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Neutron diffraction on subcritical and supercritical krypton
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Accurate neutron-diffraction data are presented for krypton at three densities along a supercritical
(T =220 K) isotherm and at three densities in the liquid state along a subcritical (T =200 K) iso-
therm. The density dependence of the Fourier transform of the total correlation function, II (~),
differs significantly from the one for dense liquid rare gases determined from recent neutron scatter-
ing data. Comparisons with modified-hypernetted-chain and molecular-dynamics calculations sug-
gest that the present data cannot be described adequately with a reliable pair potential and an
(effective) Axilrod- Teller three-body potential.

I. INTRODUCTION

Egelstaff and co-workers' concluded from neutron-
diffraction data on gaseous krypton at low (subcritical)
densities and room temperature that the structure of these
systems cannot be described adequately with a reliable
two-body potential (e.g. , taken from either Barker et al.
or Aziz and Slaman ) together with a first-order Axilrod-
Teller (AT) triple-dipole three-body correction. ' In con-
trast Aers and Dharma-wardana showed that the data
could be described satisfactorily using the Barker pair po-
tential in combination with an effective AT three-body
contribution in the modified-hypernetted-chain (MHNC)
approximation. Schommers obtained a quantitative
agreement between the experimental data and molecular-
dynamics (MD) calculations with the Barker potential to-
gether with AT.

Recently Barker reconfirmed that more-body interac-
tions largely cancel to yield effectively AT as the only
more-body interaction for the quantitative description of
thermodynamic properties in rare-gas systems. At the
same time he discussed the disagreement between the
data of Egelstaff et al. ' and the effective AT model, and
advised that ". . ~ these neutron-scattering results must
be treated with reserve. " On the other hand, according
to Egelstaff AT as the only (effective) more-body in-
teraction is also in convict with measurements of the dy-
namic structure factor' compared with computer simu-
lations. '" ' His conclusion is that structure and dy-
namics of a Quid system may depend more sensitively on
the details of the more-body interaction potential than
thermodynamic quantities, which are represented by in-
tegrals of the potential.

In view of the lack of consensus on the role of the AT
three-body potential as an effective more-body potential,
more experimental (and simulation) data on the structure
(and dynamics) of noble-gas systems are needed. In this
connection it is appropriate to report on recent accurate
neutron-diffraction experiments on krypton at three densi-
ties along a supercritical isotherm T= 220 K ( T, =209 K)
and at three densities along a subcritical isotherm T=200
K (in the liquid phase). In this paper the relation between
neutron-diffraction data and the microscopic structure of

a monatomic Quid is brieAy introduced (avoiding the
confusing and unjustified concept of incoherent scatter-
ing' ), followed by a short description of the
diffractometer and the experiments. Then the various
corrections are discussed that were applied to the experi-
mental data to extract the structure factor.

The corrected data are presented and the nontrivial
part of the density dependence of the structural data is
compared with results from recent experiments on
noble-gas systems. The data are compared with MHNC
calculations with the Barker pair potential with and
without a lowest-order effective AT correction. In con-
trast to the data on gaseous krypton at room tempera-
ture, no satisfactory agreement could be obtained with
the present data. The same conclusion is reached from
comparison with MD simulations by Barocchi et al. '

In the r range relevant to the structure of quid krypton,
the pair potentials of Barker and of Aziz are practical-
ly identical, as is confirmed by MHNC calculations;
therefore, it may be expected that a comparison between
the experimental data and theoretical predictions does
not depend on the choice between these two pair poten-
tials.

II. NEUTRON DIFFRACTION ON MONATOMIC
FLUIDS

In neutron diffraction experiments the intensity of neu-
trons scattered by a sample from a monochromatic beam
is measured as a function of the scattering angle 0. A
neutron with mass I„,wave vector ko before and k after
scattering, has suffered a momentum transfer

irttc=ft(ko —k)

and an energy transfer

A (ko —k")
1K' =

The intensity I(O, co) at an angle I9 with the incoming
beam per unit of co is proportional to the detector
efticiency e(k) and the double differential scattering cross
section d o. /dA den, '" which in the first Born approxirna-
tion may be separated into a self part and a distinct part

36 2272 1987 The American Physical Society



36 NEUTRON DIFFRACTION ON SUBCRITICAL AND. . . 2273

[S,(x, a&)+Sd(tr, a&)),
do. k

dQ dc' kp

S (K, Q& ) = g & b; b;* ) f "
exp( —i a&t ) & exp( i t—r r; )exp [itr r; ( t ) ] )dt

2~N
(3)

Sd(tr, co)= g &b; ) &b,') f exp( ia&t—)&exp( ia—r; )e.xp[i ter, (t)])dt .

I(0)- f (ke)[S, (K, cia)+S (Kd, co)]den .
k

o kp
(4)

At constant scattering angle K and co are not independent
and I(0) may be expanded (Yarnell et al. '

) in the mo-
ments (and their a. derivatives) of the dynamical scattering
functions S (tr, a&),

For an isotopic mixture of a monatomic fluid the lower
moments are'

The summations are over all atoms in the sample. The
angle brackets around the exponentials that depend on the
positions rj(t) of the atoms at time t (omitted for t=0) in-
dicate a thermal average which in general depends on the
mass of the atoms. The brackets around the scattering
lengths b~, which depend on the spin state of the atom
and the type of isotope (bi is complex if absorption plays
a role' ), indicate an average over the spin states only.
The inextricable coupling of the mass and the scattering
length for a particular atom forbids one to replace at this
stage the average over the spin states by an average also
over the isotopic distribution for an isotopic monatomic
mixture. ' For isotropic homogeneous fluids the dynami-
cal scattering function depends on ~ only through the
modulus t~=

~

tr
~

and the notation S(&~,a&) is used.
The intensity in diffraction experiments is the integral

of I(O, a&) over a&,

Introduction of the reduced generic two-particle distri-
bution function or pair correlation function' g2(r, r')
leads to

S(a) =1 +n f [g(r) —l]exp( —itr. r)dr, (10)

where g (r) =gt(r', r") with r =
~

r' —r"
~

. The isotropy of
the scattering system leads to the well-known Zernike-
Prins relations, ' here written as

S (tr) —1Htr=
n

rh r sin Kr dr,
K 0

OO

h (r) = trH (tr)sin(vr)dt's,
2m r

with h (r) =g (r) —1 the total correlation function. Obvi-
ously S(a.) is the proper quantity to describe a scattering
pattern; however, H (&r) should be considered if informa-
tion on h (r) is to be extracted from the data. Therefore
H(tr) and its density dependence will be discussed rather
than S(~).

It can be shown ' that, as long as Eq. (10) is a valid ap-
proximation, the low-a limit for S(~) is related to the
isothermal compressibility Xz,

2

S(a)= 1+
N

gq(r, r')exp( —ia" r —r')d r dr' .

with n the number density. Except in the region of ex-
tremely small &~ values S(tr) can be approximated by

S (0)= limS (&~) =nkvd TXz, (12)

&a& )d ——&b) —g &exp( itr r;)e—xp(itr r )),
i&J

(i&j j

bz
'6(e3&, =

( )R K

or, equivalently,

H (0)= limH (t~) =kz TXz ——1

III. THE DIFFRACTOMETER

(13)

I(~)—e(ko)bQ[&b )+ &b) [S(~)—1]),
where the structure factor S(&r) (in the classical approxi-
mation) is given by

1S (z) =—g & exp( —iz r; —ri ) ) . .
l&j

(8)

The angle brackets around the scattering lengths here
denote the average over both the spin states and the isoto-
pic distribution of the sample atoms and tr=2kosin( —,'9) is

the elastic value of the scattering parameter. To lowest
order

For the experiments the diffractometer at the 2-MW
swimming-pool reactor of Interuniversitair Reactor In-
stituut (IRI) Delft was used. This is a conventional
two-axis diffractometer with a single detector. ' The
wavelength of the monochromatic" beam, A. =0.0881
nm, reflected from the 002 lattice planes of the Zn
monochromator, with mosaic spread of 20' full width at
half maximum (FWHM), was determined experimentally
from diffraction on powdered Ni and KI. The contribu-
tion of higher-order wavelengths was determined to be
less than 1% from transmission experiments on thin Cd
sheets. The beam path from the reactor core to the sam-
ple was evacuated. The cross section of the mono-
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chromatic beam, with a divergence of 42' FWHM, was
2.25 &(7.0 cm at the sample position. A low-efticiency
(=10 ) fission chamber was placed in the beam to
monitor the flux on the sample. Intensities were mea-
sured at equidistant values of the scattering parameter v
with a 2-inch He detector with high efficiency (=97%
at A, =0.09 nm) 56 cm from the sample. To reduce the
background a Cd mask of 2.25&7.0 cm was mounted
on the detector arm close to the cryostat with the sam-
ple. Another Cd mask of 2.0&5.0 cm was mounted in
front of the detector collimator, which had a divergence
of 42' FWHM. The maximum scattering angle 0=130'
corresponds to ~=129 nm '. It is not expected that
effects of instrumental resolution will be significant on
the relatively broad and smooth features of the intensity
patterns (cf. Ref. 23) and no attempts were made to
correct the experimental data for the finite resolution.

