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A simple model is proposed for the dynamical effects of a strongly coupled plasma on the
center-of-mass and internal coordinates of an ion. The ion is coupled to the plasma through
monopole and dipole interactions. The radiative and transport properties of the ion are intimately
related since both are governed by the electric microfield at the ion. A unified description of both
types of properties is obtained by a formulation focused on the dynamics of the electric microfield.
The velocity autocorrelation function, self-structure factor, and electric field correlation function
are all in good agreement with computer simulation results, even for strongly coupled plasmas.
The effects of perturbing ion motion on Lyman-a and Lyman-f3 spectral line profiles are calculat-
ed. Again, good agreement with computer-simulation results is obtained.

I. INTRODUCTION

The motion of a point ion in a plasma is determined by
the net instantaneous Coulomb force exerted on it by the
plasma. Similarly, for an ion with a dipole moment, both
center of mass and internal degrees of freedom couple to
the plasma only through the total force. These observa-
tions suggest that an appropriate formulation of the radia-
tive and transport properties of an ion in a strongly cou-
pled plasma could be given in terms of a limited set of
variables consisting of all degrees of freedom for the ion,
and only the electric field for the plasma. This point of
view is motivated by the fact that a detailed dynamical
description in terms of particle trajectories and cross sec-
tions is not practical in general for a strongly coupled
plasma. Instead, an approach based on collective proper-
ties (like the total field) is both more relevant and practi-
cal. The objective here is to propose such a model that is
suitable for calculation of both the center-of-mass motion
(transport) and the radiative properties. The self-
consistency of these two types of properties allows impor-
tant relationships to be imposed between self-diffusion and
the spectral line shapes.

The motivations for our model come from existing
methods in plasma line broadening for neutral atoms, and
transport theory for neutral fluids. The idea of describing
the interaction of the plasma and an atomic dipole by an
effective stochastic field has been proposed earlier by Bris-
saud and Frisch. ' Subsequent applications to the calcula-
tion of line shapes from neutral atoms have been quite
successful. Although the stochastic process used was
highly idealized, a proper formulation of this approach
based in statistical mechanics has been given. An advan-
tage of this general formulation is that it is easily extend-
ed to charged radiators, and approximation methods from
transport theory can be applied.

Recent interest in spectral line broadening has shifted

to experiments on hot, dense laser-produced plasmas.
Such plasmas can be strongly coupled and the charge and
mass of the radiating ion can be very different from those
for the perturbing ions. Under these conditions it is im-
portant for the theoretical description to be general, sim-
ple (practical), and accurate to the extent of including all
qualitative features. In this spirit, the approximations in-
herent in the model presented here preserve the most im-
portant physical properties of the exact formulation, while
allowing explicit calculations. Furthermore, these approx-
imations imply no limitation on the plasma state, so the
results should apply even for strong coupling. Ultimately,
all parameters of the model can be computed from the
pair correlation function. To check the accuracy of these
approximations the electric field autocorrelation function
is calculated for a one-component plasma at coupling
strengths I = 1, 2, and 5. Comparison with computer
simulation results shows good agreement. The model
preserves the relationship of electric microfield and ion ve-
locity; so the velocity autocorrelation function is also well
described. For similar reasons, the dynamic structure fac-
tor has the correct dependence on the velocity autocorre-
lation function in the Gaussian limit and consequently
also agrees well with computer simulation results.

Plasma broadening of spectral lines arises from interac-
tion of the radiator with both electrons and ions of the
plasma. Most theories in the past have assumed that the
ions are static during the relevant radiation times. How-
ever, this assumption can lead to significant disagreement
with experimental results for neutral hydrogen. Recent-
ly, computer simulations have been performed to study
the effects of ion dynamics on spectral line shapes of high-
ly charged hydrogenic radiators' and large effects due to
ion dynamics are also observed near line center. We ap-
ply the simplest version of our model to calculate the
Lyman-a and Lyman-P lines, and find good agreement
with the simulations. The relationship to other theoretical
approaches" is discussed briefly.
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II. ELECTRIC FIELD
AND CENTER-OF-MASS DYNAMICS

Most physical properties of an ion in a plasma can be
expressed in terms of time correlation functions of the
form

C„t(it)= V '( A 8(t)), (2.1)

where V is the volume of the system and the brackets
denote an equilibrium average over degrees of freedom for
the plasma plus ion. To simplify the discussion, the plas-
ma is taken to be a classical one-component system (OCP)
of ions with charge Zo and mass mo in a neutralizing
background. To distinguish the impurity ion, of charge Z
and mass m, it will be referred to as the radiator. The ra-
diator is assumed to interact with the plasma only
through its monopole and dipole moments. Consequent-
ly, attention is restricted to observables 3 and B that are
functions of the center-of-mass and internal coordinates of
the radiator, and the total ion electric microfield at the ra-
diator,

A = A (a,p)e'"', 8 =B(a,p)e'"' (2.2)

