bvt ——(e/m)cos0, bv„=(e/m)sin0, show that the
gyrocenters lying on the plane x = I/2 —(e /m)/A are
shifted to the plane x =l/2 by the impulsive motion with
strength 6' ' = 1.

We compute now the q~] component of the accrued
charge tensor at x(P), t. For this purpose we define a
small area element at x(P) normal to the x axis,
dS =dy dz, which is crossed by impelled particles at the
same instant t. Figure 2 shows how dS„ is determined:
we consider a small arc of gyrocenters CC' on the circle
of radius R =vj/A and center 0. This corresponds to a
set of particles at x=O, t=O with tangential velocity in
the angle interval 0+~/2, 0+~/2+dry. These particles
pass through the segment QQ

' (projection of PP' onto the
x,y plane) exactly at the same time t. From Fig. 2 we
have dy =I dy (neglecting terms O[(dy) ]) and therefore
dS„=lz dydu~~/v~~. To obtain the element of charge pass-
ing across dS„between t and t +dt, we consider the asso-
ciated velocity interval vj, vz+duj and follow the reason-
ing that supports Eq. (5). Then,

5p= —enp[fp(ut —Aug, u ) fp( , ut)]uv dpi—du~~dut (8)

for centers C with 0 ~ 0, since for these centers the charge
Bows negatively through dS„. Retaining linear terms in
the velocity jumps only and computing the charge ac-
crued per unit area and unit velocity, we get

FIG. 2. Projection QQ
' of the area element dS, on the (x,y)

plane. The two orbits shown correspond to particles that cross
dS at the same time t, and have tangential velocities with direc-
tions 0+m/2 and 0+m/2+dry at t=O.

s —1

q~ (It, O, z, t)= g f"dv, g"„(1,0,z, u, )
~mn=0

+ f dutg]~(I, O, z, vt) . (10)

The limits of integration for the last term are [u, ui(t)]
for s odd and [vt(t), ao] for s even, where vq(t) is defined
by Eq. (7). Thus we have obtained the h»(I, O, z, t) com-
ponent of the polarization response tensor. Note that the
spatiotemporal conductivity response o.

&&
——Bh» /Bt can

be obtained from

cr~~(1, 0,z, t)=g'&~(I, O, z, (tu))t~ du&/dt
~

(l l)
~

dvt/dt
~

=(A I/4)
~

cos(At/2)
~

/sin (At/2) .

and the direction of circulation of charges across dS both
change in this case

To obtain q» we add all the contributions dq» from
t =0 to t, i.e., we integrate over uz. Attention must be paid
to the fact that only charges with centers 0 & 0 pass during
the first semiperiod of time (O,r/2), where r=2m/A, .

which corresponds to the ut interval (oo, v ). For the
second semiperiod (r/2, r), the charges correspond to
centers with 0& 0, and vz varies through the reverse inter-
val (v, oo ), and so on. Thus gyrocenters with 0&0 and
0)0 contribute alternatively to the polarization, adding
integrals like I™gttdvt successively up to an integer
number of semiperiods s = [2t/r] There is .a final contri-
bution from charges arriving between s~/2 and t, so that

dq» /dvz ——g»,
g'~~ (1,0,z, vt)—:—(e n p/mlz)u, (vt)

X(u —u )' (Bf /Bu, ) ~, „

(9)

where ut is related to t by Eq. (7). The last formula is
valid for gyrocenters with 0 & 0 also, since the sign of Auq

The remaining tensor components are computed in a
similar way. The velocity jumps for 4' ' and 4' ' are
b u t = (e/m )cos0 and hv

~~

——e /m, respectively. The ele-
ments of area normal to the y and z directions are
given by dS» =Iz(ut —u )' dydu~~/u~~v, dS, =Iz
X(vt —u )' dydu~~/u~~. The expression for the tensor
d q'/dv~ is, therefore,
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dq'/dug=g'(l, O, z, ut )= —(tv~/4vrlz)(vt —u )
'

ut u, (( —1)'(up —u' )'~, —v, u, )T

X (( 1) (1 / ),v /, 1)d' g(afo/a, afo/a, afo/a
))

