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Laser-cooling limits and single-ion spectroscopy
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The limitations to the achievement of low kinetic energies for laser cooling of single ions confined

in electromagnetic traps are discussed. Sideband cooling of an ion in an rf (Paul) trap is reexamined

including the effects of finite laser bandwidth and the energy of the rf micromotion. The micromo-
tion is the oscillatory motion of the ion at the same frequency as the rf voltage applied to the trap
electrodes. Sideband cooling of ions in a Penning trap is examined for the first time. In both cases,
cooling to the zero-point energy of the ion in the trap should be possible and a method for verifying

this condition is suggested. The implications for high-resolution, high-accuracy spectroscopy are in-

vestigated. Under certain conditions, the uncertainty in the second-order Doppler shift may be

significantly less than 1 part in 10".

I. INTRODUCTION

Over the past few years, the number of experimental
and theoretical investigations of laser cooling has in-
creased dramatically. ' Much of this initial work has
concentrated on characterizing the cooling process and
understanding the lower limits to cooling. This is partly
because the attainment of very low velocities will be im-
portant in applications such as high-resolution spectrosco-
py (reduction of Doppler shifts) and low-energy studies of
atom-atom and atom-surface interactions. Minimum ki-
netic energies have often been expressed in terms of tem-
perature. For free or weakly bound atomic particles, we
make the identification m ( v; ) /2=k~ T; /2 where
m (v; )/2 is the kinetic energy in the ith degree of free-
dom, T; is the temperature for that degree of freedom,
and kz is Boltzmann's constant. For atomic particles
bound in a harmonic well, T defined by the above rela-
tionship is therefore a measure of the average kinetic ener-

gy in the x direction.
When the above relationship between kinetic energy

and temperature holds, and when laser cooling is accom-
plished by driving a single photon transition, the
minimum achievable temperature is given by the
"Doppler" cooling limit (or "heavy particle" limit ),

have recently been achieved by Chu and co-workers using
neutral sodium atoms. They demonstrated a tempera-
ture (T =240+6' pK) equal to the Doppler cooling limit
using three intersecting and mutually perpendicular,
standing-wave laser beams which were tuned to give max-
imum cooling.

For trapped ions or atoms, cooling in the "sideband"
limit (when y &&co„) is achieved by tuning the incident ra-
diation to one of the lower motional sidebands of the
atomic absorption. For example, in Fig. 1, the laser is as-
sumed to be tuned to coo —co„where coo is the transition
frequency for the atom at rest. In this case, the minimum
kinetic energy achieved is often given in terms of the
mean occupation number (n, ) of the harmonic oscillator
state for the atom or ion in the well. The brackets ( )
denote the average over time or the average over an en-
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In Eq. (1), y is the radiative lifetime of the laser-cooling
transition, 2m' is Planck's constant, and we have assumed
that the incident radiation is well below saturation intensi-
ty. For atoms bound in a harmonic well with characteris-
tic "vibration" or oscillation frequency co„ the Doppler
cooling limit applies when y ~~co, . The free-particle case
is for the limit co, ~O, and thus Eq. (1) still applies. TD is

typically in the range of 1 mK for strongly allowed elec-
tric dipole transitions. For the case of stored ions, tem-
peratures less than about 10 mK have been achieved.
The uncertainties in the measurements have often been
consistent with the temperature being at the theoretical
limit given by Eq. (1). The lowest measured temperatures
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FIG. 1. Absorption spectrum of a single ion bound in a har-
monic well, e.g. , the absorption spectrum for the secular motion
in an rf trap. It is assumed that co„(oscillation frequency of the
ion in the harmonic well) ~~@ (radiative linewidth of the cooling
transition). The Lamb-Dicke limit is assumed, i.e., ion excur-
sions are less than k/2~=c/mo. Therefore, the intensity of the
sidebands is small compared to the carrier at coo. Maximum
cooling is achieved for a narrow-band laser (bandwidth less than

y) tuned to coo —co, .
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semble of identically prepared systems, assumed to be the
same. In the sideband limit we have ' "

(n, ), =C, (y/co„) (2)

In Eq. (2), C, is a constant on the order of 1 which de-
pends on the atomic selection rules for the absorption and
reemission. We have assumed that the incident radiation
is well below saturation intensity. So far, sideband cool-
ing has not been accomplished for trapped atoms or atom-
ic ions. It has been realized in the special case of cooling
the magnetron motion of trapped electrons, ' but in this
case, the minimum achievable temperature is limited by
thermal excitation. "'

Since laser cooling gives rise to a thermal distribution of
occupation numbers, we can write

(n, ) = [exp(fico, /k& T) —1] (3)

Combining Eqs. (2) and (3), we achieve the minimum
temperature in the sideband cooling limit,

T, =Pm, /[kiiln( ( n, ) ')]

=%co, /[ kilin( cv, /Cy )] . (4)

When fico, « kii T, Eq. (3) reduces to the expression
m(v; )/ 2= &kT;/2, which applies to the Doppler cooling
limit of Eq. (1).

Equations (1) and (4) show that lower temperatures
could be achieved by using weakly allowed transitions
(smaller values of y). In addition, lower teinperatures
could be achieved by using combinations of evaporative
and adiabatic cooling and/or novel cooling schemes using
more than one atomic transition or nonadiabatic manipu-
lation of trap parameters. ' ' For example, several re-
cent papers' have considered cooling by using stimu-
lated Raman transitions. Here the cooling limits of Eqs.
(1) and (4) apply but y is now the linewidth of the stimu-
lated Raman transition, which can be quite narrow. Oth-
er authors speculate about schemes to achieve tempera-
tures as low as 10 ' K for free atoms. '

In this paper, we investigate the limits of laser cooling
for single trapped ions. We also consider the implications
of this cooling for accuracy in high-resolution spectrosco-
py. Some of the conclusions will also apply to the case of
trapped neutral atoms but here we concentrate on the case
of trapped ions. As we will try to demonstrate, describing
the cooling limits in terms of temperature may not be par-
ticularly relevant for spectroscopic purposes. This may
also be true for free neutral atoms. For example, if a sin-
gle atom [mass of 100 u (atomic mass units)] starts from
rest, the time it takes it to reach a velocity v correspond-
ing to an effective temperature T, = 10 ' K (via the rela-
tionship —,'mv = —,'k&T, ) in the earth's gravitational field is
about 10 ps. If we desired to maintain an effective tem-
perature below 10 ' K, the interrogation time between
applications of cooling radiation would be quite short.
For trapped ions or atoms, gravity need not play an im-
portant role; it merely shifts the origin of the trap. There-
fore, barring other heating effects, interrogation times can
be extremely long. Shifts in spectra caused by velocity-
changing effects due to recoil can be made negligible. For

example, the maximum of the recoil-free "carrier" (at fre-
quency coo in Fig. 1) is shifted slightly due to the overlap-
ping effects of the sidebands at coo —co, and coo+co, which
are different in amplitude. " (See Sec. V.) These pulling
effects can be made extremely small.