Here, a denotes collectively all internal degrees of freedom
and (r, p) denote the center-of-mass position and momen-
tum. Translational invariance of the equilibrium ensem-
ble and bilinearity of C„e(t) allows construction of corre-
lation functions for variables with more general r depen-
dence from those considered here, by superposition. The
average in Eq. (2.1) can be performed in two steps: first
an average over plasma degrees of freedom, followed by
an average over the radiator degrees of freedom,

C~s(t)= Tr f dp A (a, p)f( ap)B(a, p;k;t) .
a

(2.3)

B(a,p;k;t)= f daQ(e)8(a, p, c,;t), (2.4)

where Q(a) is the electric microfield distribution for the
probability density of electric field values [the k depen-
dence on the right-hand side of (2.4) has been suppressed
for simplicity]. The objective now is to describe the dy-
namics of the radiator entirely through the "relevant"
variables (a, p, a).

An exact equation for B(a,p, c, t) in the chosen vari-
ables can be obtained from Zwanzig's projection operator
method, ' as outlined in Appendix A,

The average is taken over internal and center-of-mass
states of the radiator, and f(a, p) is the reduced density
operator for these variables. The effective time depen-
dence of the radiator in the presence of the plasma is de-
scribed by B(a,p;k;t). The determination of this average
dynamics is the central problem since its knowledge
reduces the calculation to consideration of only the de-
grees of freedom of the radiator. Since the coupling of the
radiator to the plasma is entirely through the electric field
E, the average dynamics of 8(a, p;k;t) is decomposed fur-
ther into an average over plasma states with a fixed value
E=c., followed by an average over the distribution of
values, c,

ik. p a——L(a, c)+ —eZa. V p—;cr; (e.) B(t)
m ~ ' " BcJ

= f d r M(t ~—)B(r),
0

(2.5)

A '=ice+ —L{a,a) —X —M(co),

X =eZa. V~ +p; cr;, (e)
a

Bc~

Several constraints on the operators L and M are im-
posed by conservation of probability, stationarity, and
the relationship of p to E:

Lp=Ze E,
(X,[X+L( , a)Ya])= —([X+L( , a)]aX, Y), (2.9)

[X+L{a,e )]f(a, p, a) =0

( W, MX) =0= (X,M8 ),
lim M(co)=0 . (2.10)

In these equations X and Y are arbitrary, but 8 is in-
dependent of a. The proof of Eqs. (2.9) and (2.10) is also
given in Appendix A. There are methods to construct
models of operators such as M that have been very suc-
cessful in the kinetic theory of gases. ' The simplest such
model consistent with the properties of (2.10) is'

MY(p, a) = —v(bee) Y(p, e) —f da' Q(c') Y(p, a')

(2.11)k.pAa~=co+ +iL(a, c, =0) .
m

where repeated indexes imply a summation. The second,
third, and fourth terms on the left-hand side represent
internal and center-of-mass motion of an isolated radiator
in a force field, eZe. . Next, cr;~(s) is the average field gra-
dient tensor, giving the average or "mean-field" rate of
change of the force. The operator M(t) on the right-hand
side describes dynamical transitions between different field
values. This term vanishes at t =0, so the left-hand side
can be interpreted as describing the exact short-time dy-
namics. The plasma and radiator center-of-mass variables
are taken to be classical, although the internal coordinates
are treated quantum mechanically. The model considered
here results from an approximation for M(t) To .define
this model and to simplify the following calculations, it is
useful to introduce a Laplace transform by

8(a, p, a;co)= f dt e ' '8(a, p, a;t) . (2.6)
0

A scalar product is introduced also by

(X, Y)—= Tr f dp f daX (a, p, a)f(a, p, a)Y(a, p, a),
(2.7)

f(a, p, a) =f(a, p)Q(r) .

The Laplace-transformed correlation function can then be
written in the compact form

C„~(k,co) =( A,RB),
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A possible dependence of Y on internal degrees of free-
dom and the transform variables (k, co) have been left im-
plicit. The function v(Ace) is a parameter of the model
that is arbitrary at this point, except for the constraints

lim v(hey)=0, v (bee)=v( —Aai) .
CO~ oc

(2.12)

It is straightforward to verify that this model preserves all
of the fundamental symmetries of the correlation func-
tions resulting from rotation, translation, time reversal,
and stationarity.

With this model, the calculation of the correlation func-
tions is essentially reduced to quadratures, in the sense
that the result can be expressed in terms of the solution to
the isolated radiator equations, (2.5) with M=0. This is

proved in Appendix B. The simplest case is the class of
correlation functions for which A and 8 are independent
ofE,

C„s(k,co)= Tr f dp A (a, p)f(a, p)[l —G(ken)v(bc@)]
a

X G(her)B(a, p), (2.13)

where G(he@) is an operator on functions of p and on
internal coordinates, defined by,

G(hen)—:f ds Q(E)R(b,cu),

R (he@)= [i bee —LI (E) +v(hen) —X]

LI(E)=——. [,s.d] .1

iA

(2. 14)

Here the operator for the atomic internal degrees of free-
dom, L (a, s), has been separated into a part for the isolat-
ed atom, L(a, e=O), and a part for its dipole interaction
with the field, Ll(c). These results also provide a connec-
tion with the more usual kinetic-theory approaches to
transport properties. To make this more explicit, (2.13) is
written as

C„ii(k,co)= Tr f dp A (a, p)f(a, p)
a

tation is that (2.16) will be suitable for strongly coupled
systems where simultaneous many-body interactions are
important. It is possible to show that the usual Fokker-
Planck operator is recovered from (2.16) in the weak-
coupling limit.