)
~

„( )

with u, (uq) given by Eq. (7) and T denoting matrix transposition. The elements of the 3X1 column matrix are the com-
ponents of the velocity of the induced charge passing through x=(l, O,z) after completing s half turns. Also, the elements
of the 1 X 3 row matrix are proportional (up to a factor of e /m) to the changes in ut, u)) caused by the percussion 6' "'= 1,
k = 1,2,3. The velocity U = lB/2 is the minimum possible value of Uz that a particle must have in order to pass through
the point x=(1,0,z). Now, for a generic point x=(r cosa, r sina, z), we have

g'(x, uq)=R( —a)g'(r, O, z, ut )R(a), (12)

where R(a) is the matrix corresponding to a rotation of axes of magnitude a about the z axis. Finally, h(x, t) and a(x, t)
are obtained using formulas similar to Eqs. (10) and (11). Thus, for t & 0,

S

h(x, t)= —(cvz/4arz) g f dvz(ut —u )
'

ut u„R( —a)(( —1)"(vz —u )', —u, u„}
n=0

X (( —I)"(1—u' /u )', v /u, 1 )R(a)diag(af, /av, af. /a. ..af, /a. „) ~, (13)

where the limits of integration are those of Eq. (10). Note that the action of R( —a) on the column matrix gives

(( —1)"(vt —u )' cosa+u sina, ( —1)"(ut —v )'~ sina —v cosa, u„)

the application of R(a) on the row matrix produces a similar effect. The conductivity response is

cr(x, t) = —[tv& /4mt T (t)]R( —a)((r Q/2)cot(Qt /2), r Q/2, z /t) (( —1) cos(Qt /2), ( —1) sin(Qt/2), 1)R(a)

Xdiag(afo/au, afo/av afo/av))) l.„=.i ., =.iT~ ), (14)

with T(t) =
~

sin(Qt/2)/(Q/2)
t

and N(t) =[2vrt/Q], the integer number of turns of a particle during time t. The con-
stant co~ is the plasma frequency of the species considered. The previous calculations are valid for e & 0, 80 & 0. In the
general case, the column matrix in h(x, t) is (( —1)"(u) —u )'~, —(sgnQ )v, u„} and the row matrix
(( —1)"(1—u /vj )'~, (sgnQ)v /ut, 1)sgne, with sgn denoting the sign function, and the equations are changed accord-
ingly. The space-time representation of the conductivity, Eq. (14), coincides for a Maxwellian distribution function, with
the formula derived by Shafranov" for the particular case of thermal equilibrium via Eq. (4).

IV. THE TIME EVOLUTION EQUATIONS FOR PLANE WAVES

We consider here the special question of plane wave modes of the form E(x, t) =E(t)exp[i(kqx +k))z)]. Then,

4rtj(x, t)= f dr f d $4vrtr(g, r)E(x g, t —'r)—
0

Qp d7 1 /rT w dpp d exp —
ik~~

0 0 oo

X f '
d@M(g', r)diag(af, /av. .af, /au, , afo/au))) ~,

)~

„...=,T(,)

0

X E(t —r) g J„(k)p)( —i)"exp( —in)p) exp[i (k J x +k) z)]

d ~ 4~or k, ~ E t —~ exp i k&x +k ~~z
0

with

M(x, t)=R( —a)((rQ/2)cot(Qt/2), rQ/2, z/t) (( —1) cos(Qt/2), ( —1) sin(Qt/2), l)R(a),
where a well-known series for exp( —ikqpcos)p) has been introduced to facilitate the averaging over g. Completing the
integration over g=(p, y, g) variables, and after some algebra, we obtain the conductivity response for k modes:

4vro(kt)='tv ,[diag(R, O)+diag(R+S, O)( —,')k (a/ak )+(—1) "W+diag(0, 0, 1)(a/ak)))k)]F(k T, k), t),

where S is the 2X2 matrix defined by S=diag(1, —1), R is the 2X2 rotation matrix with elements R» ——Rzz ——cos(Qt),
R ~z ———R2) ——sin(Qt), N(t) is the integer number of turns of a particle during time t [N(t) =[Qt/2m ]), and W is a 3 X 3
matrix whose elements are zero except for the third column and row where
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( W/3 W23 W33 ) = (cos(Qt /2), —sin(Qt /2), 0) ( t /T)(B/i}k )

(W, W, W ) =(cos(Qt/2), sin(Qt/2), 0)(T/t)(B/8k~~) .