Perhaps the most interesting case is when the ion or
atom is cooled to near the zeroth quantum level,
(n„) « 1. Independently of the method used, if
(n, ) « 1 can be achieved, the accuracies for high-
resolution spectroscopy need not be limited by motional
effects. Since this condition can be achieved using laser
cooling on single photon transitions, we investigate only
this relatively simple case here. At the outset, unless
specifically stated, we consider only a single ion in an rf
or Penning trap. ' The reason is simply that for two or
more ions in the trap, the limiting kinetic energies are
considerably higher than those given by Eqs. (1)—(4). For
example, for more than one ion in an rf trap, in order to
overcome the Coulomb repulsion between ions, there
must be a force on each ion from the trapping potential
towards the center of the trap. This implies a certain ki-
netic energy of micromotion for each ion which can far
exceed the kinetic energy of the secular motion. The mi-
cromotion ' in an rf trap is the oscillatory motion of the
ion(s) at the frequency of the imposed rf voltage applied to
the electrodes. The secular motion is the additional,
lower-frequency motion of the ion(s) due to the resulting
pseudopotential well established by the spatially inhomo-
genous rf fields. It is this secular motion, at frequency
~„which is cooled by laser cooling. The kinetic energy
in the micromotion is directly related to the kinetic energy
in the secular motion (Refs. 24 and 25 and Sec. II B) but
is not directly cooled by the laser. For more than one ion
in the trap, even though very low temperatures of the sec-
ular motion can be achieved through laser cooling, the ki-
netic energy would be dominated by the rf motion. For
a single ion (Sec. II), this effect is considerably reduced.
Similarly, for more than one ion in the Penning trap, the
velocity in the rotation of the ion sample ' gives rise to a
kinetic energy which can be greater than the limits of Eqs.
(1)—(4). For a single ion this effect can be very small (Sec.
III).

In Sec. II we reexamine the sideband cooling limit for
ions in an rf trap where we include the effects of finite
laser bandwidth and the importance of micromotion. In
Sec. III, we examine sideband cooling in a Penning trap;
this has not been done previously. In Sec. IV, we suggest
a possible practical scheme for achieving (n, ) «1, and
in Sec. V, we discuss a method for verifying that the
zeroth quantum level is achieved. In Sec. VI we discuss
the implications of these results for spectroscopy.

II. SIDEBAND COOLING FOR A SINGLE ION
IN AN rf (PAUL) TRAP

A. Laser cooling of secular motion in an rf tray

We assume that the secular motion of the ion in the rf
trap is harmonic and characterized by the frequencies co,
co~, and cu, for the x, y, and z directions, respectively.
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This case, or more generally the cooling of atoms trapped
in a harmonic potential well, has been treated extensively
in the literature. The most complete treatment appears to
be that of Lindberg, Javanainen, and Stenholm, who in-
clude the effects of saturation. ' However, lowest
minimum temperatures are achieved with laser intensities
below saturation, and simple perturbation methods' "
can be used to find the minimum kinetic energies. Here,
we use the formalism of Refs. 11 and 27, which treats
each photon absorption and subsequent reemission as a
scattering event —spontaneous Raman scattering. This
process is spontaneous scattering because we assume low
intensity and therefore the ion returns to its ground state

via spontaneous emission. It is Raman scattering because
when the internal atomic states and vibration states (oscil-
lation states in the trap) are treated together, the ion can
change the vibration quantum number n, in a scattering
event. Let n&„denote the nth vibration state of the ion in
the x direction. The subscript l means that this is the ini-
tial (I, lower) vibration state of the ion before scattering.
Let P(ni„) be the probability that the ion is in the initial
state with quantum number ni, where Q„P( n„i)=1.
Assume that the ion is irradiated with a narrow-band
laser (bandwidth b,coL «y) directed along the x direction.
The average rate of energy change in the ith direction due
to this laser in the x direction is given by

(E, ) =N g P(ni )[Rf„+5, [E(nj ) E(ni„—)]I
/(n, „/e" /n, )/'

21+ [cop —coc + [E (ni ) —E(ni )]/R]r

2 (5)

This is a straightforward generalization of Eq. (48) of Ref.
11. N =I pro„/Acro is the scattering rate for the laser
tuned to resonance with the ion at rest, coo is the rest fre-
quency of the ion, R =(iiik) /2m is the recoil energy
where k is the photon wave vector (k =k =k~ =k, ), m is
the ion mass, fikQf„ is the rms value of reemitted pho-
ton momentum along the ith direction, E (ni )

=fico„(n&„+—,') where co„ is the harmonic well frequency
in the x direction, 5; is the Kronecker 5, and col„ is the
laser frequency. The sum is over all possible initial vibra-
tional states (with quantum numbers ni„) and intermedi-
ate vibrational states j. The intermediate states are the
states with the ion in the excited electronic state and with
vibrational quantum number n~ . Similar expressions
hold for laser beams directed along the y and z directions.

Equation (5) holds for arbitrary ion kinetic energy
(neglecting relativistic corrections). The most interesting
case, however, is that for maximum laser cooling; that is,
when the laser is tuned to the first lower sideband fre-
quency coo —co . For the final stages of cooling, we antici-
pate that the ion will be in the Lamb-Dicke regime.
This condition is given by the relationship (k (x ) )'~

=kxp(2n +1)' «1 where (n„)=g„, P(ni )ni .

Qualitatively, the Lamb-Dicke regime implies that the
amplitude of the ion's motion is less than k/2a.
xp ——(fi/2m co )

' is the zero-point amplitude so that
kxp ——(R /fico„)' =—P' . Hence, for the Lamb-Dicke lim-
it to apply we must have R « Rco, or equivalently,
co„&&mz where co& ——R/R is the recoil frequency. For
A, =300 nm and m =100 u, coR/2~=22 kHz. For these
conditions and for co /2~=1 MHz, then x0-0.007 pm
and P =0.022. If the Lamb-Dicke limit applies, then
e' =1+ikx, and only three excited states j contribute to
the sum in Eq. (5). Therefore (see Fig. 1),

(E; ) =N [(n )P„(Rf„—fo; fico )F +Rf„y l(4co„)

+(Rf„+5; fico )((n )+1)P y l(16co )] .

(6)

In Eq. (6), we have now included the factor

F, = J I'(co)
21+ (cop —co~ —co)
r

2

which allows for the fact that the laser spectral width may
be larger than r. In practice, it may be desirable to make
the laser bandwidth much greater than r to allow for
anharmonic contributions to or instabilities in cu . For
simplicity, we assume that this width is still much less
than co . I '

(co ) is a normalized intensity such that

1 I'(co)dco= 1. Therefore, the laser spectral intensity is

given by I„I'(co) where I is the total intensity. The aver-
age scatter (or absorption) rate (N, ) is related to Eq. (6)
as

(N, ) =N [(n„)P„F +y l(4co )

+((n )+1)p y /(16co )] . (8)

where terms of higher order in P„have been neglected.

If we also have laser beams directed along the y and z
axes, equations analogous to Eqs. (5)—(8) hold for (E;~ ),
(N, ), (E;, },and (N„}.

Case I. Suppose we have only one laser beam (say,
along the x axis) but that the x, y, and z degrees of free-
dom are thermalized to the same temperature. This
would correspond to the case of more than one ion in the
trap where Coulomb coupling provides the thermaliza-
tion, but where we must assume that the individual ion
oscillation frequencies are not significantly perturbed.
That is, we neglect the effects of space-charge repulsion.
The total rate of energy change is given by Eq. (6) as

«)= y (E }
i ( =x,y, z)

=N I (n„)[ RF„+Ry /(16co„)—]+5Ry l(16co„)]
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In steady state ((E)=0), we have

(n ) =5y [16cp [F —y /(16cp„)]I

We will assume throughout that the spectral density of
the laser is fairly uniform with width Ecol . If the spectral
width of the laser is larger than y, we can get an estimate
of F by assuming that the laser spectrum is ffat with
width hept, that is, I„'=1/b,cpt. For hept. »y, Eq. (7)
gives F =~@/2hcoL. Since we have assumed AcoL &&~,
then F »y /cp„and we can neglect the y /(16cp, ) term
in the previous expression and obtain

(n„)=5y /(16cp F ) . (10)

If the laser linewidth is much less than y, F„=1 yielding
(n ) =5y /16cp, which is the result of Ref. 11.