The operation of the diffractometer, connected to the
central Digital Equipment Corporation PDP11/70 com-
puter via CAMAC (computer-aided measurement and
control standard), was controlled by a program that
started automatically whenever the computer was res-
tarted. The data collection, in the preset monitor mode,
continued as soon as the monitor count rate exceeded a
minimum value; thus data were taken whenever the
computer and the reactor were active simultaneously. A
measurement of the intensity at each detector position
+as divided into ten submeasurements, which were
checked on line on statistical consistency before the
average was accepted as a data point. This test of the
short term stability is described in detail in Appendix A.

IV. THE EXPERIMENTS

The samples were kept in a circular cylindrical con-
tainer (height 72 mm, wall thickness 0.4 mm, and diame-
ter 20 mm) manufactured from V sheet by electron-beam
welding. The bottom and the top flange, fabricated from
a special Ni-Fe (45%-55%) alloy, were fitted to the
cylinder using high-temperature soldering technique. The
top flange was sealed leak tight, with screws and a metal
0 ring, to a lid of the Ni-Fe alloy.

The lid was attached to the bottom of the N2 vessel of a
bath cryostat, with Al walls 20 cm in diameter, via a
brass block kept at a constant temperature by a control
unit (Oxford Instruments). The container was surround-
ed by a wide Al radiation shield (19 cm diameter) such
that neutrons scattered from the shield could not enter the
detector. The temperature of the top flange, measured
continuously with a calibrated precision Pt-resistance
thermometer (Rosemount), was constant within 0.05 K.

The 99.995% pure krypton was filled into the container
through a stainless-steel capillary that connected the con-
tainer with a gas-handling system that consisted of a
small cryo vessel (30 cm ), the storage bottle, a safety
valve, and a pressure transducer (Druck, PDRC-32). The
sample was connected to the safety valve continuously
and to the pressure transducer only periodically to check
the pressure, which varied less than 15 kPa at each ther-
modynamic state.

The samples were measured at three densities

13 ~ 0,
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El

9 0 CoexjS

r-egi

7. 0

5. 0
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FIG. 1. Number density as a function of pressure for kryp-
ton. The thermodynamic states of the experiments along the su-
percritical 220-K and subcritical 200-K isotherms are indicated.
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FIG. 2. Uncorrected intensities normalized to 10' monitor
counts. (a) The krypton sample at the higher density in the
liquid phase, (b) the same at the lower density in the gaseous
phase, (c) the empty container.

(n=4. 89, 7.08, and 8.26 nm ) along the 220-K iso-
therm in the gas phase, and at three densities (n =11.02,
11.55, and 12.06 nm ) along the 200-K isotherm in the
liquid phase. The densities were calculated from p-V-T
data of Theeuwes and Bearman. The thermodynamic
states are plotted in Fig. 1, together with the critical
point.

Below ~=4 nm ' the background was extremely high
and data were taken only in the range 4(K(129 nm
in steps of 0.5 nm ' in repeated series for the samples,
the empty container, the background, and a Cd bar of the
same size as the container. The number of series was op-
timized such that after correction for background and
container scattering the experimental structure factors
S (a.) each would have the same statistical accuracy
(=0.3%). The requirement that this should be the best
statistical accuracy obtainable in the time totally spent on
the measurements, determines the apportionment of time
(i.e., the number of repeated series for each sample condi-
tion). The number of series, each with a duration of ap-
proximately one day, was 2 for the background, 31 for the
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empty container; 38, 35, and 33 for the three gas samples
at T=220 K; and 23, 24, and 19 for the liquid samples at
T=200 K. At low ~ values, up to 30 nm ', additional
measurements were done with the empty beam, the empty
container, and the Cd bar. The repeated series of mea-
surements were checked on statistical consistency and
averaged off line. (Cf. Appendix A for details on the sta-
tistical checks. ) In Fig. 2 the intensities are shown for the
container, the gaseous sample at the lower density, and
the liquid sample at the higher density.

V. BACKGROUND AND MULTIPLE SCATTERING

The background Ip(x ), measured with the container
removed, can be separated into a part that is attenuated
by scattering and absorption in the container and/or
sample, and an unattenuated part. The latter Icd(~),
measured separately with a Cd bar of exactly the same
outer dimensions as the container, must be subtracted
without any correction factor from all measurements.
The difference between Ip(a. ) and Icd(~), due to neutrons
that pass the sample position, should be subtracted mul-
tiplied by T„the transmission of the sample and/or the

Iq ( K ) =Iq ( K ) —Icd ( K ) —Tq [Ip ( K ) —Icd ( K ) ] (14)

The observed intensity is the sum of contributions I„(x)
of n-fold scattered neutrons

(15)

The probability for a sequence of scattering points
r1, . . . , r„depends on the microscopic scattering proper-
ties

P(r, , r~, . . . , r„)-N(r&)Q p„„(r;)S(v;;r;), (16)

with p,„„(r;) the linear scattering coefficient in the sam-
ple or, depending on r;, the container and similarly for
S(~;;r;). &P(r&) represents the relative incoming ffux.
The attenuation along a path for n-fold scattering is
exp( —2„)with X„the integral of the linear attenuation
coefficient along that path. Integration over the volume
of sample and container yields

container, calculated numerically. The correction for
background then yields

1 P(r„r2,. . . , r„)exp(—X„)I„(lr)— dr1dr2 . dr„.(4~)"
I

r2 rl
I

'
I
r3 r2

I

' (17)

4(r, ) restricts the integration of the first scattering point
to the illuminated part of the sample or the container.
The sum of I„(v)for n ) 2 is called multiple scattering,

isotropic approximation b, (~), the ratio of multiple
scattering and total scattering (omitting the primes),

(21)

I„(c) ldepends implicitly on S(s). Vineyard assumed
that the multiple scattering is independent of the struc-
ture factor (the quasi-isotropic approximation)

is a useful quantity. As a function of the density of the
krypton b, (~) is shown in Fig. 3 for the sample in the con-
tainer and for the bare sample, together with results of a
straightforward calculation using the Vineyard approxi-

I „),(v) =II (K) g + 5„(K),
k=2n=2

I„'(~)5„(~)=,(n )2) .I„',(a.)

(19)

0. 10

The prime denotes intensities in the quasi-isotropic ap-
proximation. I„'(Ir ) cannot be calculated straightfor-
wardly for arbitrary values of n because of the many in-
tegrations and often only 52(~) for a bare sample is cal-
culated while 5„(v)is estimated from 52(~). Vineyard
proposed the approximation

0 ~ 05

5„=5,(n &2) . (20)

In the present experiments the samples scattered
8—12%. The container, which scattered approximately
4%, caused a non-negligible contribution to the multiple
scattering. Therefore the multiple scattering was es-
timated with the code MscAT, which simulates neu-
tron histories by Monte Carlo techniques. In the quasi-

0. 00
0. 0 5. 0 n (nm 3) 15 0

FIG. 3. A(~) as a function of the density of the krypton sam-
ple in the container (upper line) and for the bare sample (lower
line). Circles are from straightforward calculation and
Vineyard's approximation.
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mation Eq. (20). Clearly the influence of the container
scattering cannot be ignored. Recently MScAT was updat-
ed and now also elastic scattering with specified S(x)'s
for the sample and the container can be simulated. For
S(x)'s that are not too pronounced, it turns out that the
multiple scattering calculated with the two versions is not
significantly different.