Finally, we have set

F(k&T, kit)=2~ f"dvi viJo(ki Tv&) f" dv~~exp( —ik~~v~~t)fo(vi, v~~),
0 00

(16)

for the Fourier transform in v~~, with argument k
~~

t, and
2~ times the Fourier-Bessel transform of zero order in v~

with argument kqT of the distribution function. In the
case of a nonisotropic function of Maxwellian type

fo ——[1/(2m ) cicll]e PI [ vi ci + vlI

Here, and in the rest of this section, a sum over plasma
species, electrons and ions, is implied although not written
for simplicity. For k q

——0, the longitudinal response
4irh =cv~tf(k~~t) of Ref. 6 is recovered. Here f indicates
the Fourier transform of fo(v

~

), the distribution function
fo averaged over vt,

with c q
~~

——Tq
~~

/m, we have fo(v(~() =2ir f dv, vs(vz, v(~() .

F =expI( ,')[(k«—,T—)'+(k„,c ~t)']) .

A monoenergetic beam like fo ——( 1/2ir v i )5( v i —u o )5( v
~~—vo) gives, instead, F =Jo(kiuoT)exp( ikiv—ot) In th. e

absence of a magnetic field, the response function for lon-
gitudinal modes depends on the Fourier transform of the
distribution function in velocity space. Thus Eq. (16) ex-
tends this property to magnetized plasmas. The presence
of a Fourier-Bessel transform of zero order is a conse-
quence of the rotational symmetry in the plane perpendic-
ular to the magnetic field. The infinite series of harmonics
of 0 with Bessel functions of all orders, which is typical
of standard formulas for o(k, cv), does not appear in the
time response o(kt) ,Ho. wever, this response contains the
periodic argument T(t) instead. When fo is isotropic,
fo=fo(v ), then v~~(Bfo/Bv )=v (Bfolc)v~~), so that
~]3—~3] and 23 — O 32 ~

In the quasi-electrostatic approximation we have
E= —grad/, where P(x, t) is the electrostatic potential, so
that E(t) = —ikP(t). Therefore, Eq. (3) may be reduced to
a scalar equation

If A=O, we obtain 4~rh =co~tF(kit, k~~~t), instead. When

k~~
——0, we may note that h is a periodic function of time.

This points towards the absence of Landau damping for
perpendicular waves (Bernstein modes ), since the plasma
response incessantly returns to the same values due to the
periodic argument ki T(t) connected with vi. Note that
the behavior of the argument k~~t associated to U~~ is quite
different: It shows a time decay of the response inversely
correlated with the velocity spread.

Electromagnetic modes propagating along the magnetic
field, kz ——O, . are studied introducing the circularly polar-
ized fields E+(t)=E„(t)+iE~(t). From Eq. (2) we get

[(d'Idt') ~ c 'k,
i
]E+(t)

~(d ldt) f"dr4n[o ii(k, r)
0

+ic 2i(k, r)]E+(t r)=gig(t) .—

(19)

We find then, from Eq. (15),

4m(crii io 2():4iro ~(k,—t)
P(t)g f"dr4rrh(k, r)P(t —r)=g(t),

0
(17) =tv~exp(+ iQt)j(k~, t) .

where h (k, t) = fodt'o;~(k, t')k;k& lk, and g arises from
external sources. The external current or charge terms
can also be used to account for the initial conditions, i.e.,
the past memory of the inAuence of the electric field on
the system or, alternatively and equivalently, the informa-
tion about the initial perturbation of the particle distribu-
tion function (this topic is discussed, for instance, in Refs.
1, 3, and 11). The initial conditions ordinarily generate a
time-dependent datum. For initial value problems, the in-
tegral in Eq. (17) extends to (O, t) only. Right-hand side
terms with roles analogous to g will appear in other equa-
tions. Using Eq. (15) we obtain for the quasi-electrostatic
time response the remarkable formula

4vrh (k, t)=(toz lk )[kq(sinflt/0)+kit]F(ki T, k~~t) .

