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Some dynamical models in which there is a significant interplay between interfacial and bulk de-

grees of freedom are treated at the mean-field (or Van Hove) level from a coarse-grained microscopic
viewpoint. Specifically, the near-equilibrium interfacial dynamics of two of the simplest models with
conservation laws, models B and C, are studied with use of (as appropriate) variational techniques,
perturbation theory, and (with certain additional simplifications) exact solutions. Use of these
methods allows the dispersion relation for interfacial modes to be interpolated between the "hydro-
dynamical" and critical regimes. The crossover scaling behavior lends support to renormalization-

group methods near d=1 which focus on the interfacial modes but nonetheless extract the bulk
dynamical exponent as well as the crossover.

I. INTRODUCTION

The behavior of interfaces, regions separating coexisting
phases, has been of great interest since Gibbs' treatise. '

Several recent reviews of equilibrium properties are avail-
able which document the considerable progress made
in the field over the past few years. Studies of the dynam-
ical aspects of interfacial phenomena are also extensive,
appearing in a variety of topics, from hydrodynamics
to metallurgy, ' from equations linearized near equilib-
rium to systems driven far from equilibrium. ' More re-
cently, field-theoretic investigations of the dynamics of
systems near criticality were begun, ' ' and connections
between the bulk and interface were explored. ' Much
remains to be learned about this regime, in which the bulk
has its own interesting properties and there is a significant
interplay between interfacial and bulk degrees of freedom.
Such a regime must be treated from a more microscopic
viewpoint, starting from a bulk Hamiltonian rather than
just an interface model. Information garnered from such
studies should prove important in the development of
effective interfacial models for more complex systems such
as those driven far from equilibrium.

The prototypical case of a system in which there is an
interplay between bulk and interfacial degrees of freedom
is that of a system of two coexisting phases not too far
from criticality. In the limit in which interfacial distor-
tions are of long wavelength compared with any thermal
(correlation) lengths in the problem, the description of the
interfacial modes should go over to a hydrodynamic
description. In the opposite limit of long correlation
lengths, the bulk criticality becomes important, and there
is a strong connection between bulk and interfacial de-
grees of freedom. The dynamical (and static) interfacial
properties show a crossover from hydrodynamic to criti-
cal. From a slightly more fundamental viewpoint one has
the following description. The fluctuations of the inter-

face in an Ising-like system are governed by soft, Gold-
stone modes arising from the broken translational invari-
ance in the establishment of the interface itself. The inter-
facial fluctuations arising from these modes contain the
necessary information about criticality for the ultimate
disappearance of the interface itself.

The program one would like to follow is to begin with a
bulk Hamiltonian and establish an interface with the use
of appropriate boundary conditions (or wall potentials)
and thermodynamic parameters. Interfacial static and dy-
namic properties, at least near equilibrium, should follow
from the response properties of the full inhomogeneous
system. For real fluid systems, in which there is a cou-
pling of the order parameter to velocity fields, this
represents a difficult problem. Felderhof and Turski and
Langer made some progress in this direction by treating
the statistical mechanics of the fluid within a mean-field
approach and treating the fluid as inviscid. The calcula-
tions amount to the hydrodynamic treatment of a diffuse
interface, but even within the approximations noted they
are not without difficulties.

It has been possible to go beyond the mean-field treat-
ment of the thermal properties only in the simplest possi-
ble case' ' in which velocity fields are entirely neglected
(corresponding to a solid), and' the order parameter is tak-
en as nonconserved, corresponding to an order-disorder
system. For such a system [model A (Ref. 21-)] the inter-
facial dispersion relation could be extracted from the
response of the system; the dispersion relation has the
form of a scaling function

—uo~ =q'Q(qg),

where q is the (d —l)-dimensional wave vector in the
plane of the interface and g is the bulk correlation length.
The exponent z is a dynamic exponent which one expects
may be identified with the dynamic scaling exponent for
the bulk homogeneous system. As qg~ oo, that is, as the
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critical regime is approached, the interface disappears and
there should be one characteristic frequency co -q'. ' In
the opposite limit, the hydrodynamic regime characterized
by qg'~0, one expects co~ —q, with cr typically an in-

teger or simple fraction. The scaling function II(x) must
develop a singularity as +~0 in order to go over to this
new behavior. The correlation and response properties
must also exhibit crossover behavior between the two lim-

iting regimes. The renormalization-group treatment of
model-3 interfacial dynamics near d =4 confirms this
picture, ' ' but a two-loop calculation of the dynamics of
the inhomogeneous system is required to probe the full

structure. The scaling picture lends support to the
renormalization-group treatment near d =1, ' which cal-
culates z (the bulk exponent), as well as the full crossover
from the critical to the hydrodynamic regime by focusing
on interfacial properties alone.