W(a. =o) =1— p—R+(pR) — (pR)
4 16
77 9m

W(x. =2ko) =1——pR+2(pR) — (pR)9~

(26)

Note the difference with the expression for the transmis-
sion of a cylindrical sample,

VI. ATTENUATION EFFECTS
T= 1 ——pR+ —(pR) — (pR—) + (pR)

2 3 4 45
(27)

The single scattering is the sum of sample scattering
and container scattering,

Ii(~)-p, (0)S,(~)+p, (0)S,(~),

Numerically calculated W(x)'s for the present experi-
ments could be represented excellently by a quadratic
function in ~,

W(x. ) = W(o)(i+a~ +b~ ) .

p, (0)=p, f C&(r)exp[ —Xi(r;0)]dr,
S

p, (0)=p, f N(r)exp[ —X,(r;0)]dr,
C

(22) The angular-dependent attenuation of the single scatter-
ing I, (a. ) from the sample was taken into account by mul-
tiplication by the factor 1/V(~),

with p, , and p, the linear scattering coefficients, S,(a) and
S, (a.) the structure factors, and V, and V, the volumes of
the sample and the container. X&(r;0) is the integral of
the linear attenuation coefficient along the particular path
followed by a neutron scattered only once in the sample
or the container in the direction 0. For completely il-
luminated cylindrical samples in a uniform beam the
three-dimensional integrals reduce to two-dimensional in-
tegrals, that must be calculated numerically. The circular
cylindrical symmetry is broken by the incoming beam,
which results in an angular dependence of p(0) also for
circular cylindrical samples. The single scattering from
the empty container,

I, (~)
I,'(v) =

V(a)
(29)

V(K) =1 +CK +dK (30)

VII. INELASTICITY AND NORMALIZATION

where V(~), the ratio of p, (0) and p, (0=0), was calculat-
ed numerically.

Unlike the closely related first-order transmission factor
for a (bare) cylindrical sample (cf. Sears ' ), V(~) for the
samples in the container could not be represented with
high accuracy by a linear function in ~, but a perfect fit

could be obtained with a quadratic function in K,

I', (x.) -p,'(0)S, (~), (23)

differs from the single scattering from the container with
the sample present. The latter is obtained from I', (v)
taking into account the attenuation factor W(a. ), defined
as the ratio of p, (0) and p,'(0). The single scattering
from the sample is then obtained from

I, (K) =Ii(K) —W(v)I'~(K) (24)

exp —2pR sine da,
7T 0

(25)

with p the linear attenuation coefficient for the sample.
The thin-wall limit for W(x) has been obtained earlier
by Boutron and Meriel, but seems not to have been
used frequently in the literature on neutron scattering.
Several analytical results can be obtained from W(x) in
the thin-wall limit, e.g., in the forward and backward
direction,

For a thin-walled circular cylindrical container in a
uniform beam (wall thickness d of the container small
compared to the radius R, and the product of the linear
attenuation coefficient of the container material and wall
thickness small compared to 1) W(rc) can be approximat-
ed by

1 0 1 e/2
W(x) = ——+— exp[ —4pR cos(a ——,'0)sin —,'0]da

2w 7T 0

Expression (7) for the single scattering should be
modified to include the effect of inelastic scattering,

I(K) —E'(ko) I(b )+(b) [S(~)—1]+P(x)I, (31)

S(~, —cu) =exp( Plica)S(x, co) . — (32)

The numerical-integration procedure introduces errors
only because the model for S(~,co) is not exact, but in
contrast to the Yarnell procedure no additional errors
arise from truncation. Here the numerical-integration
procedure with S(x,co) for a perfect gas, including proper-
ly the detailed balance condition, was used. Due to the
large mass of krypton (M=85) this leads to modest
values ofP(~) (= . O3(Ob ) atx=129nm ').

The corrected data were assumed to be described by

where P(v) is called the Placzek or inelasticity correction.
P(x.) may be estimated from the (truncated) moment ex-
pansion according to Yarnell et al. ' Unfortunately, the
higher moments are not known exactly and in practice
they are approximated by the corresponding moments for
the perfect gas. The advantage of the Yarnell procedure
is that it leads to the expansion (31). An alternative to
this expansion is to estimate P(a) from numerical integra-
tion at constant scattering angle 0 of reliable models for
S(a, cu) which fulfill properly the detailed balance condi-
tion'
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~ (nrn
—')

TABLE I. H (~) (nm') for the states I—VI defined in Table II.

IV VI

4.0
4.5
5.0

5-5
6.o
6.5
7.0
7 5
S.o
8.5
9.0
9-5

10.0

10.5
11.0
11.5
12.0
12.5
13.0
13-5
14.o
14.5
15.0

15-5
16.o
16.5
17.0
17.5
18.0
18.5
19.0
&9.5
20.0

20.5
21.0
21.5
22. 0
22. 5
23.0
23-5
24. O

24. 5
25.0

25 5
26.o
26.5
27.0
27.5
28.o
28.5
29.0
29 5
30.0

-o.6459(134)
-0.0906(25)
-o.o979(18)

-0.0916(14)
-0.0960{12)
-0.0986{11)
-0.0990(10)
-0.0993(10)
-0.0969(9)
-0.0948(9}
-0.o938(9)
-0.0874(9)
-o-0849(9)

-0.o767(9)
-0.0698(9)
-0.0618(9)
-0.o526{9)
-0-0425{9)
-0.0265(9)
-0.0146(9)
-0.0028{9)
o-0090(9)
0.0242(9)

0-o321(9)
0.0428(9)
0.0493 (10)
0-o529(9)
0.0504(9)
0.0506{9)
o.o461(9}
0.0398{9}
0.0326{9}
0.0237(9)

0.0166(8)
0.0094{8}
0.0033{8)

-o.oo40(8}
-0.0059(8)
-0.0110{8)
-0.0148{8}
-0.0178{8}
-0.0193{8}
-0.0187{8}

-o.o187(8)
-o.o186(8)
-0.0162(8)
-o.o174(8)
-o.o138(8)
-0.0098(8)
-o.oo84{8)
-o.oo74(8)
-0.0015(8}
o.ooo9(8)

-o.444o(8o)
-o.o648{15)
-0.0750(12)

-o.0777(8)
-o.0821(7)
-o.o817(6)
-o.o833(6)
-0.0821{6)
-o.o8o4(5)
-o.o786(5)
-0.0767(5)
-0.0742(5)
-o.o708(5)

-o.o656(5)
-0.0610{5)
-0.o547{5)
-0.0469(5)
-0.o387(5)
-0.0270(5)
-o.0184(5)
-o.oo68(5)
o.oo32(5)
0.0148(5)

o-0255(5)
0.0362(5)
0.0421{5)
o.0455(6)
o.o459(6}
o.0445(5)
0.0412(5)
o.o354(5)
o.o293(5)
0.0210(5)

0.0147{5)
0.0070(5)
o.oo22{5)

-0-0033{5}
-o.oo64(5)
-o.0099(5)
-0-o133{5)
-0.0160{5)
-0.0177{5)
-0.0166(5)

-o o174(5}
-0.0170(5}
-0.0160(5)
-0.0142(5)
-o 013"{5}
-0.0102{5)
-0.0081{5}
-0.0052(5}
-0.0028{5)
-0.0002(5}

-0.3388(77)
-o.o655(12)
-0.0766(10)

-0.o735(7)
-o.o746(6)
-0.0739(5)
-o-o749(5)
-o-0739(4)
-0.0724(4)
-o.o7o7(4)
-0.o699(4)
-o.o663(4)
-0.0651(4)

-o.o6o4 {4)
-0.o559(4)
-o.o5o5{4)
-o.o442(4)
-0.0368{4)
-o.o272(4)
-0.0180(4)
-o.oo89(4)
o.oo15(4)
o.o125(4)

0.0214(4)
0.0312(5)
0-o379(5)
o.o4o6(5)
o.o426(5}
0.0421(5)
0.0381(5)
0.0320(4)
0.0262(4)
0-0193(4)

0.0126(4)
o.oo65(4)
o.ooo8(4)

-0.0023(4)
-o 0077(4)
-0.0102(4)
-0.0130(4)
-o.o153{4)
-0.0158(4)
-o.o158{4}

-0.0162(4)
-o.o161(4}
-0.0147(4)
-0.0137(4)
-0.0125(4)
-0.0090(4}
-0.0067(4}
-o.0o53{4)
-0.0025{4)
-o.oooo{4}

0.3835(47)
-0-o239(9)
-o.o485(6)

-o.o436(5)
-0.o550(4)
-0-0533(4)
-o.o541(3)
-0.o550(3)
-o-0557(3)
-0.0558{3)
-0.o559(3)
-o 0552(3)
-0.0542(3)

-0.0523(3)
-o.o495(3)
-0-«56{3)
-o.o41o(3)
-o.0367(3)
-0.0282(3)
-0.0206(3)
-o.o116(3)
-o.oo18(3)
0.0091(3)

o.o194(4)
0-o307(4)
0.0390(4)
o.o439(4)
o.o462(4)
o.o455(4)
o.o416(4)
o.o354(4)
0.0282(4)
0.0211{4)