III. DETERMINATION OF PARAMETERS

The operator X describes the instantaneous changes in
the plasma field, a, due to the radiator. This operator
vanishes for a neutral radiator since there is no direct cou-
pling of the plasma and center-of-mass radiator variables
in this limit. In contrast, v(Ace) represents a rate of
change of electric field values due to dynamics of plasma
configurations, which occurs even for a neutral radiator.
Generally, there is no simple or direct relationship of v(cu)
to the transport properties of a neutral radiator but, for
charged radiators, the operator L couples the center-of-
mass motion to field fluctuations and the dissipative prop-
erties are directly related to v(Ace). This relationship can
be exploited to determine v(bc@) as follows.

In the simplest ease it is assumed that v(Ace) is in-
dependent of the internal degrees of freedom and can be
characterized by the momentum autocorrelation function
for a point ion [i.e., L(a, c)=0]. Equations (2.15) and
(2.16) with A =p=B and k=O give

where P(p) is the Maxwell-Boltzmann distribution. As
expected, C~z(cu) is related to v(co) as long as J&0. To
obtain a unified approximation over the entire frequency
domain, v(co) is fixed by imposing the exact high- and
low-frequency limits of Cz~ (co):

lim C~~(cu) =3m D,
ccp~o

(3.2)

lim C (co) (p )(i~) —Z e (E

Cpp(co)= f

dpi'(p)p

[ice+A(.co)] 'p,
(3.1)

[ico+v(cu)+A(cu)] '= f dE g(E)[ico+v(co) —X]

~ [idee+A(her)] 'B(a, p), (2.15) +Z e (E )(iso) (3.3)

[i b,co+v(Ace)+A(b, cu)] '=G(hen) . (2.16)

The operator A(her) can be identified now as the col-
lision operator of kinetic equations for a tagged particle
with internal degrees of freedom. The diff'erence here is
its approximate representation, (2.16), in terms of the dy-
namics of' the total force applied by the quid rather than
in terms of few-particle scattering operators. The expec-

(E ) =4~nkiiTZOIZ, (3.4)

where n is the density and T is the temperature. Also
(E ) can be calculated from the pair and triplet equilibri-
um correlation functions

Here E is the time derivative of the electric field at t =0,
and D is the self-di8'usion coeScient. For the OCP,
(E ) can be calculated exactly, '

2

(E )= (E ) 1+ f drr g "(r)
Zom 3 P 0

+ —', dr — dr' —, d0sinO 3 cos 0—1 g' ' r, r ', r-r'
o r o r o

(3.5)
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v(co) =v/(1+ tee~), (3.6)

where v and r are constants to be determined from (3.2)
and (3.3). This form of v(co) also satisfies the conditions
in (2.12). Use of (3.1) and (3.6) in (3.3) then gives

(+2p )2

dp dc. p c
2((ZeE) &(E'&

Here co~ is the plasma frequency and p is the reduced
mass. (In practice, the term with g ' is small compared
to the first term on the right-hand side and has been
neglected in the calculations of the next two sections. ) Fi-
nally, the self-diffusion coefficient can be calculated accu-
rately and efficiently from a simple kinetic theory, ' whose
primary input is the radial distribution function g (r).
The right-hand sides of Eqs. (3.2) and (3.3) can be taken
as known, therefore, even for strongly coupled plasmas.
These limits for Cz~(co) can be incorporated by a simple
two-parameter representation of v(co),

S(k,co) = 2 ReC» (k, co)

=2Re I dpi'(p)[iA~+A(b, co)] (4.1)

where now A(b, co) is determined from (2.16) with
L(ct, e) =0. Although manageable, the calculation of
A(b, co) is still quite difficult; so we explore the possibility
of a further simplification. Since the troublesome com-
ponent of the model is the operator X, a simpler represen-
tation for it is introduced by

(X,XY)-c[(X e) (p, Y) —(X p) (c,, Y)] . (4.2)

The functions X and Y are arbitrary, and the constant c is
fixed by

of correlation functions on internal degrees of freedom is
neglected, for comparison with computer simulations of
point-charge radiator dynamics. The self-structure factor
is determined from the correlation function with
A =B=1,

(3.7)
(E;,&p;)=Z &E'&= (;,e).(p,p;), (4.3)