Equation (10) is valid in the Lamb-Dicke limit,
R /Ace && 1. To find corrections to this expression which
are first order in i3 =R/Ace we must include matrix ele-
ments (n —2

~

e'""
~
n, ) and (n„+2

~

e'"'
~
n, ) in Eq. (5)

and take e' =1+I.kx —k x /2. In this case we obtain

Case 2. Suppose we have three laser beams directed

along the x, y, and z axes which are tuned to the appropri-
ate first lower sidebands for each direction. We must

write an equation for (E ), the rate of energy change in

the x direction, using Eq. (6), and the analogous equations

which give contributions to (E„)from the y and z beams.

Similarly, we must write equations for (E» ) and (E, ). In

steady state we can solve these three equations for (n„),
(n, ), and (n ). The. se expressions are somewhat compli-

cated but reffect the basic idea that if one of the scatter
rates is large, say N »N, N„and if f,„=f,» =f„and
cp =cp» =co„ then (n» ), n, ) »(n„) due to the recoil

heating in the y and z directions from the laser directed

along the x direction. If, however, we examine the special

case where N; =N, , cp, =cp, , F; =F, , and f„=f,J 3

(i,j =x,y, z), then (n ) =(n») =(n, ) where (n ) is

given by Eq. (10). In this case, laser cooling and recoil

heating are approximately equal in the x, y, and z direc-
tions.

Case 3. Suppose we have one laser beam (intensity I) at
some oblique angle with respect to the x, y, and z axes. If
f, =f» =f„, then it is natural to choose k parallel to
x+y+z in order to avoid excessive recoil heating along
any axis. This is also a natural choice for a typical ion
trap where the inner ring diameter is equal to &2 times
the endcap-to-endcap separation. Here, the x+y+ z
direction splits the gap between ring and endcaps. Thus
the x+y+z direction is a practical choice for introducing
laser beams into the trap. In this case, N from Eqs. (5)
and (6) is equal to N/3 where N =Icr plflcop is equal to the
scatter rate for a narrow-band (Dept «y) laser tuned to
resonance (cpL ——cop) for the ion at rest. Assume that
co =cu~=co, =co, and that the laser bandwidth is broad
enough to cover all three of the first lower sidebands, i.e. ,
Fz —Fy Ez F. To achieve the best laser cooling, we
must have

~

co; cp~
~

&RNF/Ace—, (i~j). The reason for
this can be seen by first assuming co =co . In this case

the choice of the x and y axes is arbitrary. If we chose
new axes where y' = ( x —y ) /~/2 so that y' k =0; this im-

plies recoil heating without bound in the y direction. "
For chloe +cL)y again assume k is parallel to x+y+ z, and
choose f,„=f,» =f„=f= —,

' (condition for isotropic
scattering). Recoil heating occurs at a rate RfN, in the y'

direction (i.e., perpendicular to the laser beam) where N,
is the total scattering rate from the ion. For kinetic ener-
gies near the sideband cooling limit, the dominant scatter-
ing occurs in the wings of the carrier (at frequency cop) of
the ion absorption spectrum so that N, =Ny /4cp„[see
Eq. (8)]. The closer cp is to cp», the higher is the energy
in the y direction. To estimate this energy, we consider
the following. In the absence of laser scattering, if at
some time t =0 all of the ion's energy (above the zero-
point energy) is in the y' direction, then after a time r
such that

~
co~ cp»—

~

r =it, all of the energy is in the
x =(x+y)/v'2 direction. This situation is like the case
of two coupled oscillators (here, in the x' and y' direc-
tions) which exchange energy in time r. Therefore, the
decay of energy froin the y' direction [denoted E(y')] is

approximately equal to E(y')/ .rIn steady state, we have

RfN, = [E(y') E(x')—]/r If . we desire to keep
[E(y') E(x')] &—(n )%co, due to the recoil heating in the
y' direction, then we require RfN, r & (n )fico, or approx-
imately

i
cp cp

i

&—NRF/fico, . (12)

From the above arguments, it is clear that we must also
make the same restriction on

~

cp, —cp,
~

and
~

cp» —cp, ~.
The condition in Eq. (12) can also be obtained by assum-
ing that we want

~
cp; —cpi

~

to be larger than the inverse
of the time constant for laser cooling. In an axially sym-
metric rf trap, co =co . Therefore, in order to achieve the
condition given by Eq. (12), the axial symmetry must in-
tentionally be destroyed. Thus, if the condition of Eq.
(12) holds, Eq. (6) and the analogous equations for (E,» )
and (E;, ) in steady state give

12f„+1

(n, ) = (y/cp, )
16F

(13)

Equation (13) reduces to Eq. (10) for f„=—,'. If the laser
spectrum is uniform with bandwidth hcpL(I'=1/b, cpL ),
and 667L ))p,

(n;) = 12f„+1
8w

QkcoL /cc)~ (14)

The right-hand side of Eq. (14) is larger than Eq. (2) by a
factor of approximately AIL /y. As an example, assume

/2~=1 MHz A~L/2~=—100 kHz y/2~=1 kHz and
f„=—,'. Then ( n; ) =2 && 10

The meaning of (n; ) « 1 is the following. After most
photon scattering events, the ion's energy in the well is
equal to 3%co, /2, the zero-point energy. That is, most of
the time the ion scatters a photon without recoil energy
being imparted to the oscillation in the well. Infrequent-
ly, after some scattering events, the ion's energy in the
well is equal to (3/2+1)fico„ that is, the ion recoils into
the first harmonic osci1lator state, for some direction.
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Once in the first harmonic oscillator state, it is pumped by
the sideband cooling mechanism back to the zero-point-
energy state. That the ion does not assume some inter-
mediate energy state in the well is rejected in the discrete
spectrum of fluorescence. " We also note that when the
ion spontaneously emits a photon, its energy, when aver-
aged over many scattering events, increases by R per
emission event, " even though after any given scattering
event, the vibrational energy can only change by zero or
some multiple of fm, . Therefore, on the average, approxi-
mately Ace, /R scattering events occur before the ion
recoils into the first harmonic oscillator state. With very
high probability, the next scattering event returns the ion
to the zero-point energy state.

Therefore, most of the time, the ion is in the zero-point
energy state and photons are being scattered at a rate
N, =Ny /4tv, (scattering in the wings of the carrier). In
order to minimize the relative time the ion spends in the
n, = 1 state and therefore minimize the ion's kinetic ener-

gy [i.e., make Eq. (14) valid], we must avoid saturation of
the first lower sideband when the ion is in the n„= 1 state.
From Eq. (8), we require NPF/3&y. This implies that
the scattering in the wings of the carrier N, is less than
3y /4Fco, co&. For the conditions of our previous exam-
ple (cv, /2m= 1 MHz, y!27r= 1 kHz, tv~/2vr=22 kHz),
N, 0.2/F, which is small for F near 1.

B. Limits of micromotion energy

In Sec. II A, we have discussed the limits to laser cool-
ing for an ion or atom in a purely harmonic well, e.g. , for
the secular motion of an ion in an rf trap. When an ion is
confined in an rf trap, one must also consider the energy in
the micromotion. ' If we treat the motion classically,
one can show that the average kinetic energy in the micro-
motion is equal to the average kinetic energy in the secular
motion for two trap configurations of practical in-
terest: ' (1) when there is no static potential applied be-
tween the ring and end caps (cv„=tv~ =co, /2) or (2) when
the appropriate static potential is applied between ring
and end caps to give a nominally spherical trap
(cv„=co~ =tv, ). For other cases, this equality of micromo-
tion and secular energies does not strictly hold, but the
key point is that they are of the same order.