0.o137(3)
o 0073(3)
0.0026(3)

-o 0037(3)
-0.0069{3)
-o 0095{3)
-0.0130(3)
-0.0149(3)
-o o159(3)
-0.0160(3)

-0.o159(3)
-0.o153(3)
-0.0146(3)
-0.0133(3)
0.0»3(3

-0.0095(3)
-o.oo71(3
-0.0055(3)
-0.0027(3)
0.0006{3)

o.2922(47)
-o.o292(8)
-o-«90(5)

-o.o449(4)
-0.o539(4)
-0.0531(3)
-0.o535(3)
-0.0545(3)
-o.o546(3}
-0.05"6(3}
-o 0551(3)
-o.0545(3}
-0.o534(3)

-o.o512(3)
-o 0491{3)
-o.0452{3)
-o.o41o(3)
-o.o36o(3)
-o.o285(3)
-0.0216(3)
-0.o132(3)
-o.0o27(3)
0.0073(3}

0.0180(3)
0.0294(3)
0.0374(4)
o.0424(3)
o.o445{4)
o.o45o(3)
o.o4o8(4}
0.0339{3)
o.o272(3)
0.0211(3)

0.0132(3)
0.0063(3)
o.ooo6(3)

-o.oo39(3
-0.0071(3}
-0.0104(3)
-0.0127(3}
-0.0147(3)
-0.0154(3}
-0.0161(3}

-0.o157(3)
-0.0154(3)
-0-0143(3)
-0.o136(3)
-o.o122(3)
-0.0104(3}
-0.0079{3}
-o.oog2(3}
-0.0030(3}
-0.0011(3}

o-3071(37)
-o.o234(8)
-0.0461(5)

-o.o445{4)
-o.o54o(4)
-0-o532{3)
-o-0532{3)

536(3)
-0.0548(3)

-o-0551(3)
-O. 0538(3}
-o.o527(3}

-o-o51o(3}
-0.0489(3}
-0-0455{3}
-o.o42o{3}
-o 0372(3}
-o.o299{3}
-0.0228(3}
-o.o146{3)
-o.oo41{3)
o.oo63(3)

0.0170(3}
o.o285{3}
o-o371{4}
o.o423{4}
o.0445{4)
o.o447{4)
o.o414{4}
0.0348{4}
0.0280{3}
0.0212(3}

0.0132{3}
o.oo59{3)
0.0016(3}

-0.0036(3}
-o oo79(3)
-0.0105(3)
-0.0130(3)
-0.0147(3}
-o o155{3)
-0.0166{3}

-o.o165(3}
-0.0166{3}
-0.0146{3}
-0.0139(3}
-0.0127{3}
-0.0102(3}
-0.0083{3}
-0.0064{3}
-0-0033(3)
-0.0013(3)

30.5
31.0
31 5
32.0
32-5
33-o
33.5
34.0
34 5
35-o

o.oo45{8}
0.0078{8)
0.0093(8)
0.0122{8}
0.0123{8)
o.0133(8}
0.0141(8)
0.0119{8}
0.0136(9}
0.0120{8}

o.oo3o(5)
o.oo5o(5}
o.oo71(5}
o.oo86(5)
o.01o8(5)
o o115(5}
0.0108{5}
0.0120{5}
0.0114(5}
0.0109(5}

0.0032{4)
o.oo4o(4)
o.oo65{4}
0.0078(4)
0.0091(4}
0.0096(4}
0.0102(4}
0.0101{4}
0.0092(4}
0.0091{4}

0.0014(3)
o.0056(4)
O. 0061{3)
o.oo85(3)
o.o098(3)
0.0108(3)
0.0113(3}
0.0112(4}
0.0102(3)
o.oo96(3

o.oo16(3}
0-0039{3}
0.0062(3}
0-0079(3}
0.0095(3}
0.0098(3}
0.0108(3}
0-0099(3}
0.0104(3}
0.0100{3}

0.0014 (3}
0.0038(g}
o.o056{g}
0.0069{3)
0-0095{3)
0.0096{3)
0.0108{3}
0.0105(3)
0.0107{3}
0.0090{3)
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IV VI

35 5
36.0
36.5
37.o
37 5
38.o
38.5
39 o
39 5
4o.o

4o. 5
41.0
41.5
42.o
42. 5
43.o
43
44.o
44
45.o

45.5
46.o
46.5
47.o
47.5
48.o
48.5
49.0
49 5
50.0

50.5
51.0
51.5
52.0
52-5
53-o
53-5
54.o
54-5
55-o

55-5
56.o
56.5
57-o
57-5
&.0
59-o
59-5
60.o

6o.5
61.0
61.5
6z.o
62.5
63.0
63.5
64.o
64.5
65.o
65.5
66.0
66.5
67.0
67.5

0.0114(8)
0.0099(8)
o.oo75(8)
o.oo56(8)
0.0029(8}
0.0016(9)
0.0007(8)

-0.0026(8)
-o.oo33(8)
-o.oo54(8)

-o.oo5o{8}
-0.0070(8)
-0.006'(8)
-o.oo84(8)
-o.oo54(8)
-o.oo49(8)
-0.0047(8)
-o.oo44(8)
-0.0017(8)
-0.0027(8)

-o.oo48(8)
-o.ooo8(8)
-0.0012(8)
0.0012(8)
o.oo18(8)
o.oo45(8)
0.0018(8)
0.0026(8)
0.0032(8)
0.0027(8)

o.o045{8}
0.0030{8}
0.000z{8}
o.0045{8}

-o.ooo4{8}
o.ooo8{8}
0.0021{8}
0.0039{8}
0.0013{8}
o.o003{8}

-0.0007 {8}
-o.ooo8{8}
0.0002{8}

-0.0023{8)
-0.0019{8}
-0.0019{8}
-0.0036{8}
-0.0011{8}
-0.0018{8}
-o.oozo{8}

-0.0024{8}
-O.O01O{8}
O.O003{8}

-0.0003{8}
-o.ooap{8)
o.ooo8{8}

-o.ooo8{8}
-0.or& {8}
-O.O003{8)
0.0013{8}
o.o014{8}
O.O007{8}

-o.oooz{8}
o.ooaz{8}
0.0025{9)

o.oo96(5)
0.0078(5)
o.0065(5)
0.0040(5)
o.0036(5)
o.oo&2{5)

-0.0007(5)
-o.ooo8(5)
-o.oo25(5)
-0.0028(5)

-0-0039(5)
-0.0050(5)
-0.0042(5)
-o.oo58(5)
-o.oo56(5)
-o.oo48(5)
-0.0043(5)
-o.oo48(5)
-0.o033(5)
-0.0026(5)

-0.0021(5)
0.0000(5)

-0.0002(5)
-o.ooo4(5)
0.0013(5)
0.0011(5)
0.0017(5)
0.0018(5)
0.0027(5)
0.0043(5)

o.0042 (5)
0.0019{5}
0.0023{5}
o.o036{5}
0.0028{5}
0.0013{5}
0.0016{5}
0-0017{5}
0.0010{5}
0.0011{5}

-O.0000{5)-0.0006{5}
-o.o013{5}
-0.0025{5}
-0.0026{5}
-0.0012{5}
-0.0025{5}
-0.0021{5}
-0.0022{5}
-0.0018{5}

-o-ooa9{5}
-O.O009{5}
-0.0008{5}
-O.O007{5}
-O.m7{5}
-o.oooz{5}
o-0007{5}

-o.o006{5}
O. o008{5}
o.o006{5}
o.oooz(5}
0.0010{5}
O.0009{5}
0.0007{5}
O.ooaz{5)

0.0079(4)
0.0061(4)
o 0053(4)
o.oo45(4)
0.0022(4)
o.ooia(4)
o.oooo(4)

-0.0022(4)
-o.oo38(4)
-o.oo4o(4)

-0.0055(4)
-0.0047(4)
-0.0049(4)
-0.0053(4)
-0.0053(4)
-o.oo48(4)
-0.0034(4)
-0.0037(4)
-0.0034(4)
-0.0025(4)

-0.0021(4}
-0.0010(4)
-o.ooo9(4)
o.ooo9(4)
o.ooo4(4)
0.0023(4)
0.0018(4)
0.0024(4)
o.o028(4)
0.0016(4)

o.ooz8{4}
0.0034{4}
o.ooz6{4}
o.0023{4}
0.0016{4}
o.oozo{4}
0.0016{4}
o.0015{4}
0.0011{4}
0.0003{4)