Also, substitution of (3.1) and (3.6) in (3.2) determines v
in terms of D,

3m D= dp ppP Op

[v+A(0)] '= f de Q(E)(v —X)
(3.8)

BE,(r)=n drg"' r;g
Br;

(3.9)

Here g
' '(r; c) is a generalization of the pair correlation

function: the probability density for an ion at position r
relative to the radiator given that the field is E=c.. This
quantity can be calculated from an extension of existing
methods for the microfield distribution Q(e). ' It may be
noted that cr;~(E) is closely related to Q(E) by the station-
ary condition (2.9). Neglecting dependence on internal
degrees of freedom, the latter leads to

B 1nQ(e) ZeE
mkii To.(e)

(3.10)

where o (E)—:e;o,, (e)E, . The field dependence of cr(e) is a
measure of the deviation of Q(E) from a Gaussian distri-
bution.

It is shown in Sec. IV that Eq. (3.8) implies that v is ap-
proximately proportional to the diffusion coefficient D.

The operator L is defined in terms of a tensor o;, (E).
If the center-of-mass motion is only weakly dependent on
the internal degrees of freedom, then cr, (E.) has the simple
form

az,
mo. ;~(E)=Q '(e) 5(E —E)

OI"(.

(eZ )'C~~ (co) =ice[(p' &
—i coCpp (co)] . (4.4)

This equality is preserved by (4.2), as are the limits (3.2)
and (3.3).

%'ith this approximate form for X, it is straightforward
to determine A(b, co). The details are given in Appendix
C, with the result

A(bee) =a(k, co)P,
,
(4.&)

a(k, co)= —,'c mk&T(E & f dpi'(p)[i b,co+v(k, co)]

where P is the projection operator onto p. The eigenval-
ues of A(b, co) are then simply 0 and a(k, co), and the
correlation functions are easily calculated. For example,
the momentum autocorrelation function is found to be

C~~ (co) = 3mkji T[i co+a(0, co)] (4.6)

This result is closely related to an exact continuous frac-
tion representation truncated at fourth order, with param-
eters determined by the first five f'requency moments and
the diffusion coefficient. The latter is obtained from (3.2)
or (3.8),

or c=Ze/mk&T. The motivation for this approxima-
tion is that it incorporates the exact matrix elements of
L with respect to the functions p and c, , and is con-
sistent with the required properties (2.9). Consequently,
all the relationships among correlation functions of the
preceding sections are valid with (4.2) as well. For ex-

ample, the relationship d p(t)/dt =eZE(t) leads to a cor-
responding relationship of the momentum and field auto-
correlation functions

IV. TRANSPORT PROPERTIES =D(3kvTii) /(Ze) (E2&, (4.7)

The basic correlation functions characterizing center-
of-mass motion are the momentum autocorrelation func-
tion and the dynamical self-structure factor. The calcula-
tion of these correlation functions from the model of the
Sec. III is straightforward, once the operator A(~) of Eq.
(3.1) has been determined. In this section the dependence

which expresses the precise way in which v is calculated
for the model. Similarly, the approximation (4.2) allows
further reductions of expression (3.7) for ~,

2 —&(.ZE)'&/& p'&
(E'&
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To test the accuracy of the approximations made to this
point it is useful to compare with recent computer simula-
tions of the electric field autocorrelation function. This
function is determined directly from Eqs. (4.4) and (4.6),

C~~(cu) = (,E )icuIicu[icu+v(O, co)]

S(k,co) entirely in terms of the momentum autocorrela-
tion function. It is straightforward to verify that the mod-
el result (4.10) preserves the exact form of the Gaussian
limit. Since the model predicts an accurate momentum
correlation function, S(k, cu) will also be accurate. More
detailed results will be presented elsewhere.

+ —,'mk&Tc (E ) I (4.9)

Figure 1 shows the comparison with the computer simula-
tions for plasma parameters I"=1, 2, and 5. The agree-
ment is quite good over the entire frequency range, sug-
gesting that the model is reasonable for calculating trans-
port properties.

The self-structure factor is also easily determined from
(4. 1) with (4.5). The details are given in Appendix C with
the result

S*(k,co) =kvoS(k, co)

=21m[/(z)+ b(k, z)]/[I —zb(k, z)],
(4.10)

b(k, z)=— ((cmE) )P z+ [1+zP(z)] .
3k kUp

Here Uo is the thermal velocity, z = —co/kvo, and P(z) is
the plasma dispersion function. The corresponding time
correlation function is defined by

F(k, t)= f dt cos(cut)S(k, co) . (4. 1 1)
0

Computer simulations of Bernu indicate F(k, t) is very
well described for a11 k, t at I =1, 10, and 100 by the
Gaussian limit

k
[F(k,t)]o,„„;,„=exp —— f dr(t —r)C (r)

3m

(4.12)