Since the very low kinetic energies predicted by Eqs.
(2), (10), and (13) require a quantum-mechanical treat-
ment of the ion motion, it is useful to address the question
of micromotion energy again, but now treating the ion
motion in an rf trap quantum mechanically. Here, we ex-
amine only the case of zero static potential applied to the
trap electrodes. For the quantum treatment, Cook et al.
have examined the solution to Schrodinger's equation for
the rf trap in the form

u (x, t) =exp[ —iv(x)sin(At)/A'A], (17)

Cook et al. show that we can identify g with the secular
motion. If we take the expectation value of the kinetic en-
ergy, Ez ———A V' /2m, and average over one period of
the drive frequency, we obtain

(P ~&x
~
q).„=,J d'xVv Vvg*g+ j d'xE~g'g .

4mB

P (r,z)= qVp Up
22+ 2m A (r o +2z o ) r 0 + 2z o

(18)

The first term on the right-hand side of Eq. (18) is the ex-
pectation value of the effective potential (pseudopotential),
calculated with the wave function g. The second term is
the expectation value of the kinetic energy calculated with
the wave function g. The net result is the same as in the
classical case. That is, the average value of the effective
potential energy ((Vv) ) /4m A (pseudopotential energy)
is equal to the kinetic energy of the micromotion. In the
simple case of a quadratic pseudopotential, this contribu-
tion is equal to the kinetic energy of the secular motion.

In an experimental situation, the kinetic energy in the
micromotion is typically larger than indicated above.
Sometimes there can be contact potential differences, or
differences in stray charge buildup, between the elec-
trodes. In the experiments using Ba+, Mg+, or Be+,
contact potential differences on the electrodes might result
from nonuniform deposition on the trap electrodes from
the source of these atoms. For example, suppose one
endcap has a surface which has a higher contact potential
than the other two electrodes. This implies that in addi-
tion to the usual rf trapping forces, there is an additional
steady force along the z axis which shifts the center of the
trap. The new center of the trap is given by the condition
that the total average force on the ion is zero. Thus, the
steady force due to the contact potential must be balanced
by the pseudopotential force; hence, there is a resultant
micromotion at the new center of the trap where the secu-
lar motion amplitude is zero (i.e., the position of the ion
when it is cold). To estimate classically the size of this
effect, we write the potential inside the trap due to applied
voltages in the form

Uo+ Vocos(At)
P(r, z)=, , (r' —2z'),

rp +2zp

where Up and Vp are the static and time-varying voltages
applied between the ring and end caps and where 2rp and
2zp are the internal ring diameter and endcap-to-endcap
spacing as indicated in Fig. 2. (Effects of truncating the
electrodes are neglected. ) This gives rise to a pseudopo-
tential of the form

i' P= — V t(+—v(x)cos(At)g,
Bt 2m

where v(x)cos(At) is the potential inside the trap. By
writing the wave function in the form

4q Vp

mA (ro+2zo)
2Uo

rp+2zp2 2

P(x, t) =g(x, t)u (x, t),
where

(16) m

co„mcus,

2 2

r +
2q

(20)
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t 8=Boz (required for Penning trap)

Endcap—

Ring

Endcap

$= A(x +y' —2z')

A = V/(r', + 2z', )

V: Up+ Vpcos Qt

(Vp= 0 tor Penning trap)

FIG. 2. Electrode configuration for an rf (Paul) or Penning
trap. The inner surfaces of the electrodes are assumed to be
equipotenitals of rt, and the effect of truncating the electrodes is

neglected. ro is the inner radius of the ring electrode and 2zo is

the endcap-to-endcap spacing.

qaAV
2m', zo

2
(21)

From this expression, we can find the kinetic energy in

Z

(a)

~A v/~2 ~av/2~

(b)

~hv/2~
2Zp

~~v/~z

Av/2

zz, ia

—8,v/2

FIG. 3. Part (a) indicates how a potential AV applied to one
endcap electrode can be viewed as the sum of voltages applied
symmetrically and antisymmetrically to the electrodes. For ions
near the center of the trap, the lowest-order contribution to the
electric field from the antisyrnmetric part can be viewed as aris-
ing from a voltage AV applied between a parallel plate capacitor
of separation 2zo/a. This is indicated in part (b) of the figure.
From Refs. 32 and 33, a=0.8.

where co„=co =~~ and r and z are the radial and axial
positions of the ion averaged over one cycle of the rf
drive, that is, over a time 2m/0, . The z force towards the
center of the trap due to the pseudopotential is given by
F, = —qt)rtr&/(3z. The force away from the center of the
trap due to a contact potential on one endcap is given by
the following argument. Suppose we have a voltage AV
on one endcap. This can be written as the sum of sym-
metric and antisymmetric terms as indicated in Fig. 3(a).
The z electric field due to the antisymmetric term can be
approximated ' by a parallel-plate capacitor of separation
2zo/a as shown in Fig. 3(b). The factor a has been nu-
merically estimated ' to be about 0.8 for a trap where
ro ——2zo. If we assume the case of an rf trap with zero in-
tentionally applied voltage Uo, then the center of the trap
is given by the condition F, = —qt)Q&/r)z —qadi, V/2zo
=0, or

the micromotion EK„by recalling that it is equal to the
pseudopotential energy, that is, EA„=qrtr~. Therefore, for
the z motion we have

2
qahV

Kp z Sm . (22)

For our example of the ' Hg+ ion, we obtain
EK&-2.4X10 0 Ace, . Thus, very precise control of the
phase of the rf voltage is required to reach micromotion
kinetic energies near the zero-point energy of the secular
motion. This can be accomplished by injecting a portion
of the drive signal (with the proper phase) onto one end-
cap.

Because of the relatively strong effect of asymmetrically
applied potentials, it is natural to ask whether imperfec-
tions in the electrode shapes can lead to residual rf motion

To get an idea of the size of this effect, we examine the
conditions of the miniature rf trap used to store single
Hg ions. There, cu, /2~ = 1.5 MHz, zo —320 pm,
ro=450 /zm. If AV=1 V, EI;„(z)=7X10Ace, . Thus,
offsets due to contact potential variations or similar effects
are extremely important if it is desired to reach kinetic en-
ergies approaching those given by Eqs. (2), (10), and (13).
Such problems can be alleviated by applying external volt-
ages to the electrodes to compensate for any of the above
type of asymmetries. This is easily accomplished along
the z axis by applying different static voltages to the two
endcaps. In the x and y directions, separate compensating
electrodes could be added or, for example, the ring could
be split into quadrants. Different static voltages could
then be applied to the quadrants in order to compensate
for any asymmetric contact potential difference on the
ring.