-o.oooo{4}
-o.0006{4}
-o.0006{4}-0.0012{4}
-o.o014(4}
-0.0018{4}
-0.0012{4}
-o.oo16{4}
-o.ooap{4}
-o.ooz7{4)

-o.o014 {4)
-o.oo18(4)
-o.ooa4{4)
-o.Dce8{4)
-o.ooo9(4)
-o.ooo7 {4}
o.oooz {4)

-o.oooa(4)
o.oo09 {4)
o.ooao{4}
O.ooaz{4}
o.ooa6{4}
o.ooaz{4}
0.0004{4)
o.ooaz{4)

0.0091(3)
o.oo68(3)
0.0057(3)
0.0048(3)
0.0026(3)
0.0009(3)

-0.0002(3)
-0.0009(3)
-o.oo28(3)
-o.o035(3)

-0.0046(3)
-0.0050(3}
-0.0054(3)
-0.0054(3)
-0.0044(3)
-0.0046(3)
-0.0037(3)
-0.0040(3)
-0.0032(3)
-0.0025(3)

-o oo&9(3)
-0.0003(3)
-0.0005(3)
-0.0002(3)
o.ooo8(3)
o.oozo(3)
o.oo27(3)
0.0032(3)
o.o027(3)
o.o034(3)

o.0036{3}
0.0030{3}
0.0031(3)
0.0030{3}
0.0021{3}
0.0014{3)
0.0012{3}
0.0007{3)
0.0006(3}

-0.0008{3}

-o.oo06{3)
-o.ooo6{3)
-o.ooo4 (3}-0.0019{3)
-0.0017{3}
-0-oM3{3}
-0.0024(3}
-o.o018{3}
-0.0015(3)
-0-0013{3}

-o.ooz4(3)
-0-0017(3}
-0.0009{3)
-o.ooo7(3)
-o.oooz(3)
0.0001(3)
o.ooo4(3)
o.ooo3{3)
o.ooaa{3)
o.oo» (3)
o-ooa5(3}
0.0009(3)
0.0011{3}
0.0015(3)
o.ooza{3)

0.0083 (3)
o.oo66(3)
0.0052(3}
0.0046{3)
0.0020{3)
0.0010(3)

-o-«05(3)
-o.oo12(3)
-o.0028(3)
-o.oo34(3)

-0.0044(3)
-0.0051(3)
-0.0051(3)
-0.0052(3)
-0.0055(3)
-0-0053(3)
-0.0042{3)
-0-0039(3)
-0.0034(3)
-0.0020(3)

-0.0020 ( 3 )
-o.0007 (3)-0.0002 ( 3)
0.0004 (3)
0.0011(3)
0.0024(3)
0.0021(3)
o 0030(3}
0.0032{3)
0.0036{3)

0-0033{3}
o.ooz8{3}
o 0025(3)
0.0034 (3}
o 0019(3}
0.0011(3)
0.0008{3)
0.0010( 3)
o.ooo4 (3}
0.0002{3}

-o.oooz(3)
-o.ooo8(3)
-o.ooao(3)
-o.oo14(3)
-0.0015(3)
-o.ooza(3)
-0.0020{3)
-0.0020(3)
-o.o016(3)
-0.0017(3}

-0.0016(3)
-o.ooaa(3)
-0.0009(3)
-o.ooo6(3)
-0.0004{3}
-0.0008(3)
o.ooo3(3)
o.ooo7(3)
0.0011(3)
o.ooo6(3)
0.0014(3)
0.0012(3)
o.o011(3)
o.ooaa(3)
o.ooo8(3)

0.0083(3)
0.0071 ( 3)
o.oo6o( 3)
0.0048(3)
0.0026(3)
0.0015{3)
0.0000(3)

-0.0008(3)
-O. G031(3)
-0.0045 ( 3)

-0.0042(g)
-0.0054(3)
-0.0055{3)
-o-0057(3)
-0.0056{3)
-0.0052(3)
-0.0047(3)
-0.0044(3)
-0.0032(3)
-o.oo26(3)

-0.0023{3)
-0.0011{3)
-0.0006{3)
0.0002(3)
0.0005(3)
0.0020(3)
0.0024{3)
0.0030(3)
o.oo2g(q)
o.ooq6( 3)

0.0034{3)
o 0032{3)
o.ooz4(3)
o.ooz4(3)
o.ooz4(3)
o.ooz3(3)
o.ooao(3)
0.0009(3)
0.0004 (3)
o.oo04 (3)

-o.ooo5(3)
-0.0005(3)
-0.0012(3)
-0.0009(3)
-o 0017(3)
-0.0015{3)
-0.0020(3)
-o.oo18(3)
-0.0021(3)
-o.oozz(3)

-o.oo18(3)
-0.0016(3)
-o 0007(3)
-o 0003(3)
-o.oooz(3)
o.oooo(3)

-o.oooo(3)
o.oooz(3}
o.ooo6(3)
o.ooaa(3)
o.oo15(3)
0.0010(3)
0.0012(3)
0.0012(3)
0.0015(3)
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68.o
68.5
69.0
69-5
70.0

7o-5
71.0
71-5
72.0
72 5
73 0
73 5
74.0
74.5
75.o

75 5
76.o
76.5
77 o
77 5
78.0
78.5
79 o
79 5
80.0

80.5
81.0
81.5
82.O

82.5
83.o
83.5
84.0
84.5
85.0

86.0
86.5
87.O

87.5
88.o
88.5
89.0
89.5
90.0

9o 5
91.0
91 5
92.0
92 5
93.o
93 5
94.0
94 ' 5
95 o

95 5
96.0
96.5
97 o
97 5
98.0
98.5
99 o
99 5

100.0

o.oo21(8)
o.oo24(8)

-O.oo07(8)
o.oo16{8)
o.oo26(8)

0.oo04 (8)
O. oo12{8)

-o.ooo4(8)
-o.ooo4(8)
-O. OOO2(8)
o.ooo5(8)
o.ooo8(8)

-o.0015{8)
-0.0011(8)
-O. OO13{8}

-o.ooo6(8)
-o.oo1o(8)
-o.0017(9)
-0.0002{8)
0.0006{8)

-o.oooS{8}
-0.0014(S)
0.0010(9)

-0.0006{8)
-o.oo1o{8)

-O.«05{8}
O. OO05{8}
0.0011{8}

-O. ooo6(8)
O. OOO6{9}

-0.0007(8}
-0.0017{8}

O. OO1O{9}
0.0003{8}

-0.0009(8}

-O. OO10(8}
0.0021{8}
0.0012(8}
0.0001{8}
o.ooo5{8}
0.0007{8)
0.0013(9)

-O. OO1O(8}
0.«04(S}

-0.0030{8}

O. OO04{8}
0.0007(8}
o.ooo6{8}

-0.0009(8}
0.0002{8}

-O. OO08(9}
-0.0005{8}
-0.0014(8}
-O. 0006{8}
0.0002{8}

o.ooo4(8}
-O. 0001(9}
0.0010(9}
0.0000(9}
0.0002(8}

-o.oooo(8)
0.0003(8}

-o.ooo4(8}
-O. ooo5(9)
o.oooo{8}

0-0015(5)
o.0017(5)
0.0010{5)
0.0009(5)
O. oo14(5)

0.0012(5)
o.ooo2(5)

-o.ooo6(5)
-o.ooo4(5)
o.ooo4(5)
o.ooo5(5)
o.ooo7(5)

-o.ooo2(5)
-0.0005(5}
-0.0002{5}

-o.oo26{5)
-o o013{5)
-0.0012(5)
0.0001(5}
0.0009(5)

-0.0000(5)
-0 0005(5)
-o.ooo4(5)
0.0003(5)

-0.0005(5)

0.0007{5}
O. OO03(5}
o.ooo4{5}
O. OOO2{5}

-0.0003(5}
0.0007{5)
0.0007{5}
O. OOO9(5}

-o.ooo1(5}
o.ooo6(5}

-O. OO04(5)
o.ooo5{5}
o.ooo4(5}

-o.«06{5)
-O.0006(5)
-0.«03{5)
-o ooo3(5}
-O. 0006(5}
-0.0O08(5}
-0.0007(5}

-O. oooo(5}
-O. OOO1(5}
0.0003(5}

-0.0011(5)
-o.ooo3{5}
-O.oooS{5}
-o.ooo7{5)
-0.0006(5)
0.0012{5}

-0.0004{5}

-0.0010{5}
-0.0002(5)
0.0001{5}
0.0002(5)

-0 0005(5}
-O.ooo6(5}
-0.0014(5)
-0.0009(5}
0.0000(5)
o.ooo6(5)

o.oo2o(4)
o.oo1o(4)