This approximation expresses the dynamical properties of

1.0

V. SPECTRAL LINE SHAPES

Spectral lines emitted from plasmas are broadened by
the center-of-mass motion of the radiators, and by the in-
teraction of the radiators with the electrons and ions in
the plasma. In the traditional theories of line broadening
these three problems (Doppler, ion, and electron broaden-
ing) are solved independently of one another. Further-
more, the large mass difference of the electrons and ions
leads to very different approaches to estimating their
effects on line shapes. It is usual to treat the electron
broadening as completely collisional, while the ions are
assumed to be stationary during the radiation time. How-
ever, there is now strong evidence that this last assump-
tion can lead to substantial errors near the center of in-
trinsic (non-Doppler-broadened) line profiles. For neutral
radiators, the evidence is experimental, and theoretical
methods have been developed that adequately describe the
effects of ion motion in that case. ' " For charged radia-
tors the evidence is in the form of numerical simula-
tions. ' ' ' In this section we will use our model to in-
vestigate the effects of ion motion on spectral lines emitted
from highly charged, hydrogenic radiators in dense plas-
mas, and we will compare our results with the recent
simulations of Stamm et al. ' In these simulations, the
electrons were accounted for through the usual impact ap-
proximation, but the ion dynamics were traced in detail.
Therefore, the effects of ion motion and Stark-Doppler
coupling could be evaluated. The findings indicated that
while the effects of ion dynamics were significant, the cou-
pling between the center-of-mass motion and the internal
degrees of freedom of the radiator was very weak.

The line-shape function is determined from the dipole
autocorrelation function for the radiating ion,

0.8
I(co) = —,

' ReCdd(k, co)

0.6
dt e

—'~t((de —ik r) (d(t)e'k. r(t ))I
3V o

(5.1)

0.4

0.2

0.0

o (:)

—0.4 1.0 2.0
Apt

0 0 0 0 0 0

3.0 4.0

FICx. 1. Electric field autocorrelation function with Z =Zo for

I =1, 2, and 5, from Eq. (4.9) ( ) and molecular dynamics

, 0).

where k =co/c. Our model can be applied to the problem
by using Eqs. (2. 13) and (2.14) with both 3 and B taken
to be atomic dipole operator d. The resulting expression
describes plasma broadening, Doppler broadening with
Dicke narrowing, and their coupling. The correlation be-
tween the Doppler and Stark broadening is contained in

the operator L. Because this correlation was found to be
small in the simulations, we set L =0 in the following dis-
cussion. Further justification for this approximation will
be made later. Dropping X simplifies Eq. (5.1) to the fa-
miliar convolution of a Doppler profile and a Stark
broadened line. The latter is found to be
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Iz(co) = —,
' Re Tr d.f(a)[1—G(5~)v(g~)] —'G(g~)d

(5.2)

G(&~) f «Q(&)R

where R is determined by Eq. (B2) with X and k set equal
to zero, and the electron width operator added to the in-
teraction term,

R '=i[co+L(a, e=O)]+v Ll(—e) (5.3)

Further simplification is obtained by focusing attention on
a specific line and by making two approximations corn-
mon in line-broadening theory. We ignore the mixing of
states with different principal quantum numbers by the

ion field and the broadening of the lower state. With
these approximations, L,I may be replaced with c.d/iA
and 4, by an atomic operator whose matrix elements in
spherical states are

2

(n, l, m
~
4,

~

n, l', m') = — (n —1 —1 —1)5~~5~~ P,

(5.4)

where n, l, m) represents a state with principal quantum
number n and angular numbers l and m, and P depends
only on n and the plasma conditions. Furthermore, one
finds that the matrix elements of G are (the dependence
on n is now suppressed)

I

(l, m
~

G(bc@)
~

1', m')=51~5 g f dE 8 Q(E)(l, m
~

U
~

I, m )21+1-
I

0

—:5„5 G((ace), (5.5)

where U=X)R2) ' and 2) is a rotation that aligns e with
the z axis. In other words, the matrix elements of U are
exactly those appearing in the static theories of line
broadening, but with the frequency shift A~ replaced by
Aco+iv. For lines in the Lyman series, transitions occur
between excited levels with I =1 to the ground state, and

2.5

we find

Iz(co)= [ (n, 1
~

d
~

1,0) [ Re[1—v(bc@)G&(beg)]

xG, (b.cu) . (5.6)

This is a particularly simple expression, and once v and z
are determined, it is as easy to evaluate as a static profile.

We have estimated the effects of ion dynamics in the

Al-" L

T = 862eVn, =4 x 10'cm
v = 4.9 r = 0.0094 P = 0.0954

———Sta ti c prof i I e
Dynamic profile
Mol. Dyn.

2.0

1.5—

AI '" L

T = 233 ev n, = 4 x 10" cm
v = 1.89 r = 0.0978 P = 0.166

———Static profile
Dynamic profile

o Mol. Dyn.

0.5- '
\

\

'[

l
l

05- i

1.0 2.0

FIG. 2. Lyman-a spectral line shape for Al+' at T =862 eV
and n, =4&10 ' cm ', or I =0.267, for the present model
( ), molecular dynamics ( o, O, 0 ), and for static ions
( ———). Also shown are the constants v and ~ from Eqs. (4.7)
and (4.8), and the electron width P of Eq. (5.4).