Next, we consider the effects of rf voltages which may
be asymmetrically applied to the electrodes. This situa-
tion might occur, for example, because of different im-
pedances from either endcap to ground. If the amplitude
of the rf voltage on the two endcaps is different, this
amounts to shifting the origin of the coordinate system for
the rf voltage. In this new coordinate system, a voltage
Uo applied symmetrically to the endcap electrodes or to
the ring electrode causes a static force which displaces the
ion from the origin for the rf fields and yields a resultant
micromotion which can be deduced from the previous ar-
guments. A new problem to consider, however, is that
the phase of the rf voltages on the electrodes might be
different. To estimate the effects of this, assume that the
voltage Vpcos(Br+0/2) is applied to one endcap and the
voltage Vocos(Qt —0/2) is applied to the other endcap.
The ring electrode is assumed to be grounded. If 0&&1,
we can consider the ion motion to be the sum of a solution
for the condition when Vocos(Qt) is applied to both end-
caps and a perturbation to this solution for the additional
voltages (Vo0/2)sin(Qt) and —( Vo0/2)sin(IIt) applied to
the two endcaps, respectively. Classically, we can easily
solve for the kinetic energy EK~ due to the perturbed
motion (averaged over 2zr/II ). We have

cu, (ro+2zo)a02 2 2

EKO (23)
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even when the ion reaches the position given by (F)=0.
To estimate the effects of electrode distortion, we must
modify Eq. (19). About a suitable origin we can write

2 2Z2
P(r, z)=[UO+ Vo cos(IIt)] + Az(x' —y )

ro+2zo

+3 x +Bxy+Cxz

+D3xy + . . +D4x

(24)

where Laplace's equation is satisfied for each order. To
estimate the effects of the higher-order terms, we exam-
ine the term UoC3x z= UOC3x z/zo in Eq. (24). Unless
the electrodes are severely distorted, we have C3 &&1.
Near the origin, this term gives rise to a z component of
electric field E'= —(Uo/zo)C3(x )/zo. If we can cool
to near the zero-point energy (( n ) & 1), then (x ) =x o.
For the conditions of a Hg+ ion in a miniature rf trap,
co /2m= 1 5 MHz, zo ——320 pm, xo-4 1&10 pm,
Uo = 10 V (conditions for an approximately spherical
trap). For C3 =0. 1, the resulting field E,' would be
equivalent to applying a voltage AV=4&(10 ' V to one
endcap. From Eq. (22), Ex„(z)=1&10 ' A'co, for this
value of 4V which is negligible. Therefore, this effect by
itself can be small ~ However, electrode distortion may
give rise to unbalanced rf phases on the endcaps. Other
terms in Eq. (24) appear to be of this order or smaller.

and magnetron motions are both in the x-y plane, the
only way this can be done is to use a spatially inhomo-
geneous laser beam. This case has been treated previous-

27

In the sideband cooling limit (y «co, co,', co, ), we are
able to use spatially homogeneous, plane-wave laser
beams for the following reason. In Fig. 4, we show the
absorption spectrum in the x-y direction averaged over
many scattering events for an ion that has been cooled
within the Lamb-Dicke limit ( k x ) =k r o(n, + n

+ 1)/2 « 1, where ro ——[2A!m (co', —co )]' . In this
limit, only the first-order sidebands are of appreciable
size. The schematic representation of Fig. 4 may not be
to scale, but the expressions for the relative intensities
above the indicated sidebands should be valid. For this
figure, we have assumed co,'=See /2 in order to simplify
the drawing. This diagram and the remarks above show
that simultaneous sideband cooling of the magnetron and
cyclotron degrees of freedom can be achieved by having
two plane-wave laser beams directed normal to the z axis.
One laser beam can be tuned to coo —co,

' and the other
beam tuned to ~o+co . In principle, it should be possible
to achieve cooling by having one laser tuned to the side-
band at frequency coo —co,'+co, but, in the Lamb-Dicke
limit, the absorption intensity of this sideband is consider-
ably reduced. Below, we examine the limits to sideband
cooling for the Penning trap. However, we first note that
sideband cooling will work only at relatively low tempera-
tures in the Penning trap where particular sidebands are
well resolved as shown in Fig. 4. At much higher temper-

III. SIDEBAND COOLING
FGR A SINGLE ION IN A PENNING TRAP

Sideband cooling for a single ion in a Penning trap re-
quires special attention because of the peculiar properties
of the magnetron motion. Cooling for the cyclotron and
axial degrees of freedom is essentially the same as for the
secular motion in the rf trap. However, for the magne-
tron motion, we will define cooling to be the reduction of
the kinetic energy in this degree of freedom. This implies
that the total energy of this degree of freedom increases,
since most of the energy in the magnetron motion degree
of freedom is due to electrical potential energy from the
radially outward trap force. For positive charges, this po-
tential energy is given by Eq. (19) with VO=0 and Uo &0.
In the axial direction, the ion is bound in a harmonic
well, and in the radial direction the ion sits on a potential
hill whose maximum is at the center of the trap where we
choose /=0. First, consider the Doppler cooling limit
(y »co, at,', co, where co, ctt'„and ~, are the magnetron,
cyclotron, and axial oscillation frequencies in the Penning
trap ' ). To achieve cooling, we require that the ion
preferentially absorb photons when it moves toward the
laser due to cyclotron motion and simultaneously prefer-
entially absorb photons when it moves away from the
laser due to the magnetron motion. Since the cyclotron
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FIG. 4. Amplitudes of the lowest-order sidebands in the ab-

sorption spectrum for a single ion confined to the Lamb-Dicke
region in a Penning trap. (cu,

' =5' /2 is assumed. ) The radia-
tion source (laser) is assumed to be directed normal to the z axis.
The carrier amplitude (at frequency coo) is normalized to 1.
k =coqlc, ro ——[2' jm (co,

'
co )]', /3~ =—(kro) /land n, and n

are the cyclotron and magnetron quantum numbers, respective-
ly. Simultaneous cooling of the magneton and cyclotron degrees
of freedom will occur for two laser beams tuned to coo+co and

coo —co,', respectively.
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atures, the magnetron and cyclotron sideband distribu-
tions become nearly continuous, and it is impossible to
simultaneously cool the kinetic energies for both degrees
of freedom using plane waves. This implies the necessity
of some form of precooling as discussed in Sec. IV.

The basic formalism for cooling of ions in Penning traps
has already been established. In the quantum treatment
of the ion motion, the total energies of the axial, cyclo-
tron, and magnetron degrees of freedom can be
written as E, =(n, + —,

' )A'co„E, =(n, + ,' )fico,', —and
E = —( n + —,

' )fico, respectively T.he mean amplitudes
of the motion we desire to reduce are given by (z
=zo(2n, +1&, (r, &=ro(n, + —,

'
&, and (r &=ro(n

+ —,
'

&, where zo ——(A'/2m', )' as in Sec. II. The axial
cooling is identical to that described for the secular
motion in the rf trap in Sec. II. Now, however, we are en-
tirely free of the energy in the micromotion since the fields
are static in the Penning trap. From Ref. 27 we can write

d&n, &

P([n'J)I {[n') [n J )(n/ —n ) . (25)

In Eq. (25), jn ] = [n,', n,', n'
] is the set of initial

(1=lower) quantum numbers, [ n f
) is the set of final

{f=final) quantum numbers, and i =z, c, or m. P is the
initial probability distribution for quantum numbers [ n ')
[P[n j takes the role of P(n~; ) from Sec. II]. I is the
transition rate given by

I (tn j~(n j)=(I~/ficoo)cr" ([n I~[n I) . (26)

In Eq. (26), o * is the cross section given by

a general expression for the average rate of change of the
axial, cyclotron, and magnetron motion quantum num-
bers for the /th laser beam (total intensity I~) as

I] [ f]) ( /2)2 f &
& [nf]

I
e '

I
In'J && fn'!

I

e'"'
I
[n'] &

o ~ ir/—2+~{In'])—~([n']) (27)

In Eq. (27), k and k, are the wave vectors of the incident and scattered light. P, (k, )d 0 is the probability that a photon
is emitted into a solid angle d 0 in the k, direction (k, =k, /

I k,
I

), and A'[co( [ n~ ] ) —co( {n '} )] is the difference in motional
energy between the initial (I) and intermediate (j) states. We have

f„=J P, (k, )(k„) dQ .

where k„ is the component of k, in the ith direction. In Eq. (27), we have assumed b,coL « y. Equations (25)—(27) reduce
to Eq. (5) for the case of harmonic oscillator cooling or cooling the secular motion in an rf trap.