-o.ooo1(4)
0.0013(4)
o.oo21(4)

o.oo13(4)
o.ooo6(4)
o.ooo5(4)

-o.oooo(4)
o.oooo(4)
o.ooo4(4)
o.ooo1(4}

-o.ooo5(4}
-0.0011(4}
-o.ooo4(4)

-O.oo24(4)
-o.oo13(4)
-0.0011(4}
-0.0003(4)
-o.ooo6(4}
-0.0012{4)
-o.oo12(4)
-O.ooo8(4)
0.0003(4)

-o.oce2(4)

o.0001(4)
O. ooo4(4)
0.0003{4}
0.0000(4)

-0.0002{4}
0.0001{4}
O. 0007(4)
0.0006{4}

-O.oooo(4)
O. 0007(4}

-0.0001(4}
-0.0001(4)
o.0009(4}

-o.oooo{4)
o.ooo4{4)
0.0005(4)

-0.0001(4}
0.0005(4)
0.0002(4)

-O. OO04(4}

-O. 0004{4}
0.0002(4}

-0.0011(4}
-0.0001(4)
0.0001(4)

-o.ooo6(4)
O.ooo2(4}

-O.ooo7{4}
o.oooo(4)

-0.0005(4}

-0.0009 (4)
-o.ooo5(4 }
0.0002 (4)
0.0002 (4)
o.ooo6(4)

-o.ooo4 (4}
-0.0001(4)
-o.0005 (4)
-0.0010(4}
0.0010(4}

o.oo13(3)
o.oo11(3)
o.ooo9(3)
o.ooo9(3)
0.0013(3)

0.0002(3}
o.ooo7 (3)

-o.ooo4 (3)
0.0004 (3)
0.0003 ( 3)
0.0002(3}

-0.ooo6(3 }
-o.oo1o(3)
-o.ooo4(3)
-o.oo12(3)

-O.oo14(3)
-0.0008(3)
-O.oo12(3)
-0.0010(3)
o.ooo2(3}

-0.0000(3)
-0.0005(3)
-0.0009(3)
o.ooo1(3)

-o.ooo1(3)

-0.0004(3)
-O.ooo3(3)
o.oooo(3)
O. ooo5(3)

-O.ooo1(3}
0.0001(3}
O. ooo2(3)

-0.0003(3)
o.ooo3(3}
0.0004(3}

0.ooo2 (3)
0.Ooo6(3}
0.Ooo4 (3)

-0.0001{3)
O. OOO1(3)
0.0006 (3)

-0.0003 (3)
o.ooo1(3)

-o.oce2(3}
0.0001(3)

-0.ooo3(3)
-o.ooo4 {3)
-o.ooo4 (3)
-0.0005 ( 3)
-0.0002 {3)
-o.0002(3)
-o.oce2(3)
-0.0004 (3)
0.00o2(3}

-o.ooo1(3)

-o.ooo7 (3)
0.000% (3)

-o 0007{3}
-o.ooo4(3}
-o.ooo5(3)
-0.0004(3}
0.0001(3}
o.ooo2(3)
0.0007(3}
o.ooo3(3)

o.ooo9(3)
o.oo14{3)
o.ooo7(3)
o.ooo5(3)
O. ooao{3)

0.0004(3}
o.ooo1 (3)
o.ooo4 (3)
0.0000(3)

-0.0006 ( 3)
-0.0003 ( 3 }
-0.0002{3)
-o.ooo4 (3)
-o.ooo4 (3)
-o.ooo5(3)

-o.oo12(3)
-o.oo1o(3)
-o.ooo7(3)
-0.0007{3)
-o.ooo9(3)
-o.ooo1(3)
-0.0006(3)
-o.ooo8(3)
0.0000(3)

-o-ooo7(3)

0-0003 (3)
o.ooo2(3)
0.0000{3)

-O.oooo(3)
O.ooo5(3)
o.ooo5(3)
0.0006(3)
o.ooo7(3)
o.ooo5(3}
0-0007(3)

0.0005 (3)
o.ooo8(3)
o.ooo4(3)

-o.ooo6(3}
o.ooo2(3)

-o.ooo1(3)
0.0002(3)
o.ooo2(3}

-0.0005(3}
-0.0001(3)

-o.0003{3}
-0.0003(3}
-0.0003 (3}
-o.Ooo6{3)
0.0001 (3)

-o.ooo5(3}
-0.0004(3)
-O.ooo5(3)
o.oooo(3)

-o.oooa{3)

-0.0002 ( 3)
0.0003(3)

-o.ooo1(3)
-0.0001 {3}
0.0002(3}
0.0001 (3}

-0.0005(3)
0.0002(3)

-0.0002 (3}
0.0002(3}

0.0010(3)
0.0017(3)
o.ooo5(3)
0.0013(3)
o.oo12(3)

o.ooo6(3}
o.ooo5(3)

-o.ooo1(3)
-o.ooo5(3)
-0.0002(3)
-0.0006{3}
-0.0006(3)
0.0000(3}

-o 0013(3)
-o.ooo8(3}

-o.ooo6{3)
-o.oo14(3)
-0.0007(3}
-o.oo11(3)
-0.0006{3)
-o.ooo4{3)
-o.ooo8{3)
-o.ooo7(3)
-0.0009(3)
-o.ooo1(3)

-o.ooo1{3)
o.ooo3 (3)
o.ooo1(3)

-o.ooo2(3)
o.ooo7(3)
O.ooo2 (3)
o.ooo6(3)
0.0004 (3)
0.0005(3)
0.0003(3)

-o.ooo2 ( 3)
0.0008(3)
0.0008(3)

-0.0003{3)
-0.0001{3}
0.0006{3)
0.0003{3)
0.0005(3)
o.ooo2(3)
0.0003(3)

-o.0002 (3)
0.0004 (3)-0.0006(3)

-o,ooo1(3)
0.0000(3}

-O.ooo6{3}
o.ooo1(3}

-o.ooo3(3)
-o.ooo1(3)
-0.0004{3}

-o.oooa{3)
o.ooo6(3)
0.0004(3)

-O. ooo6(3}
0.0004(3}

-0.0000(3}
-o.ooo1(3)
-o.ooo5(3}
0.0003{3}
0.0000{3}
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(b)'I(a)=I„l2(a) 1+n H(ir)
b

(33)
TABLE II. Densities and S(0) calculated from Theeuwes

and Bearman.

?' (K) p (MPa) n (nm ) S(0) H(0) (nm')
where a (ic) denotes a small residual distortion of the data.
From a fit of the four-parameter Verlet model, '

IrH (I~) = A exp( —Pa)cos[y(ic —Kp)], (34)

at the higher a values (43(a(129 nm ') the data were
normalized and a(a) was determined for each thermo-
dynamic state. For (b) l(b ) the value 0.916 was used.
The weighted mean-square deviation between the fitted
model and the experimental data points,

F (x.„)I(ic„—)
(35)

N
g2

N
„

with 6„the estimated statistical accuracy of each data
point, for all six experiments was in the range
1.2 & 6 & 1.4.

VIII. RESULTS AND DISCUSSION

The experimental values of H (a.) in the range
4.0&~&100.0 nm ' in steps of 0.5 nm ' are given in
Table I. The accuracy of H(a) decreases with decreasing
density because the experiment was designed to determine
S(x) for each state with the same statistical accuracy.

I
II

III
IV
V

VI

220
220
220
200
200
200

6.66
7.33
7.86
4.58
5.83
7.69

4.89
7.08
8.26

11.02
11.55
12.06

7.54
8.19
4.41
1.42
0.86
0.63

1.34
1.02
0.47
0.038

—0.012
—0.031

The accuracy at lower ~ values is less. At the lowest K

value (4 nm ') close to the incoming beam H(a. ) is un-
reliable. There the procedure to correct for the (very
high) background fails.

S(0) and H(0) for each state, calculated from p V T--
data of Theeuwes and Bearman, are given in Table II.
Comparison of H(0) and H(a) at the lower a values, given
in Table I, shows that a simple extrapolation of H(lr) to
~=0 is not possible.