For slowly varying modes, such that
~

(1/E)(d E/dt )
~

&&c k), we obtain an initial value
problem governed by

(cvz+c~k~~ )E~(t)+ f dr4+o ~(t —r)E~(r)
0

=g, ~(t), t &0 (20)

where o ~(t):(d Idt)cr+(t), —

4iro +(t) = —&cot f" dv~~ exp[ —i(k~~v~~+Q)t]

(21)

For faster processes, consider the response for electrons
only and set E+(t) =Ei+(t)exp( —icvot), with coo ——

coal

+c k ~~. After some manipulation, Eq. (19) can be
transformed exactly into
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(23)

E+{t)+4'f dt' exp[icoo(t —t')] f dt" exp[ —icuo{t' —t")] f dr cr +(t" ~—)E+(r) =gq+(t) .
0 0 0

Finally, we also report the case of electromagnetic modes propagating at 90 to the magnetic field, k, ,
=0. The corre-

sponding equations are

(d /dt )E~+4w(dIdt) f dw[cr)i(r)Ex(t —r)+o )i(r)Ey(t —r)]=gx(t)
0

c kJE, +(d'/dt')E, +4'(d/dt) f d7[(72](7)E~(t —7)+cr2)(7)Ey(t —7)]=g, (t)
0

when E =Er =0 (the ordinary mode), with the following
response components:

4ircr, , =~ [cos(Qt)+cos (IIt/2)k (c)/c)k )]F(k T,O),

4ircrqq =co~ [cos(II t) —sin (Qt /2)k (c)/c)k )]F(ki T,O),

4~cr33=co~F(kiT, O), o 3i(t)=(dldt)oi3, .

4vrcr, 2 ——co sin(IIt)[1+( —,')k (5/c)k )]F(k T, O)

= —4~o.2) .

For f0=f0(U ), isotropic, the restrictions E, =0 for the
extraordinary mode and E =E~ =0 for the ordinary
mode are no longer necessary since, in this case,
~]3= ~3& =~23 =~32 =0.

V. AN OPERATIONAL METHOD
FOR INTEGRAL EQUATIONS

We shall now describe a method to obtain growth
bounds for the electric field E(t) [or the potential P(t)],
based on properties of the convolution product a +b be-
tween two functions a (t) and b (t) defined for t & 0,
(a eh)(t) = Jodo' a (r)b (t —r). Consider an integral

equation of the form

E(t)+(E*H)(t)=G(t), t &0 (26)

to which several cases of Sec. IV reduce. This equation
may represent an initial value problem for E(t) Assume.
that the following bounds hold on H and G,
~H(t)

~

&y't, ~G(t)
~

&C. Then, ~E(t)
~

& ~G(t)
~

+y tB(t)e
~

E(t) ~, where 8 is the Heaviside or unit step
function. %'e define for t) 0,

a(t)= IE(t)
I

—y'«(t)+ ~E(t)
~

=[5«)—y'8«)*8«)]*
[
E«)

[
&

I
G«)

I

.

when E, =0 (the extraordinary mode) and

c kiE, +(d Idt )E. +4m f drcr 33(r)E, (t —r)=g, (t),
0

(24)

Since 5(t) is the identity operator 1 for a convolution
product, we may express the function a in a symbolic
operator form as a =(1—y 6 )

~

E ~, where 8 indicates
the convolution product of 8 with itself. If (1—y 8 )

denotes the inverse operator of (1 —y 8 ), we may put

~

E
~

=(1—y 8 ) 'a. We now proceed to invert the
operator formally as

fE
f

= g y"8'" a=a+ g y'"8'" a,
n=0 n =1

where 6 " must be taken as the convolution of 6 n times
with itself. Thus 8 "=t " 'I(2n —1)!,n & 1, so that

~

E(t)
~

=a(t)+ y g y'" 't'" ——' (2n —1)! *a(t)
n =1

= [5(t)+ysinh(yt)8(t)] e a (t) .

