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Darcy's law from lattice-gas hydrodynamics

K. Balasubramanian, F. Hayot, and W. F. Saam
Department of Physics, The Ohio State U»iversity, 174 West 18th Avenue, Cot'umbus, Ohio 43210-1106

(Received 13 April 1987)

Within the hexagonal lattice-gas model, we obtain Darcy's lav for flow in the presence of scatter-
ers. The associated momentum dissipation is described by an effective damping term in the Navier-
Stokes equation, which we relate to the density of scatterers. The kinematic viscosity can be obtained
from the Darcy velocity profile, once the permeability is determined. We also check that in the hex-

agonal lattice model, after coarse graining, velocity decay and plane-parallel Poiseuille flow occur as
described by the macroscopic equations.

I. INTRODUCTION

There has been considerable recent interest in the prop-
erties of the hexagonal-lattice gas automaton, ' viewed as a
microscopic model for producing Navier-Stokes hydro-
dynamics. Macroscopic fluid phenomena are recovered
after one defines' average densities and velocities over
suitable regions of the lattice. The description of the gas
of particles moving among the sites of the lattice involves
only binary arithmetic. The advantage of this approach
lies in the fact that bit "democracy" is realized, compli-
cated boundaries and shapes are easily modeled, and the
algorithm can be implemented in an obvious way on
parallel processor systems.

The lattice gas approach has been limited to two-
dimensional phenomena. ' It is clearly important to study
quantitatively the connection of the hexagonal automaton
to the usual approach based on the Navier-Stokes equa-
tion. The essential question is whether or not, considered
as an algorithm, it can compete with those based on real
number arithmetic, ordinarily used to solve those equa-
tions. Work has been done along these lines; much more
is needed in order to answer this question.

The central result of this paper is a derivatioii of
Darcy's law for flow in the presence of extrinsic momen-
tum dissipation, within the context of the hexagonal lat-
tice gas model. On the way, we check that an initial ve-

locity distribution decays in time as expected and that, for
flow between parallel plates, Poiseuille flow occurs. The
parameter of physical significance in both cases is viscosi-
ty, and we check that one value is consistent with the two
situations.

Darcy's law states that the velocity of the flow is pro-
portional to the gradient of pressure

tant application of Darcy's law is in its use as the starting
point of theoretical investigations of Saffman-Taylor insta-
bilities for binary mixtures of fluids.

The situation modeled in the hexagonal lattice-gas au-
tomaton is the following: since Poiseuille flow is driven
by a pressure gradient, we investigate how Darcy's law
emerges when fixed scatterers are introduced into the
flow. Tke scatterers provide the same type of momen-
tum dissipation as the walls of the Hele-Shaw cell or
those of the pores in a porous medium. We describe the
resultant flattening of the parabolic Poiseuille velocity
profile via a damping term, proportional to velocity, in
the Navier-Stokes equation. We relate the coefficient of
the damping term to the density of scatterers, starting
from the Boltzmann transport equation for the micro-
scopic flow of gas particles.

The model we use is the usual hexagonal lattice gas au-
tomaton. ' At each site of a two-dimensional hexagonal
lat tice, particles can move into any of six directions.
There can be two-, three-, and four-body collisions at a
site, which conserve energy and momentum. The possible
collisions are shown in Fig. 1(a). The rules are such that
no molecules are created, and in one time step all particles
on the lattice move first to a different site, and then un-
dergo collisions at the new site [if the configuration is one
depicted in Fig. 1(a)].

The paper is organized as follows. In Sec. II we briefly
describe both the decay of an initial velocity distribution,
in the absence of driving forces, and the emergence of the
parabolic Poiseuille profile for plane parallel flow, both in
the absence of scatterers. Section III contains our results
concerning Darcy's law, and Sec. IV provides a summary
and conclusions.

v= —2 7'p .

It applies to essentially two different situations, with a
different physical meaning for the constant A. The first
one concerns flow in porous media where 3 =K/g, K
being defined as the permeability of the medium, and q is
the viscosity of the fluid. The second one concerns exper-
iments done in Hele-Shaw cells, where K (up to a numeri-
cal constant) is equal to the square of the distance be-
tween the parallel plates constituting the cell. One impor-

II. VELOCITY DECAY AND PLANE-PARALLEL
POISEUILLE FLOW

The system we are considering [Fig. 1(b)] is of width
L = 84 in the x direction and length L ' =240 in the y
direction. (The lengths are expressed in terms of the link
length taken to be one. ) It has been previously checked
that flow in this system is to a very good approximation
one-dimensional, i.e., that the velocity in the y direction
depends on x only, and the velocity in the x direction is
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00
negligible in comparison.