If we use Eqs. (25)—(27) and the operator relations" for [N;,e'"'], where N; =a; a; is the operator whose eigenvalue
is n;, we obtain the following relationship for the cooling due to the g'th laser beam:

d(n, &

dt
1+ —[coo—co+co( [n'I ) —co( (n ] )]

2 l

t@f„+[n,(j)—n;(i)]] I & In'j
I
e '

I
in'] & I'

=Ng I+co g P([n'I ) 2

(n ), [nj)
(28)

( kr o ) /4 (i =c or m )

(kzo) (i =z),
f, +f» (i =c or m)

f„(i=z) .

(29)

Equation (28) looks very similar to Eq. (5) except that the
recoil energy {P;f„ term) divides between the cyclotron
and magnetron degrees of freedom in such a way that the

In this expression, N& ——J&o.o&/%coo and we have now al-
lowed the laser spectral distribution to have some width
as in Sec. II, such that J I&(co)den =1. Also,

average change of (n & or (n, & is the same upon photon
reemission (i.e., the incremental changes in r, and r are
the same).

In the Lamb-Dicke limit, Eq. (28) simplifies consider-
ik~ r

ably because e ~ =1+k& r and only matrix elements for
transitions where An; =0,+1 need be considered. This is
the same situation as for the harmonic oscillator case of
Sec. II. However, for the Penning-trap case, both the cy-
clotron and magnetron cooling beams are assumed to be
incident in the x-y plane. Therefore, both beams cause
transitions where An =0,+1 and An, =0,+1, and some
extra terms are encountered. For example, the contribu-
tion of d ( n; & /dt due to the cyclotron cooling beam
(tuned to mo —~,' and assumed to be directed along the y
axis) is given by
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d(n, .), „, /
(n,

/

e'"»/ n, )
f=N, g P(In'I) (P f„—5;, )

/
(n, —1/e'"»/n, )

/
F, +P f„

1(n, + lie'"»ln, ) I' 1(n —lie'" In ) f'
(4~,'/y)'

/
(n + I

/

e'" »f n )
/+(8 f„+5; )

[2(co,' —co )/y]
(30)

(i=c, m, orz), (31)

As in Sec. II, F, = fI,'(co) [1+[2(coo—co,
' —co)/y]

and we have assumed Acoz «co, cu„~,' for simplicity.
We can find the other two equations which are analo-

gous to Eq. (30) for the magnetron cooling beam and axial
cooling beam. By summing these equations, we arrive at
expressions for the total rates of change of average quan-
tum numbers for the three degrees of freedom d ( n; ) /dt
(i =c, m, or z). These expressions take the form

d(n, )ldt=C;, (n, )+C; (n )+C;, (n, )+d;

Eqs. (10) or (13) and Eq. (32), we might conclude that
much lower values of the kinetic energy (above the zero-
point energy) can be obtained with the rf trap than with
the Penning trap. This may indeed be the case for the
secular motion of the rf trap, but, as we have seen at the
end of Sec. II, the kinetic energy in the micromotion of
the rf trap may be much more difficult to suppress. For
the Penning trap, there is not an analogous problem to the
micromotion since the imposed fields are static. There-
fore, it may, in practice, be possible to obtain smaller
values of the kinetic energy in the Penning trap.

where the coefficients C;~ and d; come directly from Eq.
(30) and the analogs for the cyclotron and magnetron
beams. For steady state, (d(n, ) ldt =0) and we find that
the (n; ) reach certain minimum values for given N& and

F~ (g=c, m, z). These solutions can in general be quite
complicated. To get some estimate for the minimum
values for (n; ), we have solved these equations for the
following simple conditions. We assume f, =f,»

=f„
and require a solution where

(n, ) =(n ) =(n, ) =(n ). For F, =F =F, =F, this
implies the condition 1V, =2N, =8% /11 on the laser
beam intensities and we obtain

(n ) =(11/48F)(y/cu ) (32)

This has the same form as Eqs. (2), (10), and (13). For
these solutions to hold, we have required p « 1 or
co& « co and co «~, « co,

'
& co, . These conditions

may only be approximated in an experiment. To see this,
we note that we can write co~ /co, = 1.3 (1,/100
nm) B 'Z ', where B is in tesla, Z is the ion charge (in
units of the proton charge), co, is the unshifted cyclotron
frequency, ~, =qB /mc, and A, is the wavelength of the
cooling laser radiation. To satisfy the above conditions,
we require a large magnetic field and a relatively long
wavelength cooling transition. A possible case might be
B+ [A,('So~ P& ) =268 nm] at 15 T. Here, co~ /co,
=0.012, and co and co, can be adjusted so that Eq. (32)
should be reasonably accurate.

In practice, it is usually easier to make co, co~, and co, in
the rf trap be much larger than cu can be made in the
Penning trap. Therefore, the conditions for sideband
cooling are more easily satisfied in the rf trap than in the
Penning trap. The limit on how high we can make cu is a
limit on how large a magnetic field we can achieve, since
we must always have '

co &co, /v'2&co, '
&cu, =qB/mc

(conditions for stable trapping). From a comparison of

IV. TWO-STAGE LASER COOLING

To reach the cooling limits provided by sideband cool-
ing [Eqs. (10), (13), or (32)], some sort of two-stage cool-
ing may be necessary. This has already been referred to
in Sec. III for the Penning trap, where simultaneous side-
band cooling of the magnetron and cyclotron motions can
only be eftective at low enough temperatures where the
Lamb-Dicke limit is approached. Therefore, to approach
the Lamb-Dicke limit, it may first be necessary to reach a
kinetic energy provided by the Doppler cooling limit on a
strongly allowed electric dipole transition. For the Pen-
ning trap, this also implies the use of a spatially inhomo-
geneous cooling beam.

The same restriction does not apply for the rf trap. In
principle, it should be possible to tune to the first lower
sideband (for y «co, ) and wait a su%cient time to reach
the steady state given by Eq. (10) or (13). Initial cooling
could be enhanced by tuning to the lth lower sideband
where l~, is approximately equal to one-half of the
Doppler linewidth at the initial temperature. " The max-
imum cooling rate is given by dE/dt= —lb', y/2. To
get an idea of the initial cooling rate, we can estimate the
time At it takes to reduce the ion temperature from
T& ——300 K to T, /2. We have b t =3k~ T, /(Alee„y)
=3.8)&10 /y, where we assume leo, =2~(0.5) CzHz. If
the cooling transition is very weak (e.g. , y =100 s '), then
At=380 s. Even under ideal conditions, this time is very
long. Moreover, spurious heating mechanisms, such as
collisional heating, may prevent any initial cooling at all.
Thus, in the case of the rf trap as well as the Penning
trap, there may be some motivation for using a precooling
stage [e.g. , cooling to the Doppler limit of Eq. (1) where y
is due to a strongly allowed electric dipole transition].

To get some idea of how such two-stage cooling might
work, we examine the case of cooling in the rf (or har-
monic) trap. Assume that the initial cooling is performed
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TABLE I. Examples of k ( (x ') )'~', ( n, ), and @DE for a few ions of recent experimental interest. We have assumed that the ious are
confined in a harmonic well with oscillation frequency co„ /2' and are cooled to the Doppler cooling limit [Eq. (1)]. y /2ir and 1, are the
radiative linewidth and wavelength corresponding to the cooling transition, M is the ion mass in atomic mass units, k =2m/A, ( .n„) is

the mean occupation number of the ion in the harmonic well [from Eq. (33)], and P = {kxo )'=R /(Ace, ). 3rD' is the magnitude of thai
fractional second-order Doppler shift for the x, y, and z directions combined [three times the value in Eq. (35)]. If the ions are confined
in an rf trap, the magnitude of the second-order Doppler shift is valid only for the secular motion contribution.