%co/M&

2.0

FIG, 3. Same as Fig. 2 at T =233 eV and n, =4&(10 ' cm
or I =1.0.
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1 ~ 0

0.9—

0.8 -II

I

0.7 —I

l

c 0 6 I

I

tO I
La—0.5—

I
I

P 04

Ar' L

T = 862 eV n, = 1.5 x 10 cm
v = 1.57 t = 0.199 P = 0.243

———Sta tie prof il e
Dynamic profile

o Mol. Dyn.

10 20 30 40

Al
233 eVn = 4 x 10

v — 1 89 r — 0 0979 P — 0

50

0.3 FICT. 6. Lyman-/3 spectral line shape for same conditions as
Fig. 3.

0.2

1.0 2.0

FIG. 4. Same as Fig. 2 for Ar+ " at T= 862 eV and
n, =1.5&(10 cm or I =1.6.

A1+' and Ar+' plasrnas considered in Ref. 10. The re-
sults for Lyman a (n =2) are illustrated in Figs. 2 —4 and
for Lyman P (n =3) in Figs. 5 —7. Calculations were
made using Eq. (5.6) directly and with the corresponding
more complicated expression which results when L is not
neglected. The differences for Lyman a were impercepti-
ble and those for Lyman P were only a few percent. The
figures show calculations using the more general expres-
sions, but the small differences further justify the use of
Eq. (5.6) alone. The figures also show the quasistatic

profiles and the simulation results. Ion motion effects are
clearly significant at line center for all of the cases con-
sidered, and our model is remarkably good for Lyman n
and quite reasonable for Lyman P. The microfield distri-
butions used in the quadratures were precisely the ones
used in the simulations, and the parameters v and ~ were
determined from the methods outlined in Sec. III. The
latter may represent a slight discrepancy since the simula-
tions were done for screened ions and the discussion in
Sec. III is for an OCP, but because of the large ionic
charges the electron screening had a negligible effect on
the ion dynamics in the simulations. ' In addition, a
comparison of the self-diffusion for OCP's and systems of
screened ions at these conditions shows very small
differences. Therefore, we believe the comparison with
the simulations is a significant test of our model.

VI. DISCUSSION

Our goal in this paper has been to construct a unified
model of both the transport and radiative properties of
ions in dense plasmas that is both accurate and simple to

0p

AI '
LB

T =- 862 eV n, = 4 x 10 ' cm
i = 4.9 r = 0.0094 tI) = 0.0749

———Static profile

Ar "L
T = 862 eVn, = 1.5 x 10 cm

1.57 r = 0.199 P = 0.172
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10 20 30 40 50

FIG. 5. Lyman-P spectral line shape for same conditions as
Fig. 2.

FIG. 7. Lyman-P spectral line shape for same conditions as
Fig. 4.
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use. Equations (2. 13) and (2.14) define such a model
based on the assumption that the statistical dynamics of
the plasma can be represented by the "kinetic model" of
Eq. (2. 11). This model preserves the important exact
dynamical properties, (2.9) and (2.10), and has a free pa-
rameter, v(b, ai), that can be chosen to incorporate addi-
tional exact limits. Here, we have determined v(Aai) such
that the momentum autocorrelation function is asymptoti-
cally correct in the high- and low-frequency domains. To
explore the validity of the model, one additional approxi-
mation was introduced, Eq. (4.2), whereby all calculations
could be reduced to quadratures. This second approxima-
tion is perhaps the most serious and least controlled.
Nevertheless, it describes well the electric field autocorre-
lation function of Fig. 1, although some discrepancy in
the negative region at large plasma parameter is noted.
Since the model preserves the proper relationship of the
electric field, momentum, and self-structure correlation
functions these latter transport properties have a similar
accuracy.

The calculation of spectral line shapes has focused on
the specific effects of ion motion. The computer simula-
tions suggest large effects near line center, compared to
the standard static ion theories, and the model presented
here reproduces these effects quite well for Lyman o. . It
should be stressed that the quantitative features of this ion
motion are determined by the self-diffusion coefficient,
which appears in the radiative properties as a consequence
of the unified treatment with transport properties. Setting
~=0 in all of the above cases leads to insignificant
changes in the profile. Hence, very reasonable estimates
of ion dynamics effects can be expected from Eq. (5.6)
with the only input being the self-diffusion coefficient.
The agreement with computer simulations for Lyman P is
somewhat less favorable than that for Lyman a. We note
that in both cases ion dynamics effects are important only
at line center. Since density diagnostics depend upon
fitting the wings of the line profiles, we do not expect den-
sity measurements to be altered significantly.