The purely relaxational behavior of model 3 is too sim-

ple to describe the dynamical behavior of many physical
systems of interest. One must be able to include conser-
vation laws, fluid velocity fields and "hydrodynamical"
interactions, and possible mode coupling terms to describe
more interesting dynamics of physical systems. Given the
complexity of including fluctuations in the interfacial dy-
namics of model A (Refs. 15—17), extending the treat-
ment to include these additions will be extremely difficult.
One is forced to turn to mean-field (zero-loop or Van
Hove level) dynamics; fortunately, interesting crossover
behavior already occurs at this level as soon as conserva-
tion laws are introduced.

In this short paper we consider the near-equilibrium in-

terfacial dynamics of two of the simplest models with con-
servation laws, the so-called models 8 and C. ' By the
use of a variational principle the dispersion relations for
the interfacial modes of these models can be interpolated
between the critical and hydrodynamical regimes. We
also comment on the connection between the variational
approach and some interfacial equations of motion recent-

ly discussed by Ohta and Kawasaki. ' The layout of
this paper is as follows. In Sec. II the case of conserved
order parameter (model B) is briefly treated while in Sec.
III the case of a conserved auxiliary field coupling to a
nonconserved order parameter (model C) is considered.
In Sec. IV some brief concluding remarks are made.

II. CONSERVED ORDER PARAMETER

by an appropriate choice of units. The miscibility gap is
2M in this notation and the bulk correlation length is
given by g '=2M. The equilibrium interface is found, at
this level, from solutions of 6H/5/=0 subject to ap-
propriate (odd) boundary conditions. The equilibrium in-
terface (classical ground state) is the familiar

P =P, (z) ~ tanh(z /2g), where z is the direction perpendic-
ular to the plane of the interface. (Relevant background
can be found in Refs. 3 and 4.) When the equation of
motion (2. 1) is linearized about the flat equilibrium inter-
face given by the classical solution P, , so that P=P, +g,
one finds that interfacial modes of wave number q (in the
plane of the interface) have complex frequency co deter-
mined from

( ice—)Q=D ( D+ V—)f, (2.3)

where D —=3, —q and L, = —D + V is the usual fluctua-
tion operator describing interfacial static properties of
this model (see, e.g. , Ref. 3) with

V = —
—,'g [1—3tanh (z/2$)] . (2.4)

[In this convention negative, real ( —ice) corresponds to
pure relaxational behavior. ] All of the eigenfunctions
and eigenvalues of L, are known and are provided in the
background references. In this representation the func-
tion P depends on z only. The coefficient I has been set
to unity.

A systematic hydrodynamiclike analysis of (2.3) can be
carried out built on lines introduced by Felderhof and
Turski and Langer. ' Here solutions on either side of
the interfacial region are matched, taking cognizance of
the finite interfacial width. The unambiguous result,
which may be reproduced in alternative fashion, includ-
ing the methods presented here, is that in the hydro-
dynamic regime, qg«1, ( ice) ——q—for the relaxa-
tion of the so called capillary-wave-like excitations. On
the other hand, it is possible to show from (2.3) that in
the critical regime, qg&&1, ( —ice) ——q which, at this
level of approximation, is just co-q' where z =4 is the
bulk dynamic exponent describing relaxation of fluctua-
tions in the homogeneous system at the critical point. '

The scaling function fI in (1.1) contains a singularity
reflecting this crossover even at this level of calculation.

A good approximation to the complete behavior of the
dispersion relation can be constructed variationally as fol-
lows. From the equation of motion (2.3) one finds

We consider systems whose coarse-grained dynamics
are described by the time-dependent Ginsburg-Landau
equation for the evolution of the local order parameter
P(x). The time dependence is assumed to follow from

(2. 1)

where H is the usual Ginzburg-Landau Hamiltonian (in a
form useful for considering T & T, ),

H= J [—,'(7'P) + U(it)]d x,
(2.2)

U(P)= —,'(P —M )

and I" is the kinetic coefficient, which can be set to unity

(2.&)

as extremizing the right-hand side confirms. Here & )
represents the ordinary inner product. A good approxi-
mation should follow from the translation mode
ij'j=g,' =dP, /dz. This mode, which generates the Gold-
stone mode corresponding to the broken translational in-
variance due to the establishment of the interface, is an
exact solution as q ~0. This mode is the dominant
long-wavelength fluctuation, and eft'ective interface mod-
els focus on it to the exclusion of all other modes of the
system. Substituting this mode in the variational equa-
tion yields a dispersion relation of the form (1.1) with
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z =4 and the limits