Macroscopic mean density p (the mass of a particle is
taken to be one) and velocity u are defined by

p= — g(N );,2
(2)

00

Or

Or
60

pu= — g(N c );,2 1

l, CI

where the sum over i is over the number of sites in the
region considered, I is the total number of sites in that
region, and the factor of 2/&3 is due to the fact that for
the hexagonal lattice the number of sites per unit area is
2/&3 and not 1. N; is the number of particles at site
i, moving into direction a, and c;, is the unit length ve-
locity vector at site i, pointing into direction
a (a=1,2, , 6).

Instead of (2) we will be using in the following discus-
sion the quantity

p
Pv'3

(3')
2 6

the average number of particles per link. 6p then corre-
sponds to the average number of particles per site. The
velocity u is the same for all these definitions.

Since it is the x dependence of the velocity we are in-
terested in, a macroscopic region in our work is taken to
be a longitudinal slice of lattice of length 220 and width 6
(in unit links). There are thus 14 data points in the x
direction. Let us now discuss in turn velocity distribution
decay and Poiseuille flow.

A. Velocity decay

Here an initial distribution of particles is introduced,
with a given density, and having a net average flow in the

y direction. The initially flat profile decays in time due to
no-slip boundary conditions at the lateral walls (no-slip
means here that any particle that hits the wall along any
of three possible directions bounces back into the incom-
ing direction). Boundary conditions at the top and bot-
tom ends are periodic. Fluid behavior for this flow
satisfies the Navier-Stokes equation

Bu 8 u
2

(4)

where u denotes the velocity component in the y direction
and v=g/p is the kinematic viscosity.

The solution to (4) is of the form

(b)
FIG. l. (a) Collision rules for the hexagonal lattice-gas model.

Examples are shown of two-body, three-body, and four-body col-
lisions. Collisions conserve energy and momentum. (b) Sketch
of the two-dimensional system studied. The longitudinal direc-
tion is the y direction, where L' is the number of sites in that
direction. The transverse direction is the x direction, with L
sites. The lateral boundaries consist of a succession of hexagonal
sites. One complete hexagon is drawn.

—vk t
u(x, t)= g u cos(k x)e

m=0

where k =(2m + I )m/L, L being the width of the sys-
tem, and x varies between —L/2 and L/2. The velocity
averaged over x is

u(t)=up 8
exp( —vk t),

m =o n (2m +1)
where uo is the initial flat velocity distribution. The kine-
matic viscosity is of order 1, and, as soon as t is bigger
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How is this situation created in the hexagonal lattice gas?
For the lattice gas, pressure is proportional to density,
given by p = —,'p. ' The density gradient from bottom to
top of the system is created by randomly taking two-
particle collisionless configurations on the bottom line,
and turning these particles into the two up directions,
thus injecting momentum into the system. Periodic
boundary conditions are maintained in the propagating
phase of the time step update (cf. Introduction). Lateral
boundary conditions are no slip, as in Sec. II A.

Figure 3 shows that the parabolic velocity profile is ob-
tained in the hexagonal lattice gas model. ' This corre-
sponds, at a density p of —,', to a measured density gra-
dient Ap/by of 5.82 & 10 . From the average velocity
given by

FIG. 2. Velocity decay for a uniform initial profile. Shown is
the logarithm of velocity u~ as a function of the number of time
steps, increasing from right to left. The experiment is done at an
average number of two particles per site.

L 1 dp L 1 dp
24v p dy 24v p dy

we extract a value for v of (for u =0.081)

v=0. 63 .

than 500, the sum in (5) is dominated by the m =0 term:

Sup 7T2
u(t) = exp —v t

2 L2 (6)

For the hexagonal lattice model, with the definition of
velocity and density as given by (3) and (4), the decay of
average velocity follows exactly the form (6), as shown in
Fig. 2 on a plot of velocity versus time. Several runs at
a density p of 1/3 [cf. Eq. (3)] and for various initial uni-
form velocities, lead to a kinematic viscosity in the range

0.60 & v & 0.64 .

This is to be compared with a calculated Boltzmann value
of v =0.55, which includes a correction due to the
discrete nature of the system. ' We consider it satisfacto-
ry that the value obtained from velocity decay is within
10% of this value. For Poiseuille fiow (see below) the
value determined from the numerical experiments turns
out to be v=0. 63.

It should be pointed out here that viscosity is not well
defined in two dimensions. It diverges (at least in prin-
cipal) logarithmically with the size of the system. The
viscosity determined here should therefore be regarded
as an efFective one, corresponding to the system size con-
sidered. The logarithmic variation of course makes any
dependence on system size very weak.