Ion

Mg+
(3s S1/2 ~3p P] /2)

Mg+
(3s S]/2~3p P]/2)

198H +

(6s S]/2~6p P]/2)
198Hg+

(6s S1/2~6p P]/2)
13sB +

(6s S1/z~6p Pl/2)

113I

(5s 'So ~5s 5p 'P1)

y /2m

(MHz)

43

43

70

70

21

0.3

(nm)

280

280

194

194

493

231

M(u)

24

198

198

138

113

MU /277

(MHz)

1.5

15

1.5

0.1

k((x') )'"
2.14

0.43

0.91

0.091

0.24

1.0

21

3.8

22.8

1.8

6.5

0.106

0.021

0.018

0.0018

0.004

0.33

3&D2

6&& 10-"

1.2 &&
10-"

1.2~ 10-"

9.0~ 10-"

on a strong transition (transition 1) where y, ~~co, . In
the Doppler cooling limit, the mean oscillation quantum
number can be derived from (( n, ) + ,' )fico, —=fiyi/2 or

(n, ) =(y, /co„—1)/2 .

In the Doppler cooling limit, we can also write

k((x ) )' =2'(h'y, /2m)'~ /(A. ,co, ) .

(33)

(34)

In Table I, we have calculated (n, ) and k ((x ) )' from
Eqs. (33) and (34) for some of the favored ions in recent
experiments. This table shows that the Lamb-Dicke limit
[k((x ))' «1] is closely approached in the Doppler
cooling limit.

If the Doppler cooling limit is first reached, the next
step might be to drive a much weaker transition in the
same ion (linewidth y2 «co„) where the sideband cooling
limit applies. As an example, consider the case of ' Hg+
whose relevant electronic structure is shown in Fig. 5. In-
itial laser cooling can be achieved by cooling on the
S&/2~ P&/z transition at A, =194 nm. Sideband cooling

could be achieved by driving the S»2~ D3/2 quadrupole
transition at A, =198 nm or the S&/2~ D5/2 quadrupole
transition at k =281 nm. We could also drive the two-
photon transition to accomplish this; in this case the
effective k vector of the transition is k'=k&+k2, where k&

and k2 are the wave vectors of the two photons required
for the transition, so that if k'~~x, then /3,
=(

~
ki+kq

~

xo)'
Suppose we tune the second cooling laser to the first

lower sideband at frequency (coc2 —co, ). Equation (8)
shows that the ion scatter rate on this sideband is equal to
Nn, PF/3, where we assume the geometry of Sec. II A
(case 3). For the minimum time to reach the sideband
cooling limit, we require Nn„PF/3=y2/2 for n„= l. If
much higher power is used, the scattering in the wings of
the carrier increases while the cooling rate saturates. This
would give a higher limit than that of Eq. (10) or (13).

198H +

2p
3/2

2p
1/2 2D

5/2

T = 0.02s

T = 0.1s

nm

2
1 /2

FICx. 5. Simplified energy-level diagram for ' Hg+. The
281.5-nm quadrupole "clock" transition can be observed by
monitoring the 194-nm fluorescence. If the ion has made a tran-
sition from the 'S]/2 to the D5/2 level the 194-nm fluorescence
disappears. From Ref. 7.

Since each scattering event removes an energy fm, from
the harmonic oscillator state, a minimum time
-2yi '(n, ) is required to reach the sideband cooling
limit. Here, (n, ) is the value obtained from precooling.
For the conditions of the second ' Hg+ example in Table
I, we estimate a minimum time of approximately 80 ms
for the S&/p + D3/2 transition and 400 ms for the
S&/2~ D&/2 transition. If the goal is to perform very-

high-resolution spectroscopy on the S
~ /2 ~ D 5/2

"clock" transition, we would like to perform the sideband
cooling using the S&/2~ D3/7 transition because of the
shorter cooling time required. (We designate the
S&/2~ Dz/2 transition as the clock transition because its

narrow linewidth suggests that it could be used as a fre-
quency standard or clock. ) This still is not an optimum
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situation because we would like the cooling time to be
much less than the interrogation time ( —y2 ') for the
clock transition in order to achieve maximum data rate
and therefore best signal-to-noise ratio.

V. MEASURING THE ZEROTH QUANTUM LEVEL

0

0
(6 )

COp —CO v GOp

)
C

il

(b)

COp —CO GOp COp+ COv

FIG. 6. Absorption spectrum of an ion in a harmonic poten-
tial for ( n, l « 1 and P =R /fico, « l. In (a) relative amplitudes
are given for the unsaturated spectrum. In (b) the radiation in-
tensity is adjusted so that the upper sideband is just saturated.
The amplitude of the weak lower sideband is a direct measure of
(n, ).

We can verify that the sideband cooling limit given by
Eqs. (10), (13), or (32) has been realized by measuring the
spectrum of the sideband cooling transition. This corre-
sponds to either the Sf/2 + D3/2 or S]/2~ Dq/2 transi-
tion in the Hg+ example. To measure this spectrum
(after cooling) we can use a simple double-resonance
scheme. ' ' For the Hg+ example, we can measure ab-
sorption on the S&/2~ D5/2 clock transition by monitor-
ing the changes in fluorescence from the 194-nm cooling
transition. In general, it will be necessary to drive the
clock transition with the 194-nm laser switched off in or-
der to avoid ac Stark shifts of the clock-transition spec-
trum. After the clock radiation is turned off, the fluores-
cence from the 194-nm cooling radiation will be absent if
the clock transition has been made. If the ion remains in
the S&/2 state after application of the 281-nm radiation,
then the fluorescence will immediately appear after admit-
ting the 194-nm radiation. After each such detection cy-
cle, the ion must be recooled by sideband cooling.

First, assume we measure the absorption spectrum
along one of the principal axes (x, y, or z) while staying
below saturation intensity on the carrier. In the Lamb-
Dicke limit, the strength of the lower sideband (assuming
the carrier strength is equal to 1) is (n„)P and that of the
upper sideband is ((n, )+1)P. Here we assume that
n„=n; and P=f3; for i =x, y, or z. If (n, ) « I, the
lower sideband will be very small and the upper sideband
will have amplitude P, as indicated qualitatively in Fig.
6(a). For the ' Hg+ examples of Table I, P is so small
that the upper sideband may not be discernable above the

background. If, however, we increase the power so that
we are just saturating the upper sideband, then the carrier
and upper sideband have amplitude —1 and the lower
sideband has amplitude (n„), as indicated qualitatively in
Fig. 6(b). If we further increase the laser power by a fac-
tor of K, the carrier and upper sideband maintain an am-
plitude =1 and the lower sideband has amplitude IC(n, ).
By proper choice of K [e.g. , %=1/(2(n, ))], we have a
way to measure or put an upper limit on (n„). Similar
methods could be used to measure the amplitude of the
micromotion of an ion in an rf trap.