If we show that 5(t)+ysinh(yt) is the inverse operator,
we may then produce a bound for

~

E(t)
~

since, using the
fact that a (t) &

~

G (t)
~

& C, then

IE(t)
I

&
I
G(t)

I
+y» nh( yt) 8(t)e

~

G(t)
~

& C +y sinh(yt)8(t) e CB(t)

=Ccosh(yt), t &0 . (27)

A similar procedure may be used to derive bounds for
E(t) when

~

H(t)
~

&a and
~

G(t)
~

&C. In this case we
have ~E(t) &Cexp(at). When ~H(t)

~

&a+@ t, the
bound is more elaborate:

To show that we have the proper inverse operator, note
that

[5(t)+y sinh(yt)8(t)][5(t) —y'8(t) e 8(t)]
=5(t)+y sinh(yt)8(t)

y t B(t)—y sin—h(yt)8(t) e 8(t) + 8(t) =5(t) .

~

E(t)
~

&C exp(at/2)(cosh[[(a/2) +f3 ]' t]+[a/(a +4f3 )' ]sinh[[(a/2) +/3 ]' t I ) .

It is possible to replace the bound C on G (t) by

M(t)= sup [ i
G(r)

i I .0(«t
The mathematical background of this operational cal-

culus may be found in Ref. 14. The operator algebra is
also useful to solve integral and integro-difT'erential equa-
tions and to establish the existence and unicity of solutions
via an infinite series of convolutions.
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VI. GROWTH BOUNDS FOR PLASMA MODES

With this method, a priori bounds for a variety of plas-
ma modes can easily be obtained, a few of which we shall
present here.

We consider the quasi-electrostatic approximation first.
(i) Let us examine the electron response alone, assuming
fixed ions. Since F is such that

~

F
~

& 1 for all distribu-
tion functions fo, from Eqs. (16)—(18) we may set the
bound

~

H &co~t
~

F(k&T, k~~~t)
~

&co~t H. ence, it follows
that no electronic instability can grow faster than
exp(co~t). This generalizes the validity of Backus's result
for all possible k in a magnetized plasma. (ii) For

~
co&/A

~
& 1, a better bound is

~

H
~

&
~

co~/A
~

(ki/k)
+(cozk~~/k) t, which has an angular dependence. There-
fore,

P ~

& C exp[
~

co~ l2A
~

(ki lk) t]

&& [cosh(yt)+ co~/2Ay (ki/k)'sinh(yt)],
with y =co [ co~/2A

~

'(k, /k)'+(k~~/k)']' '. This
shows a reduction of the bound due to the magnetic field,
since y (cop when kz&0. This effect is enhanced as

k~~ 0. For k~~
——0, the bound is

~ P ~

&C exp(
~
co~/A

~

t)
so that in plasma regimes with

~
co~ /A

~
&& 1, the growth

rate of modes perpendicular to Bo is considerably reduced
in comparison with that of modes parallel to Bo. (iii)
Next, we consider the ion-acoustic modes by adding the
ion response. For this range of the spectrum, however,
the electron contribution may ordinarily be replaced,
when k&0, by the term P/(kA, D ) (kD. Debye length) in

Eq. (17). This corresponds to the assumption of a
Boltzmann electron density distribution for thermal equi-
librium in the wave potential. The integral equation is
again of the type (26) with H =47th, I( 1+1/k kD ), where
h; is the ion response. By the same arguments used before,
we obtain the growth bound y=kc, /[I+(kAD) ]'
[c,= ( T, Im, )': ion sound velocity]. This extends to
magnetized plasma a bound obtained by Pecseli' for ion-
acoustic waves in a plasma without magnetic field. The
growth bound may be very restrictive for long wave-
lengths as y ~0 with k ~0. (iv) When k

~~

——0, the electron
contribution to Eq. (17) changes and may be approximat-
ed now by P(co~, /A, ) if

~

(1/E)d E/dt
~

&&A, . This
corresponds to the lower hybrid branch of the spectrum.
Thus we have y=coz, /A;[I+(co&, /A, ) ]' . Therefore,
again the growth rates are reduced by intense magnetic
fields.