Ion motion effects on spectral lines have also been cal-
culated by Cauble and Griem, " using a short-time expan-
sion for the electric field dynamics. The limitations of
this approach have been noted by Sanchez, Fulton, and
Griem in their analysis of low-density spectral lines, as
well as by Stamm et al. '" In contrast, our model is con-
structed by fitting both short- and long- time limits, and is
expected to interpolate reasonably between these limits.
In general, its combination of simplicity and accuracy
makes our model a promising approach to estimating the
effects of ion dynamics in dense plasmas.
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APPENDIX A: PRO JECTIQN OPERATOR
METHOD

The explicit form of the correlation function C„~(t ) is

(A 1)C„ti(t)= V 'Trd pB(t),
where p is the equilibrium density matrix and the trace
is taken over both ion and plasma states. The variables
3 and B are taken to be functions of the internal degrees
of freedom of the ion, denoted by a, and other degrees of
freedom denoted by b (the latter represent generically
the ion center-of-mass variables and the electric
microfield),

&=A(a, b), B=B(a,b) . (A2)

The average in (Al) can be performed in two stages,

Czz(t) = I db Tr A(a, b)f(a, b)B(a, b;t) .
a

Here, B(a,b;t) represents an average of B(t) over all de-
grees of freedom except a, for fixed values of b =b,

(A3)

B(a,b; t)—:Tr'p&B (t),
and pb is the constrained density matrix

pb =f '(a, b—)o(b b)p . —

(A4)

(A5)

B(a,b;t ) = [PB(t)]~

The projection operator is defined by

PX = I db 5(b b)Tr'p, X . —

The Heisenberg equations of motion for B(t) are

(A7)

(A8)

LB(t)=0, —
cjt

(A9)
LB= [BH],1

iA
where 0 is the Hamiltonian for the system. The equa-
tions of motion for B(a,b;t) now follow from the
Zwanzig-Mori projection operator method'

a a—+U(b) +L(a, e) B(a,b;t)
Bt Bb

with the definitions

d~M t —~B a, b;~
0

(A10)

Finally, f (a, b) is the reduced density matrix in the sub-
space of variables, a and b,

f(a, b)—:Tr'fib —b)p . (A6)
The prime on the trace denotes a trace with respect to all
degrees of freedom except a. Consequently, the form (A3)
represents an initial average over the "irrelevant" degrees
of freedom, followed by an average over the relevant vari-
ables, a and b. The final average is typically a manage-
able computational problem since only a relatively few de-
grees of freedom are involved. The difficult many-body
problem is therefore the determination of the first average,
B (a,b;t).

The quantity B(a,b;t) can be interpreted as a projec-
tion of B (t) into the subspace a, b,
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v (b)—:Tr'pb(Lb ),
L(a, E)X(b) —= [X,(H, + e d)] =L (a)+Lt(E),1

i'
M(t )X(b)=f —'(a, b) f db' f (a, b)Tr' pb(Lb )U(t)(1 P)(—Lb )5(b' b—) X(b')

aa ab'

(A 1 1)

U(t)—:exp(1 P)L—(1 P)t—.

Explicit use has been made of the assumption that the coupling of internal degrees of freedom of the ion to the plasma is
only through a dipole interaction, E-d. Also, H, denotes the Hamiltonian for the isolated atom. More explicitly, substi-
tuting b =(r, p, E) gives

p .V —2 L(a,—E) B(r,p, e; t ) = dr M(t r)B(r, —p, e;r),
at m 0

aX=ZeE V~+p;o. ;, (e)
aE~

aE)
o,, (e)=m Tr pb

(A12)

Similarly, the operator M(t) becomes

M(t)X(r, p, e)=f '(a, p, e) f dr' f dp' f dE'f(a, p, e)K;, (a, r, p, E;r', p', e';t) X(r', p', e')
aE; aE,

'

K;, (a, r, p, e;r', p', e';t)= Tr'pb(p V-,E; )U, (1 P)(p V-,E, )5—(r —r')5(p —p')5(E —e') . (A13)

(X,MY) =0=( Y,MX) (A14)

for X arbitrary and Y independent of c. Similarly, it fol-
lows directly from (A12) that

The relevant properties of M and L are now readily
verified. First, the explicit derivatives with respect to c;
and c~ lead directly to the result

(X, (X +L, ) Y ) = Tr f d E f d p X (a, c., p )f'(a, e, p )
Q

)& [X+L(a,e)]Y(a, e, p)

= —([X+L(a,E)]X,Y)

—Tr fdic f dpX [[X+L(a,e)]f ) Y.
a

Lp; =Zec;,
LE;=p, oj, (E) .

Finally, since p, o, (E) =m —'Tr'p&LE.

(A15)

The last term on the right-hand side vanishes since

(A16)

[X+L(a,e)]f(a, b ) =Tr' L(a, E)p5(b —b )+p 5(b —b )Lb
ab

=Tr'[[L(a, E)p]5(b —b ) —p[L L(a, e))5(b —b ))—
=Tr'(Lp)5(b —b), (A17)

which is zero from stationarity of p. Consequently the
two properties used in the text are verified:

(X, [X+L(a,e)) Y)= —([X+L (a, e)]X,Y),
[X+L(a,e)]f(a,b)=0 .