The H(lr)'s obtained in the gas phase, plotted in Figs.
4(c) and 4(d), show clearly a density dependence along
the 220-K isotherm. Up to v=40 nm ' the oscillations
of H(lr) are more pronounced the lower the density.
The a value where H(a) changes sign on the ascending
slope of the main peak shifts to the right. This shift is
also observed in Figs. 4(c) and 4(d), where the H (x )'s for
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FIG. 4. (a) and (bl Experimental H(a)'s for gaseous krypton at T=220 K [n=4.89, 7.08, and 8.26 nm (squares, triangles, and
circles)]; (c) and (d), the same for liquid krypton at T=200 K [n =11.02, 11.55, and 12.06 nm (squares, triangles, and circles)].
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the liquid phase at T= 200 K are plotted. [H (Ir)
changes sign in the liquid phase at larger v than in the
gas phase. ] A further density dependence can hardly be
observed on the scale of this plot. Therefore the iso-
thermal density derivatives r)H(v)/Bn and r) H(v)/Bn
at the average density, shown in Figs. 5(a) —5(c) for the
gas phase and in Figs. 5(d) —5(f) for the liquid phase,
were estimated from finite differences. In the liquid
phase the higher statistical accuracy of H (v) partly
compensates for the smaller density range covered and
BH( 1)~/Bn has an accuracy of the same order as in the
gas phase. The rightward shift of the rising slope of the
main peak with increasing density is rejected in negative
values of rIH(a)/r)n at the Ir value where H(ir) changes
sign. For the gas phase BH(ir)/Bn and H(lr) are ap-
proximately in antiphase and roughly proportional as
follows from a "scatter plot" of BH(ir)/Bn versus H( i)r,

shown in Fig. 6(a). In the liquid phase it is hardly possi-
ble to draw conclusions on dH(i~)/Bn beyond x=20
nm ' and a scatter plot of dH (Ir )/Bn versus H (a ) in the
liquid phase given in Fig. 6(b) is less conclusive. Despite

the lower accuracy, the data on r) H (ir ) /r)n in the
liquid phase seem to show some structure around the
main peak, practically absent in the gas phase. In both
cases the limited accuracy of the data prevents one from
deriving conclusions from the second density derivative.

From S(~)'s of gaseous krypton along the 218-K iso-
therm (estimated densities n=3 and 5 nm ) ". . . ob-
tained graphically from smooth curves drawn through the
experimental points" by Winfield and Egelstaff' H (v)
and dH(a. )/Bn, shown in Fig. 7, are derived. The struc-
ture in H (~) is more pronounced than in the present ex-
periments in the gas phase at 220 K and higher densities
[cf. Fig. 4(a)]. In the region of the main peak r)H(~)/Bn
and H(ir) are in antiphase and no shift of the rising slope
with increasing density is observed. H (~) at T=218 K
extrapolated linearly to n=6.75 nm, agrees fairly well
with the present data except at lower ir (cf. Fig. 8).

The "high"-density part (n =3—6 nm ) of data by
Teitsma and Egelstaff' on gaseous krypton at T=297 K
and densities between n=0.2 and 6.2 nm was used to
determine H(v) and BH(ir)/Bn shown in Figs. 9(a) and
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FICx. 8. H(x. ) for gaseous krypton at n=6.75 nm ' from
present experiments (T=220 K, line) and from extrapolation of
data of Winfield and Egelstaff (Ref. 34) (T=218 K, circles).

9(b). BH(a)/r)n from these data is surprisingly similar to
the one in the liquid phase at T=200 K and higher densi-
ty n =11.5 nm [cf. Fig. 5(e)].

H(ir) and BH(ir)/Bn, determined from structure-factor
data on liquid neon at T=35 K and n =33.5 nm by De
Graaf and Mozer and for liquid argon at approximately
corresponding states ( T= 120 K and n = 19 nm ) by Van

FIG. 6. (a) Scatter plot of BH(v)/Bn vs H(sc) for gaseous
krypton at T=220 K [the line represents BH(s)/Bn
= —0.05H(v)]; (b) the same for liquid krypton at T= 200 K.

0. 10

0. 05

E

Xl
—0. 10

-0. 15

(nm ~)

0. 00

-0. 05

-0. 10

0. 005

10 20
(nm ~)

0. 01

I o o 1

0

O

(b)

p
I)

-0. 005

oop
p 0

p
0

p0 p
p p ppo

D DD D DDDD
p op

p p
p p
o o
0 0

opp

-0. 01
p0

I I

(nm ~)
0. 010

20 (nm ~)

FIG. 7. (a) H(s) for gaseous krypton [T=218 K, n=3 and 5
nm (line and circles)] from data of Winfield and Egelstaff (Ref.
34); (b) BH(a)/hn from these data.

FICs. 9. (a) H( )forsgaseous krypton [T=297 K, n=3. 16
and 6.19 nm (line and circles)] from data of Teitsma and
Egelstaff (Ref. 1); (b) BH (a.)/Bn from these data.
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Well et al. , ' are shown in Figs. 10(a) and 10(b) and
Figs. 11(a) and 11(b). BH (a)/Bn's from these data show a
negative peak at the ic value where H(~) changes sign on
the rising slope of the main peak, followed by a positive
peak located at the second half of the main peak, absent in
the krypton data.

Recently Aers and Dharma-wardana successfully in-
terpreted the structure-factor data on gaseous krypton at
room temperature of Teitsma and Egelstaff, ' using the
Rosenfeld-Ashcroft MHNC approximation with the Bark-
er two-body potential and an effective (lowest-order) AT
three-body potential. For the present thermodynamic
states MHNC calculations were performed in close colla-
boration with Dharma-wardana and Aers.

The thermodynamically consistent values of the pack-
ing fraction g that describes the bridge function in the
MHNC calculations with the Barker potential (cf. Ref. 6)
could excellently be represented by g =an +bn with
a =0.022558 nm and b=0.000260 nm for the liquid
states at T=200 K. (The reported linear dependence of
this g on n at room temperature should be replaced by a
function with a significant quadratic contribution at
higher densities. ) For gaseous krypton at T= 220 K the
MHNC procedure failed to yield thermodynamically con-
sistent values for g at the two lower densities. At the
higher density n =8.26 nm the value g=0.200 was ob-
tained. Whether this failure is a peculiarity of the MHNC
procedure or whether it reflects that the equation of state
of the pair Auid may be diA'erent from the one of the real
fluid (with a different coexistence region) is not clear at
the moment.
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FIG. 11. (a) H(s) for liquid argon [T=120 K, n= 17.6 and
20.7 nm ' (line and circles)] from data of Van Well et al. (Refs.
36 and 37); (b) BH (K')/Bn from these data.
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FICJ. 10. (a) H(s) for liquid neon [T=35 K, n=31.7 and
34.7 nm (line and circles)] from data of De Crraaf and Mozer
(Ref. 35); (b} BH(x)/Bn from these data.

FIG. 12. (a) H(~) for gaseous krypton (T=220 K, n=8.26
nm ) from MHNC (line) and from present experiment (circles);
(b) the same for liquid krypton (T=200 K, n = 11.5 nm ').
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Values of H (x ) from MHNC calculations with the
Aziz pair potential were found to be practically identical
to those obtained with the Barker potential. Compared
to the experimental data, H(ir)'s from the MHNC calcu-
lations with the Barker (or the Aziz) two-body potential
are shifted slightly to the right. The shift is more pro-
nounced at the rising slopes than at the descending slopes
as can be observed from Fig. 12.

The introduction of an effective AT correction to the
potential, fitted to the data with the constraint that S(0)
should be equal to the known "compressibility limit, "
hardly gave an improvement. Without this constraint the
strength of the effective AT correction could be fitted to
yield a better agreement with the data; however, in that
case the value of S(0) was far from the compressibility
limit [cf. Figs. 13(a) and 13(b)]. In Fig. 13(c) h (r) that

corresponds with the latter case is shown together with
the "experimental" h (r), which is obtained using a non-
conventional Fourier-transform procedure that diminishes
effects due to truncation and statistical noise in H( ir) (cf.
Appendix B). The nonconsistent dependence of S(i'd=0)
on the effective potential leads to the conclusion that in-
terpretation of the data using the MHNC procedure with
an effective AT correction is less successful than at room
temperature.

Barocchi et al. ' determined H( i)'s from MD simula-
tions with 500 atoms at the densities and temperatures of
the present experiments using both the Barker pair poten-
tial for the interaction between the atoms, and this poten-
tial together with the AT three-body potential. In con-
trast to the MHNC calculations, no singularities were en-
countered at the two lower densities on the 220-K iso-
therm. The differences between corresponding MD data
for the two systems turn out to be very small and in view
of the (correlated) inaccuracies hardly significant. The ob-
served differences are much smaller than might be expect-
ed from a first-order estimate in agreement with observa-
tions by Ram et al. and Hoheisel.