This value is compatible with that derived above from the
decay of velocity profile, and within 15% of the value cal-
culated in the Boltzmann approximation. Equation (8) is
obtained from (7) using the relationship between pressure
and density p =p/2.

Numerical data are obtained by doing time averages
(over several thousand time steps), once the system has
reached steady state (after 6000 time steps). There is a
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B. Plane-parallel Poiseuille flow 0.015—

This case corresponds to a flow maintained by a 1ongi-
tudinal constant pressure gradient dp/dy. The solution to
the Navier-Stokes equation

I

10
I

12

9 dp
7l

dx

is given by the usual parabolic profile

—1 dp x(L —x) .
2'' dy

FICx. 3. Parabolic velocity profile u~ as a function of x, for
Poiseuille flow. Each unit in the x direction corresponds to 6
lattice units (for details see text). The fit is obtained through a
plotting routine. Here

i
dP/dy

i

=5.82&10 ', at an average
number of two particles per site.
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source of error here peculiar to the lattice-gas model:
The pressure, and thus the density, acquires a u depen-
dence. Since u depends on x, this creates a lateral densi-
ty gradient, not taken into account in the Navier-Stokes
equation [Eq. (7)]. This effect is, however, small as long
as the maximum velocity is small (here
u max=0. 12)."'

The main point is that the parabolic profile is found
and that the kinematic viscosity determined from it is
compatible with the value found from the decay of an ini-
tially fiat velocity distribution (cf. Sec. II A).

where e is one of six directions in the hexagonal lattice
model, N is the number of particles going into direction
a, c is the unit vector of direction n, and A is the col-
lision term. Using definitions (2) and (3) for average den-
sity and velocity, Eq. (12) leads, after summation, to
mass conservation, and, after multiplication with c and
summation, to momentum conservation. Let us concen-
trate in fL on the part that describes the bouncing back
of any particle either into or out of direction cz, after hit-
ting a scatterer at site a. The assumption of molecular
chaos is of course made here. We denote by N, the
number of scatterers at given site. Then

III. DARCY'S LAW fl =N, (N +3 —N ) . (13)

d Q 1dp
v —0,'u =

dx p dy

where a is positive, and dp/dy is the pressure gradient.
We recall that pressure is proportional to density in the
hexagonal lattice model (cf. Sec. II B). The solution to (9)
with boundary conditions u (0)=u (L) =0, is given by

1 1 dp cosh[r (x L/2)]-
a p dy cosh(rL/2)

where r =i/a/v. When a goes to zero, (10) reduces to
the usual parabolic velocity profile given by (7). The
average velocity corresponding to (10) is

(10)

u = — 1 — tanh(rL /2)
—11dp 2 (11)
n p dy Lr

The coefficient a in (9), (10), or (11) is proportional to the
density of scatterers. The coe%cient of proportionality
can be estimated by starting from the microscopic model,
in the Boltzmann approximation, which states that, at a
given site,

N (t +1, r+c ) N(t, r)=I—I (12)

As noted in the Introduction [see Eq. (1)], Darcy's law
is relevant to flow in porous media such as rocks, and in
Hele-Shaw cell experiments on binary mixtures. We wish
to study how this law emerges from the hexagonal
lattice-gas model. This model being two and not three-
dimensional, we proceed by mimicking the porosity of the
medium (or effects of the walls of a Hele-Shaw cell) by in-
troducing a small density of scatterers. These are sites in
the system, where any incident particle bounces back into
its incoming direction. They act as a reservoir of momen-
tum. Their density is very low compared to that of the
gas, so that the mean free path of a gas particle is essen-
tially unaffected by their presence. If the original flow is
of Poiseuille type, driven by a pressure gradient (cf. Sec.
II B), the presence of the scatterers slows down the fiow
and flattens the profile.

Our results can be described by introducing a damping
term, proportional to velocity, into the Navier-Stokes
equation. (Terms of this general form are discussed in
Appendix D of Ref. 13.) The coefficient a of this term is
proportional to the density of scatterers and is estimated
below in the Boltzmann approximation to the lattice-gas
model. With the presence of a damping term, the
effective Navier-Stokes equation reads

Assuming local thermodynamic equilibrium, N can be
expanded as

&3 a
N = (1+2c u+ . ).

2 6 a (14)

[The factor of 2 in (14) is consistent with the definition
of u [see Eq. (3)] and the fact that g (c );(c )J =35;J
for a two-dimensional hexagonal lattice. The assump-
tion of local thermodynamic equilibrium here requires
that the collision time ~ for particle-particle collisions is
short compared to the analogous time ~z for particle-
impurity collisions. In terms of the corresponding mean
free paths A. and Xz, we require A, «kz. As A, -10, and
Xz —1/Ns, we require Ns « —,', . The largest impurity
density considered here is Nz = —,

' .