—I aq /2M, qg~O—1 CO~ 4—I"q, qg~oo .
(2.6)

—,'x (P —M), $&0
U(di) = ',

—,'l~ (/+M), $(0 .
(2.1 1)

In the present convention the minus means purely relaxa-
tional behavior. The two different limiting forms indicate
that the scaling function Il(x) displays the singular behav-
ior 0, —1/x as x~0. Note the variational approximation
correctly yields the limiting wave-number dependence and
also correctly produces the constants of proportionality.
2M is the bulk miscibility gap, and at this level the sur-
face tension cr is given by

c7= ~ z dz (2.7)

The hydrodynamic limit agrees precisely with a complete-
ly macroscopic treatment of interfacial linear response
based on the difFusion equation along with a local equilib-
rium assumption for the boundary condition at the inter-
face (see, e.g. , the work by Langer and Turski and
Jasnow et aI. with the nonequilibrium fiux removed).
The precise agreement of the variational approximation at
both ends is very encouraging, and gives hope for its ap-
plication to more complex (and more interesting) interface
dynamics.

Some further insight into the working of the expression
(2.5) can be obtained from the following perturbation
analysis. Return to (2.3) which is rewritten for brevity as

Ag= A (B+b,)it, (2.8)

&q, q„) -5.„. (2.9)

Then it is straightforward to find the leading-order result

with A =i co and the eventual identifications for the
operators A = D, B = —8—, + V(z), and b. =eq . The
parameter e is the expansion parameter, which ulti-
mately gets set to unity. The logic here is that with e=O
the translation mode P,

' is an exact solution. In this for-
mulation 3, B, and 6 are Hermitian and the spectrum
of 3 is positive. Suppose one knows the solution of
ABQ„=A„g„and wants to solve A (B+b.)Q„=E„Q„.
Letting P„=g„+X„and E„=A„+5„,one can proceed
perturbatively. If one defines p through p„—= A it'„, one
can show the orthogonality

This function is sometimes useful since the mathematics is
greatly simplified. However, one cannot truly go towards
the critical point from below, since in that limit the poten-
tial must go smoothly over to a quartic, as in Eq. (2.2).
Nonetheless one may fix the correlation length g'=tr
and allow the wave number q to vary from the hydro-
dynamic regime qg && 1 over to "critical" with qg'» 1.

The analysis for the system with an interface is straight-
forward. The classical solution or mean-field order-
parameter profile has the form

(t, (z) =M [1—exp( —~z)], z & 0 (2.12)

with an odd continuation for negative z. To study Auc-
tuations about the classical solution in linear response,
one must solve Eq. (2.3) with

V (z ) =~ —2tr5(z) . (2.13)

It is slightly easier to work with the "adjoint" g defined
by it = DP, whe—re the operator D has been defined after
Eq. (2.3). Now we seek solutions to

( —D + V)( —D)Q= Af, (2.14)

with it continuous and with continuous first and second
derivatives at z =0. The third derivative is discontinuous
by the amount

g'"(0+ ) —P"'(0—) =2'( —D)it'(0) . (2.15)

It is tedious but straightforward to find the root [which
also satisfies Eq. (2.15)]. Its limiting forms are Q~l as
y~O ("criticality" ) and Q~(y/2)' as y~ oo (hydro-
dynamic regime). This exact result confirms (2.6) and
supports the conclusion drawn from the approaches
sketched above.

Writing A=q Q(y), with y =1/2q g, we find that
satisfies an algebraic equation,

II —(2+2y —y )II +(1+2y —2y —2y )0

+2y (1+y)Q+y =0 . (2. 16)

&1(„~q„)
&q„A -'1t„) (2.10) III. MODEL C INTERFACIAL DYNAMICS

Taking tt „=P,
' (z) as noted above, one finds that the

lowest-order perturbative result and the variational ap-
proximation yield the same expression for the eigenvalue
and hence the interfacial dispersion relation.