VI. IMPLICATIONS FOR SPECTROSCOPY

&DZ =—
Vp

fry 1. 1 &C 10 ' [y/2'(MHz)]
4mc M

(35)

where the right-hand side denotes the Doppler cooling
limit. In Eq. (35), y/2tr is expressed in MHz and M is
the ion mass in u (atomic mass units). Values of eDz for
a few kinds of ions confined in a harmonic trap are given
in Table I. AD& gives the mean value of the second-order
Doppler shift. The uncertainty in eD2 can be less de-
pending on actual experimental conditions. In spite of
the smallness of these numbers, it may be desirable to
suppress the second-order Doppler shift further since
other systematic effects may be controllable to levels
below one part in 10' .

In the sideband cooling limit, since ( n, ) « 1, the
second-order Doppler shift is simply due to the kinetic en-
ergy in the zero-point oscillations Ace, /4 for each degree

One of the original motivations for laser cooling was
the reduction of Doppler shifts and broadening in very-
high-resolution spectroscopy. Achieving the Lamb-
Dicke limit essentially eliminates first-order Doppler
broadening effects since the intensity in the sidebands is
very small. This result is independent of temperature, but
is easier to achieve at low temperatures. Historically, the
uncertainty in the second-order Doppler frequency shift
has been the primary limiting systematic effect in high-
resolution experiments on stored ions. This was true in
the first high-resolution experiments on He+ ions (ac-
curacy approximately equal to 1 part in 10 ) and the most
accurate experiments on ions to date, those on Be+
ions ' (accuracy approximately equal to 1 part in 10' ). If
the limits provided by sideband cooling can be realized,
the second-order Doppler shift may no longer be the lim-
iting systematic effect.

First, we note that even in the Doppler cooling limit for
an allowed transition, the second-order Doppler shift
would be extremely small. From Eq. (1), the limiting
mean kinetic energy is given by Ay/4 for each degree of
freedom. The Penning trap has one axial degree of free-
dom and two cyclotron degrees of freedom which contrib-
ute; therefore, the limiting kinetic energy is 3fiy/4. For
the rf trap, the kinetic energy is at least twice this value
due to the micromotion contribution (Sec. II B). The
magnitude of the resulting minimum second-order
Doppler shift per kinetic-energy degree of freedom eD2 is
given by
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of freedom. Therefore, Allan variance ) is given as

&DZ =—
Vp

b.vDi fico,

4mc

l. 1 ~ 10 ' [co, /2m. (MHz) ]
M

(36)

where the right-hand side denotes the sideband cooling
limit. ca& is at least twice this value for the rf trap due to
micromotion. Although these values of @DE can be very
small, the uncertainty in these values can be even lower. "
For example, the uncertainty in @DE given by Eq. (36)
might likely be due to the uncertainty of fluctuations in
co, . As an example, assume we perform sideband cooling
of ' Hg+ ions in an rf trap where co, /2~=10 MHz. If
the uncertainty in this oscillation frequency is 100 Hz and
& n„) « 10, the uncertainty in the second-order
Doppler shift is 3.4&10 ! It is not difficult to think
about even much lower limits. If we go back to the ex-
pression for the ion temperature [Eq. (4)], we see that for
fixed co„ the temperature for the sideband cooling limit is
not a strong function of y as it is for the Doppler cooling
limit [due to the ln(&n, ) ') factor]. In fact, for fixed y,
the Doppler cooling limit gives a lower temperature than
the sideband cooling limit. However, as in the example
above, the uncertainty in ezz may be due to the uncertain-
ty in co, and not directly a function of temperature.
Thus, it would appear that temperature may not be a very
useful parameter to describe the limits to high-resolution
spectroscopy on bound atoms or ions.

With the potentially very low values of uncertainty in
the second-order Doppler-shift correction, it continues to
be an open question as to what will be the ultimate limit
on accuracy in single-ion spectroscopy. The various
effects of multipole electric and magnetic field interactions
have to be considered; in principle, these effects could be
measured and controlled to much less than 1 part in 10' .
Certainly, practical issues now play an important role. At
present, the required tunable narrow-band lasers do not
exist, but recent experimental advances may provide a
solution. If we assume that the spectral purity and ampli-
tude stability of the lasers will not be a problem, we must
still consider the fundamental limits to the signal-to-noise
ratio. The high quantum multiplications achievable in
double-resonance spectroscopy allow 100% detection
efficiency. This has been demonstrated in recent experi-
ments on single ions. ' ' In this case, the noise in the ex-
periments is dominated by the shot noise in the clock-
transition measurement. That is, the noise in the measure-
ment process is governed by the fluctuations in whether or
not the ion has undergone the clock transition after appli-
cation of the clock radiation. If we assume 100% detec-
tion efficiency in the double-resonance experiment de-
scribed in Sec. V (Fig. 6), the inaximum signal-to-noise ra-
tio for determining line center of the clock transition is
given by measuring the transition probability at the half-
power points on both sides of the clock resonance and
forcing the average frequency of the interrogating radia-
tion to line center. If we make the assumption that the
time-domain Ramsey method is used to interrogate the
clock transition, then the frequency stability (two-sample

=(2cooTRr) (37)

In this expression, &cok ), is the kth measurement of the
frequency of the locked oscillator averaged over time ~,
& )k denotes an average over many measurements, coo is
the nominal frequency of the clock transition, and Tz is
the interrogation time between pulses in the Ramsey
method. Thus o.~(i.) is a measurement of the rms fluctua-
tions of the frequency for measurement times w. Equation
(37) assumes that optical state preparation (cooling and
optical pumping) and double-resonance detection (from
the 194-nm fluorescence signal in the example of Fig. 6)
takes a time much less than Tz.

The accuracy of the measurement is limited to the
value o (r) for a measurement time r. If, for example,
Tic ——0. 5 s [linewidth approximately equal to (2Tic ) '=1
Hz] and coo/2' = 10' Hz Q, z ——300 nm), then
~=2.5 && 10 s is required to make a measurement with an
imprecision o (r) of 1 part in 10' . To reach a precision
of about 10 would require a time equal to the age of
the universe. Therefore, even though the intrinsic accura-
cy may be quite high, it may take a long averaging time to
reach a comparable measurement precision. In other
words, measurement precisions beyond 1 part in 10' may
require even higher Q transitions (through smaller values
of y) and narrower linewidth lasers.

VII. CONCLUSIONS

If the theoretical limits to laser cooling can be reached
on a single trapped ion, the ion will nearly be held in the
zeroth quantum level of its bound motion. This would be
the closest possible realization of the ideal of a single iso-
lated atom at rest. When cooling to near the zeroth quan-
tum level is achieved, the temperatures achieved appear to
lose their relevance; rather, we might be interested in the
fluctuations of the zero-point energy due, for example, to
fluctuations in the well depth of the trap.

In addition to the intellectual interest of achieving
confinement to the zero-point energy state, the implica-
tions for accuracy in high-resolution spectroscopy are re-
markable. For example, uncertainties in the second-order
Doppler-shift correction might be 10 or lower. The
possibility of these extremely low numbers clearly em-
phasizes the importance of many practical problems. For
the rf trap, minimizing the kinetic energy in the micromo-
tion may be a very difficult problem (Sec. II). For the
Penning trap, no analog for the micromotion is apparent
although it will be more difficult to obtain conditions
where the sideband cooling limit applies (Sec. III). In ad-
dition, there is the fundamental problem of the limiting
signal-to-noise ratio on a single ion; that is, we must ask,
"Can we reach the required measurement precision in a
reasonable length of time (Sec. VI)?" We must also con-
sider the problems of laser spectral purity and the mea-
surement of laser frequencies. Equally important, we
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must address the problems of controlling the various per-
turbations to the internal structure of the ions produced
by external electric and magnetic fields. Nevertheless, in
the end, it does not seem unreasonable to think that accu-
racies and measurement precisions at or beyond 1 part in
10' will be achieved.
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