Multiplying (12) by c, summing over a, and using ex-
pression (14) up to second order in u, leads to the
Navier-Stokes equation, as described in Ref. 2. We are
interested in the collision term (13), which upon per-
forming the above operations becomes [up to an overall
normalization of (2/v'3)(1/M), cf. (2) or (3)]

gc Q =N, gc (N +3 N) . —

Using expression (14), this becomes

gc fI =2N, gc [(c+3—c )u]~ v'3
'6 2

v'3
4N, + gc—(c u),

since c +3 ———c . Now g (c );(c )J =35;~ for the hexag-
a

onal lattice and thus we have

v'3pcQ = —2 Npu.
2

(15)

Nz & 1 is simply the average number of scatterers at a site.
Expression (15) leads to a damping term in the Navier-
Stokes equation. Taking into account the extra factor of
(2/i/3)(1/M) in the normalization (see above) and the
fact that in order to arrive at Eq. (9), there has been a
division by the density p, one obtains for the coe%cient of
the damping term in (9) the expression
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(z=2N, . (16)

This relation between a and N, depends on the form of
the particle-scatterer collision term, given in expression
(13).

The numerical experiments to test Darcy's law have
been done with 200 scatterers, corresponding to a site
density N, =0.01. The scatterers are distributed random-
ly among the lattice sites, and flow is driven by a density
gradient as in Sec. II. In Fig. 4 we show the velocity
profile, averaged over an ensemble of 20 systems, each
with 200 scatterers. The velocity profile is Aattened out,
as expected, in comparison to that obtained in Poiseuille
flow (Fig. 3). The curvature of the profile is small except
near the boundaries. As a consequence the viscous term
in Eq. (9) is small compared to the damping term over
most of the channel, leading to Darcy's law

1 1 Bp 2 rL
tanh

ur2p By rL 2
(19)

As

1' & Bp =2.34X 10-
p By 2p By

for the data of Fig. 4, we find v=0. 66. We estimate the
error on v to be 20%. The value of v is consistent with
the values for v found in Sec. II. Then

Use of Eq. (11) with a=vr allows extraction of the
viscosity v from the data via

uy(x) =—1 dp

po. dy
' (17) +=0.011=1.1N, . (20)

with the constant A =1/pa in Eq. (1). The permeability
K of our system is, hence,

K = =v/a= 1

pcs r
(18)
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FIG. 4. Velocity profile of a pressure driven flow in the pres-
ence of scatterers. Lateral boundary conditions are no-slip and
an average over systems of scatterers has been taken (for details
see text).

and is proportional to the square of the healing length 1/r
of Eq. (10).

A simple measure of the flatness of the profile is the
ratio u, „/u, which, for Fig. 4, is equal to 1.2, compared
to 1.5 for Poiseuille flow and 1.0 for a perfectly flat
profile. Numerically, the average velocity u =0.0164 is
determined directly for the data of Fig. 4. The profile
shape is then fit by the single parameter r =&alv, with
the result that r =0.133.

This differs from the simple Boltzmann result of Eq. (16).
The assumptions of low density and molecular chaos go-
ing into the Boltzmann derivation are not really satisfied.

A further numerical experiment, yielding a directly,
has been carried out as a control on our above results.
The experiment uses free slip boundary conditions at the
walls, resulting in a flat profile u~ =0.016=const. Direct-
ly, from Eq. (17) we obtain a = 1. 17)& 10 which, within
our accuracy, is compatible with that given by Eq. (20).
The pressure gradient here was

=3.75~10—1dp 4

p

Note that the density gradients quoted above corre-
spond to a total density variation in the y-direction of
10%. All effects of compressibility, at this level, have
been taken to be negligible in our work. Further reduc-
tion of the gradient is, of course, possible, but leads to
noisier velocity profiles.

IV. SUMMARY AND CONCLUSION

We have studied fluid flow within the hexagonal
lattice-gas model in the presence of randomly situated
scatterers. Darcy's law is obtained in the limit where
viscous edge effects are negligible. Additional checks on
the validity of a hydrodynamics for the coarse-grained
lattice-gas include driven (Poiseuille) and decaying flow
between walls with no-slip boundary conditions. The re-
sults of all of these numerical experiments are consistent
with one another and with the appropriate hydrodynam-
ic description. The effective kinematic viscosity com-
mon to all phenomena is equal to 0.63 (+5%) at an
average density of two particles per site. The lattice gas,
with some restrictions, "' appears to provide an ap-
propriate tool for the study of simple hydrodynamics
phenomena. Whether it is an efficient way to study
more complex phenomena, such as the Saffman-Taylor
instability and turbulent flow around obstacles remains
to be investigated.
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