We pass now to the examination of the electromagnetic
modes. (v) Let us first take the parallel propagation case
in the low-frequency range where Eqs. (20) and (21) hold.
We may write for each species 4'

~

do. +, ;/dt
~

2 +(cgpe jco ie j y with

f dv[~
I

—(A, '/k~[)+v~~ Ifo

These values clearly depend on the dispersion of the aver-
aged distribution functions fo around the resonant ve-

locities +0, ;/k~~. Applying the results of Sec. V, we ob-
tain y=(co&, coie+ cd, co~;)/( co~+co~;+c k~~ ), a limitation
which becomes more stringent as k

~~

increases. This
bound covers the range of Alfven waves, whistlers, and
cyclotron resonances. (vi) The high-frequency range of
electromagnetic modes parallel to BO may be studied us-
ing Eq. (22). Consider, for simplicity, the electron contri-
bution only. An approach similar to that of Sec. V gives

~

E+(t)
~

&4ir f dt'f dt"f' d7~ c7' (t"—7)
~

IE+(7)
I0 0 0

+
~

E (O)
~
+

~

E'(O)+~~' (O)
~

'"t

+ f dt' f dt" ~g, (t")(
In addition, we have the bound ~4irct+(t)

~

&co~coi [with
co i as in (v)]. It can then be proved that

~

E(t)
~

&(2 +Bt+Ct )exp[(co~coi)' t] for all t, with 2,
B, and C non-negative constants. (vii) As a final example,
let us consider the ordinary mode which is ruled by Eq.
(24). Here ~477(d/dt)cr33

~

& co~ki {vi }=co~coq, where
{ui }=2m Jo dviui fo(vi). Note that Eq. (24) is formal-
ly identical to Eq. (19). Thus the same treatment used for
(vi) holds. Therefore, the growth bound is similar to that
of (vi) with coi replaced by co2.

VII. THE COMPLEX SUSCEPTIBILITY TENSOR

As an alternative path to the main route, it is possible
to evaluate the complex susceptibility tensor X;, (k, co)
from the accrued charge tensor q;, (x, t) We g.ive here this
derivation to show the agreement of the wave number-
frequential representation with the spatiotemporal
description Sta.rting from Eq. (13), it is convenient to ex-
press the integrands of the integrals over velocity space in
terms of 6 functions introduced ad hoc. Next, the 6 func-
tions are replaced by the Fourier integral representation,
and the passage to the k, co description is then immediate.
To carry through this calculation, we rewrite Eq. (13)
defining t„(ui ) =z lu„(u J ),

r

a —arcsin(u Ivi), n even

a ir+ arcsin(u —/ui ), n odd,+„(vq):—'

M(ui, v~~, g, t)—:(uicosP, uisin~ u

X (cos(At +P), sin(At +P), 1) .

S

h(x, t)= —(co~/47tr) g f dvi[1/t„~ cos(a —p„)
~
]M(ui, u„,p„,t„)diag(c}fo/c}vi, c}fo/c}vi,c}fo/c}v~~)

~ „~~=„
n=0

= —(co'/47rr) & f dv f du~~ 5(v ~t„—z)[1I
~

eos(a —p. ) ]M(v, u~~, p„t. )diag(Bfo/c}u, , c}f,/c}v„c}fo/Bv~~)
n=0

= —(co'/4~) f"du, u, f" du„ f dc' f"d78(t —7)5(u„7—z)5(A (7,$))
0 oo 0 0

X5(B(,p))M(v, u~~, p, 7)diag(c}fo/c}u, c}f /c}u, c)f /c}u((), (28)