In Fig. 14(a) the experimental H(x. ) at T=220 K and
n=4. 89 nm is shown together with the MD data and
similarly in Fig. 14(b) for T=200 K and n = 12.06 nm
Compared to the experimental data the MD data are
shifted slightly to the right, similar to the MHNC data.
Within the accuracy of the experimental and the MD data
the density dependence of the H(ir)'s is not significantly
different. The negative peak in BH(lr)/r)n at the ascend-
ing slope of the main peak is also observed in the simulat-
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FIG. 13. (a) S(~) for liquid krypton (T=200 K, n= 11.5

nm ') from experiment (line) and from MHNC with AT correc-
tion with S(0)=0.86 fixed; (b) the same with S(0) free; (c) h (r)
from experiment (line) and from MHNC corresponding to (b)

(dashed).

FIG. 14. (a) H(~) for gaseous krypton (T=220 K, n=4. 89
nm ') from MD by Barocchi et al. (Ref. 15) (line) and from
present experiment (circles); (b) the same for liquid krypton
(T=200 K, n=12,06 nm ').
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ed data. Unfortunately, the MD data are less decisive for
aH (~) Ian at the second half of the main peak.

It is expected that similar results will be obtained using
the Aziz instead of the Barker pair potential. Apart
from the question whether or not the pair or pair + AT
fluids correspond to the real fluid in the region of (al-
though not close to) the critical point, the number of
atoms in the simulated system might inAuence the results.

IX. CONCLUSIONS

The Fourier transform of the total correlation function
h (r), H (~), is obtained from accurate neutron diffraction
data for krypton at three densities along a supercritical
isotherm and at three densities along a subcritical iso-
therm in the liquid phase. Isothermal density derivatives
of H(a. ) were determined at both temperatures. Com-
pared to density derivatives for liquid argon and neon,
determined from recent neutron scattering experiments,
significant differences are observed in BH(~)IBn at the
second half of the main diffraction peak. A surprising
similarity is observed between BH(~)IB nin the liquid
phase and oH(rc)IBn determined from recent neutron-
diffraction data on gaseous krypton at room temperature
and low densities.

A comparison with modified-hypernetted-chain and
molecular-dynamics calculations, using the Barker pair
potential with and without an (effective) Axilrod-Teller
three-body potential, shows that, although a reasonable
agreement is obtained, the present data differ significantly
from the theoretical predictions (the same results are ex-
pected for the Aziz pair potential). This suggests that the
Axilrod-Teller three-body potential is inadequate to de-
scribe effectively the inhuence of more-body potentials on
the structure of krypton at the thermodynamic states in-
vestigated here.
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APPENDIX A: STATISTICAL TESTS

In a preset monitor counting experiment the probabili-
ty of observing d counts in the detector, while the moni-
tor has counted its preset value m, is described by the
negative binomial distribution

E(d) =m5= A, (A2)

and variance

6 =E([d m—5] )=m5(1+5)=A. 1-+—
m

L

(A3)

Repeated measurements need to be averaged and nor-
malized to a common preset monitor count m. The
maximum-likelihood estimator (MLE) from N data point
d; with (different) monitor counts m;,

N

gd;
i =1I=m

N

pm;
E(I)=m5=A, , (A4)

with variance

6 I=
N

pm;
m5(1+5) = m 1+—

N m
(A5)

is used as the "average" normalized to m monitor counts.
Unbiased estimates for the variance Eq. (A5) are given by

1+pm;
I 1+ I

m
(A6)

and

2

pm,
i=1

m
2

N

d;—
g m;

m(. I
m

2

(A7)

For m; =m Eq. (A4) and (A7) reduce to
NI=—g d;,X,.

m I 1+—I
1+mN m

N

X(X—1),—,

(AS)

The variance of 5 is in general much smaller than the
variance of 6,„„;therefore, 5 is used to estimate the vari-
ance of I.

Possible "outliers" can inAuence severely the average in
Eq. (A4); therefore, a test should be done to detect and re-
move outliers. The median I of the individually normal-
ized intensities I; =md;/m; is a more robust estimate for
A, and is used in the test as follows. Only data points that
satisfy

I —2.565; (I; (I +2.566;,
(A9)

II 1+
m;+1 mP (d) +m 5d(1+5) —(m+d)

m —1

with expectation

(A 1)

are used for the normalized average Eq. (A4). Under nor-
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mal conditions approximately 1% of the data is expected
to be outside the interval given in Eq. (A9). If the frac-
tion of rejected data is significantly larger an external
source of noise must be present.

This procedure was applied on line to the ten submea-
surements at each detector position. At a given instance
the number of outliers in the on-line check increased to
20%. The time utilized for the measurements was
effectively reduced to 80%%uo because of duly rejected
subresults during a short period until the external source
of noise could be identified. It can be estimated that,
without the procedure using subresults, the number of
measurements not affected by the spurious noise would
have been reduced to only 11%%uo.

The same procedure as described above was applied off
line on corresponding data points I;(K) of repeated series.
Moreover, for each series the sequence (as a function of K)
of the sign of the deviation of I;(K) from I(K) was studied.
In particular the number of positive and negative residues
was determined. Then the number of runs, defined as a
sequence of residues with equal sign, was determined for
each series and compared with the expectation of the
number of runs. The number of residues is indicative
for long-term effects while the runs check is indicative for
short-term effects. No indications were found that any
series, or significant parts thereof, should be rejected.

which can be transformed analytically with the result

4 N —1

h (r)= g s„(r)g x;"sin(K;r)
n=1 i=0

N —1

+c„(r)g x;"cos(K, r)
i=0

x,'~34=A;, B;,C;,D; . (B3)

The discrete sine and cosine transforms of the spline
coefficients, g, x;sinK;r and g,. x; cosK;r, are conveniently
evaluated using the FFT algorithm. The r-dependent
coefficients si(r), . . . , s4(r) and c, (r), . . . , c4(r) are given
by

1
s, (r ) = —sin( r 6 ),

r

si(r) = ——[cos(rA) —1]+csin(rb, )
1 1

r r

1 2s3(r) = ——
&

sin(rA)+2 —cos(rk)+6 sin(rA)r r r

1 6s„(r)= ——[1 cos(rA)]——6—+3 cos(rA)
r r 3 2 4

APPENDIX B: FOURIER TRANSFORMATION +b'sin(rb. )

To estimate h(r) from the experimental data points
H (K. ), at equidistant K; values with separation 6, the in-

tegral (13) was separated into a low-K range and a high-K

range,

h (r)=h (r)+h+(r),

ci(r) = —[1—cos(rA)),1

r

1 1
cp(r) = ——sin(r b, ) —b, cos(rh)

r r

1 ~m
h (r) = J KH (K)sin(Kr)dK,

2m r
(Bl) 1 1

c3(r) = — [cos(rh) —1]+—sin(rb, ) —b, cos(rh)
r r y

h (r) = J
"

KH (K)sin(Kr)dK .
2&r m

For the estimate of h (r) the function KH (K) was
represented by a weighted cubic spline function fitted to
the data at low-K values according to Reinsch ' [in fact
the spline fit was applied in the range —~ & ~ ~ ~, with
H( —K;) defined equal to H(K;) and K =55 nm '],

HK( )K= ;A+;Ba+C; a+D;a, i =0, 1, . . . , N —1,
(B2)

0&ca=x—x; & 5,

1 1
c4(r) =— sin(rb, )+ cos(rb, )

r y
3 y2

+3 sin(rb, ) —5 cos(rh)
Q2

Due to the cancellation of numerically calculated terms in

s„(r)and c„(r)spurious results may be obtained in the
case where r ~& 1/A. Therefore the functions
si(r), . . . , c4(r) should be replaced for r & I/b, by their
rapidly converging Taylor series

s„(r)=b," g ( —I )'(rb, ) '/[(2i)!(2i +n)],
i=0

c„(r)=rh"+' g ( —I)'{rh) '/[{2i+1)!(2i+n +1)] .
i=0

For the estimate of h +(r) the function KH (K) was represented by the Verlet model fitted to the data at high-K values,



36 NEUTRON DIFFRACTION ON SUBCRITICAL AND ~ ~ ~ 2287

KH (K) = A exP( P—K)cos[y(K K—p)] K )K

which can be evaluated analytically with the result

h+(r) = exp( pK—)[F(r,y)+F(r, —y)],A

4n r

P sin[(r +y)K —yKp]+(r +y) cos[( r+y)K yKp]F(r,y)=
(r +y) +P

(B6)

(B7)

(B8)

It may be expected that termination errors and the inAuence of statistical inaccuracies in the data are diminished by this
procedure. However, as the models do not describe the data exactly, systematic errors may be introduced in the trans-
forms.
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