One might question whether the limiting forms (2.6) are
artifacts of the variational estimate or a first-order pertur-
bation theory treatment. To increase our confidence in
the validity of (2.6), we consider a simplified U(P) with
which we can solve for 0 exactly. Such model employs
the "double Cxaussian"

Model C in the Hohenberg-Halperin ' scheme is
defined by a nonconserved order parameter P coupling
to a conserved auxiliary (e.g. , temperature) field m ac-
cording to

a, (t = —r(5H/5y),

B,m =XV (5H/5m) .
(3.1)

Here H =H(g, m)=H(P)+H~ (P, m), where H(P) is
just the usual Ginzburg-Landau expression given in (2.2),
and the coupling is given by H~ = —,

' f [m —8 (P)] d x.
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I and k are the kinetic coefficients. A convenient choice
of W is W(P)= —,'wP, which we adopt. Straightforward
analysis shows that the equilibrium interface P, has the
same hyperbolic tangent form as discussed above, and
the corresponding auxiliary field is given by m, = W(P, ).
When the equations are linearized about the equilibrium
interface, one is faced with a 2X2 eigenvalue problem of
the form

a '& =DL '&
6m 6m

where

(3.2)

D=
0

0
L=

—V'+ U,'+ ( W, )' —W,

(3.3)

The subscript c indicates the functions are evaluated at

At criticality the modes decouple with respective fre-
quencies —I k and —Ak . Below T, deep in the or-
dered phase, the g-like mode decays rapidly for all k
whereas the m-like (temperature) mode decays proportion-
ally to —k with a modified coefficient. Around an inter-
face solution P„however, we resort to the variational esti-
mate

( O'D '4' )
(3.4)

where %' is a two-component vector as in (3.2). The
translation mode now can be shown to be %=(P,', m,'),
which is an exact solution to the equations of motion with
zero frequency for the case q =0. Using this 4 in (3.4),
which is analogous to the choice in Sec. II, one finds an
estimate for the coupled mode frequency

Im
ice = —1 q— 1+ g(qg) (3.5)

Far from T, , g~ 1, while as qg~ co, g~0. The kinetic
coefficient for this coupled interfacial mode crosses over
from I"/(1+1 w /A, ) in the ordered phase to I as
T~T.—.

IV. CONCLUDING REMARKS

In this short paper we have drawn together some of
the threads concerning interfacial dynamics in systems
with a conserved order parameter (model B) near equi-
librium. We have shown that a variational approxima-
tion (and also systematic perturbation theory) can be
used to interpolate the dispersion relation between the
hydrodynamic (qg«1) and critical (qg»1) regimes.
In the latter regime the interplay between bulk and in-
terfacial modes becomes important. This interpolation
allows extension, if not truly to the critical point, where
fluctuation analysis beyond the mean-field dynamical

treatment is required, at least to the regime of thick
walls. A simplified model, in which the effective poten-
tial U(P) is replaced by a double Gaussian, is solved ex-
actly yielding an explicit form for the crossover function
in the interfacial dispersion relation, A(qg). The limit-
ing forms are in agreement with the variational and per-
turbative approaches discussed in Sec. II.

We have also considered the case of a conserved auxili-
ary (temperature) field coupling to a nonconserved order
parameter (model C). A variational approximation can be
constructed which shows the crossover of the effective ki-
netic coefficient for the interfacial modes. Far from T,
the coupling to the slow mode affects the decay of inter-
face fluctuations, but nearer criticality the modes
effectively decouple. (Although we did not analyze model
D explicitly, we would surmise that similar conclusions
would result using similar techniques. ) For both models
considered here, Janssen et al. have also investigated the
exact eigenvalues for dynamic equations arising from
"simplified" potentials like double and triple parabolas.
However, the question of crossover was not addressed.

We comment here briefly on some interface equations
of motion introduced by Ohta and Kawasaki. ' Such
equations were advanced to describe the hydrodynamic
regime (of long-wavelength interface variations com-
pared to interface thickness) and may be used in a
variety of nonequilibrium situations. Their main virtue
is their ability to deal with the nonlinear regime in
which interfacial distortions have finite amplitude (com-
parable to or greater than the wavelength). They may
also be applied near equilibrium, and the discussion is
restricted to that case. The interface equations have a
close resemblance to the variational and perturbative
schemes sketched in Sec. II. Since the approximate
schemes have been shown to interpolate correctly to the
critical regime, it seems as though the Kawaski-Ohta in-
terface equations (at least in the linear regime) can also
be pushed toward criticality (or at least to a domain in
which the walls can be considered thick). Of course, the
true interest is in the nonlinear regime, and further work
is necessary to determine whether the equations are re-
stricted to describe walls thin compared to the scale of
interface undulations. Such questions are particularly
interesting in considering driven systems.

The approaches and results discussed here give some
confidence that they can be extended to more complex
and interesting cases. It is hoped that work on fluids can
be reported in the near future.
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