2322 GRACIELA GNAVI AND FAUSTO T. GRATTON 36

with

3 (r, P):—(uj /D)[sin(Br+ P) —sing] —r cosa and

e(t) =(1/2rr) f dco(i /co)exp( —i cut)

and

B (7,P) = (uq/Q)[cos( fir+ P) —cosP]+ r sina

We note now that

5(A (r, g)}=(1/2vr) f dk„exp[ —ik A (r,P)],

with a similar identity valid for 6(B (r, P)). It follows that

h(x, t)=(1/2') f" dcvexp( icvt) —f d k exp(ik x)g. (k, cv),

where

X(k, cv)=(co~/4~icv) f "
duq uq f" du~ f dP f dr exp[ ik ( —uq /A)[sin(Qr +P) —sin&]

0 oo 0 0

+ ik~ ( v q /II )[cos(Qr +P ) —cosP ]

—i (k, u((
—cv)r I M(ug, u (,P, r)

X diag(af, /a. ..af, /a. „af,/av
~

) (29)

is the desired complex susceptibility tensor. This expres-
sion coincides with that obtained by solving the linearized
Vlasov equation with the Fourier-Laplace transform
method in the case of an isotropic fp or for quasi-
electrostatic modes (see, for instance, Ref. 5, p. 49). The
formula for P(k, cv) most commonly used in the analysis
of plasma dispersion relations follows from Eq. (29) after
setting k~ =0 and expanding (via the well-known generat-
ing function of Bessel functions) the exponentials contain-
ing trigonometric functions in a series of harmonics of 0
and Bessel functions of all orders.

VIII. THE CORRELATION TENSOR
OF MICROSCOPIC CURRENTS

FOR NONINTERACTING PARTICLES

In this section we show the connection between the per-
cussion method and statistical physics concepts. We con-
sider now the total velocity jump Av'"', due to both 8' '
and the induced magnetic field N'"', for a particle with ve-

locity vp at xp for t=0. Then, Av/ '=(e/m)6' '6(x),
since in the diagonal elements only the electric contribu-
tion appears. Furthermore, vp hv' ' = (e /m )vpt, 6(x), as-
suming the unit strength for the percussion 6' ' = l.
From Eq. (5) we obtain, for the complete Av'

p'"I(xo, vo, 0)= en p(af pl—aupp )bu~"' . (30)

Assuming the knowledge of the orbits x=x(xo, vo, t),
v=v(xp, vp, t), and since d u =d up, the current at x, t

generated by the (k) percussion can be computed from

J "'(x, t)= eno f d—uo (tu)Av'"'(af /aou)p. (31)

On the other hand, from Eq. (1) and cr;z =(a/at)h, I, , it
follows that J '(x, t)=cr;k(x, t), i.e., Eq. (31) gives the
conductivity response tensor.

The (k) percussion changes the velocity components up~

into VQp +Avp at xQ —0. The variation of the energy of
the particle E =m

~

vp
~

/2 is given by 6E' '

(afo/auoz )bu~ '=euok(5fo/5E )6(xo) .

Replacing Eq. (32) in Eq. (31) we obtain

cr~q(x, t)= —(6/5E'"') e np f v;(t)ups fp(vp)5(xp)d u

(32)

(33)

where the symbol (6/6E'"') operates on the distribution
function fp(vp) in the sense indicated above.

The quantity within large parentheses in Eq. (33) coin-
cides with the space-time correlation of the microscopic
currents for noninteracting particles already introduced in
Sec. I, Eq. (4), i.e.,

&J j~ }.', i =e'no f d'u u, (t)uokfo(vo»(xo) (34)

[formula (34) is derived in Ref. 11]. This correlator,
which is usually considered for thermal equilibrium, can
be extended to nonequilibrium plasmas under the hy-
pothesis of factorization of the distribution function of X
particles into a product of % functions of one particle,
fp(v). ' " This is the same correlationless approximation
which also sustains the Vlasov kinetic equation. From
Eqs. (33) and (34), we may state that the impulsive pertur-
bations lead to the re1ationship

cr;g(x, t)= —(6/6E "')tj;jk).„, . (35)