Finally, Fourier-Laplace transformation of Eq. (A12)
yields Eq. (2.8) used in the text.

APPENDIX B: CORRELATION FUNCTIONS

The Laplace transform C„~(k,cv) is obtained from Eq.
(2.8),

C„s(k,tv)=(A, RB), .

i b, tv L,—(E) X —M . — —
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Substitution of the model for M, Eq. (2.11), gives

WB =RB+R v(hco)(&B ), ,

(WB },= f de Q(&)B,

R '—= i bco+v(5co) L—I(E)—X .

Averaging JPB over Q(e) in the first of Eqs. (82) gives

(%B),= [1—(R ),

v(waco)]

'(RB ), .

Substitution of (82) and (83) into (Bl) gives

C„s(co)=( A, RB)

(82)

Let X(p) and Y(p) be arbitrary functions of p, and con-
sider (X,R Y) with the identity

R =Ro+RXR0, Ro ——[i bco+v(Aco)]

Then (X,RY) can be written

(X,R Y) = (X,R 0 Y) + (X,RXR 0 Y)

=(X,RO Y)+c(X,RE;)(p;,Ro Y),

(C2)

(C3)

where the approximation (4.2) for X has been used in the
second equality, with the fact that (e; R 0 Y}:0 foi
Y= Y(p). Application of (C2) one more time in (C3)
gives

+( A, Rv(bco)[l —(R ),v(bco)] '(RB },) .

(84)

This is the desired general result, showing that the corre-
lation functions can be computed entirely from the prop-
erties of R. %'hile such calculations are still quite com-
plex, the many-body aspects have been removed. For ex-
ample, the most difficult part of R is the operator X,
which defines a six-dimensional first-order partial
differential equation.

Further simplifications of (84) are possible in special
cases. First, if there is no dependence of 3 and B on the
electric field, then

C„ii = Tr f dp A(ci, p)f(ci)P(p)
a

(X,RY) =(X,RD Y) —c (X,Rp )(ei,RDE;)(p;,Ro Y)

=(X,(1+RoPa) 'RD Y}

=(X,(Ro '+aP) 'Y') .

Here I' is the projection operator onto p,

PX:(mks T) '—
p; (p;,X)

and a(k, co) is defined by

a(k, co)—:—,'c mkiiT(E, ,RDE;)

,'c mkiiT(—E ) f dpi'(p)[i bco+v(k, co)]

(C4)

(C5)

(C6)

&& [i b,co+ A(b, co)] 'B(a, p), (85) Equations (Cl) and (C4) now give

where f(a) is the reduced density operator for the atom, (X,(RD '+A)Y)={X,(RO '+aP)Y) .

f(a )—:Tr'p,

and A(b, co) is an operator defined by

(86)
Since this must hold for all X and Y (independent of e)
the operator A can be identified as

[i hco+v(b, co)+A(bco)] '=(R ),=G(b, co) . (87) A(hco) =a(bco)P . (C7}

This verifies the results (2.13)—(2.16).

APPENDIX C: APPROXIMATE EVALUATION
OF W(k, ~)

The general definition of A for the case of no internal
degrees of freedom is given by Eq. (87), with L (a, e) =0,

[i bco+v(k, co)+A(bco)] '= f deQ(E)R(k, p},
(Cl)

R(k, p)—:[i Aco+v(k, co) —L]

The eigenvalues of A are 0 and a(k, co). This is a particu-
larly simple result, from which the correlation functions
are easily obtained. For the case of 3 and 8 independent
of c and internal variables,

CX —(0]
mkg T

~ Ap +p.B

(C&)
C~~:— lim dp p 3 p I ~~+g '& pq~o+

The momentum autocorrelation function and self-
structure factors are special cases of (Cg),

C ~(co) =C~ ~ (k =0, co) =3mk~ T[ico+a(k =0, co)] (C9)

c„(k,~)= c",,'+ [c",, 'f, t,c,",' —(t, c,"', )'] t, f,c,",' (C10)

S(k,co) =2 Rec»(k, co) . (C 1 1)
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The functions C ~z can be expressed in terms of the complex plasma dispersion function. For example,(0)

C P, '(k, ro) = —i/(z)/kup,

C ~pI(k, co) = ik—;m [1+zp(z)]/k

k;k, C ' I (k, eo) = —ikupm z[1+zP(z)],
—ic mk& T(E )

ct(k, to)= p(z+iv(k, rv)/kvp),
3kUO

2——UeP(z):— lim fn~p+ cc v rr u —z —I ri

with z—:—cv/kup and up
—= 2/Pm. Use of (C12) then gives

ikupC, ~(k, co) = [P(z)+ 6 (z)]/[1 zb(k, z —)],
A(k, z) —= ((cmE)')P(z+i~ /kvp)[1+zt()(z)],1

3k

which is in a form suitable for numerical evaluation.
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