This can be considered as the extension of the fluctuation-
dissipation theorem, in a classical-physics form, to a
correlationless plasma in the spatiotemporal representa-
tion. Equation (35) is, therefore, the nonequilibrium ver-

=mvp& Av& = eupg 5(xp), since the magnetic part of the
percussion does not enter here. Therefore, the variation
of the distribution function per unit energy due to the per-
turbation is

6f l6E '=(af /av )(b,v' 'l6E' ')

and we get
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sion of Eq. (4).
Equations (30)—(35) include, of course, the cases of the

quasi-electrostatic approximation or the isotropic distribu-
tion function treated in Sec. III, where

(t)f /Bv )bv' =(e/m)(c)f /t)v . )6(x ) .

For a Maxwellian distribution fo, (j;jk )„, was computed
directly from Eq. (34) in Ref. 11 and cr;t,. was derived
from it through Eq. (4). Equation (14) leads to that same
result. Then, the equivalence of ~;I,. obtained in Sec. III
by calculation of the accrued charge and the value ob-
tained from the correlator of microscopic currents can be
shown explicitly, in the case of thermal equilibrium, in
agreement with the general relationship Eq. (35).

IX. SUMMARY AND CONCLUSIONS

The space-time response kernels cr;I, , h;& of the conduc-
tivity and susceptibility operators have been derived for a
collisionless plasma in a magnetic field, purely from
geometrical and kinematical arguments, starting with an
impulsive perturbation. If a conceptual alternative is
desired, these responses may be taken as the basic ele-
ments of the theory for the reason that they are directly
related to a physically intuitive description. Besides, in
their derivation no restrictions ab initio are imposed on
the set of functions that the theory may handle. The self-
similar dependence on x/t which characterizes the
response functions of plasmas without magnetic
field, "' is replaced here by the more complicated kine-
matics of helical orbits, which enters in the distribution
function through Eq. (7). The fact that h;t,. may be ob-
tained without kinetic equations and Fourier-Laplace
transforms is not unexpected in view of the result, valid
for general electromagnetic perturbations,

(t)/t)t)h; (x, t) = —(5/5E'"')( j;j.)„, ,

found in Sec. VIII. Impulsive motion plays in a classical
context the same role of the quantum perturbative con-
cepts employed in the derivation of the general
fluctuation-dissipation theorem. ' In the percussion ap-
proach, the fundamental formula for o.;~ is expressed by
Eq. (31). Section III describes a constructive method for
performing the calculation explicitly. The information
used there: absence of interaction of the particles,

knowledge of the unperturbed orbits, and the one-particle
distribution function, is fully equivalent to that employed
in calculations based on the Vlasov kinetic equation.

The results of Sec. VI provide upper bounds for the
growth rate of any possible instability, hydrodynamic or
kinetic, of the linear regime in magnetized plasmas. In
some cases these bounds are stringent and give useful in-
formation in a simple form. It is also worth noting that
these bounds are valid for all times. They limit the be-
havior of all modes, including stable waves, even for the
short-time evolution of an initial perturbation. We believe
that several plasma electrodynamic problems may be
studied directly in space-time using the response functions
derived here. A combination of approximation methods
(like eigenfunction expansions) and numerical methods
may add to the knowledge already obtained through the
standard Fourier-Laplace treatment. The compact ex-
pression for the time response of quasi-electrostatic modes
in a magnetized plasma (Sec. IV) seems particularly suit-
able for this project, considering also that powerful nu-
merical methods for Volterra integral equations are avail-
able. '

The impulsion method can be extended to the treatment
of nonhomogeneous plasmas where h;k(x, x', t) maintains
a separate dependence on two spatial variables. We found
it helpful in deriving Eq. (3) for the electrostatic modes of
a system of convergent beams. In particular problems
with boundary conditions or initial values for E(x, t)
which show special symmetries, Eq. (2) simplifies, as some
coordinates are ignorable. In that case the response func-
tions of the problem are more easily derived considering
percussions distributed on surfaces with the appropriate
symmetry.
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