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Onsager's symmetry theorem for transport near equilibrium is extended in two directions. A cor-
responding symmetry is obtained for linear transport near nonequilibrium stationary states, and the
class of transport laws is extended to include nonlocality in both space and time. The results are for-
mally exact and independent of any specific model for the nonequilibrium state.

I. INTRODUCTION

The long-time dynamics of many systems close to equi-
librium is well described by a closed set of linear hydro-
dynamic equations for the local conserved densities (e.g. ,
mass, energy, and momentum). The dissipative properties
of these equations are characterized by a matrix of trans-
port coefficients in the linear relationship of fluxes to ap-
propriate thermodynamic forces. On the assumption that
the decay of fluctuations for a fluid at equilibrium is also
governed by the same linear equations, Onsager was able
to relate the transport coefficients to properties of equilib-
rium correlations functions. More specifically, the trans-
forrnation of the correlation functions under time transla-
tion and time reversal imply a symmetry of the transport
coefficients, known as Onsager reciprocal relations. ' The
usual Onsager reciprocal relations are actually limited to
systems asymptotically close to equilibrium. For exam-
ple, they apply at the level of the Navier-Stokes equations
for a simple fluid, but fail for the higher-order corrections
to these equations. The reason for this failure has been
discussed by McLennan, who also derived the appropri-
ate generalization of the Onsager relations for higher-
order hydrodynamics. The analysis of the following sec-
tions is a straightforward extension of McLennan's work
to nonequilibrium stationary states. The results are for-
mally exact and assume only the existence of such hydro-
dynamic equations. The form of the latter is left quite
general to allow for possible nonlocal spatial and temporal
effects.

Let [g(1; )I rbe a set of phase functions with average
[g(1;t) I in some nonequilibrium state at time t,

g(I;r)—:(f(1;&)) .

The notation is an abbreviation for g(1) =g (r) where r is
a space point and o,' labels the set of hydrodynamic vari-
ables. These variables are identified by the requirement
that they obey a closed set of equations on a sufficiently
long time scale. Typically they are the local conserved
densities, whose relaxation times increase with the wave-
length of the spatial nonuniformity. Consequently, there
is a time scale on which they dominate all other variables

with finite relaxation times. For fluids with broken sym-
metries (e.g. , liquid crystals) there can be other variables,
the order parameters, whose relaxation times also increase
with wavelength. Generally, the hydrodynamic variables
are understood to include these also when appropriate.
The dynamics of g(1;t) is expected to be quite complex
but, by assumption, there is a simpler closed dynamics for
sufficiently long times,

(2)

Here N[j;1;t] is the nonlinear functional of g defining the
dynamics, and t is a characteristic microscopic time
scale after which Eq. (2) applies. These are the macro-
scopic hydrodynamic equations. A careful derivation of
such equations would also provide appropriate boundary
conditions as well as the form of N[g; I;t], but it is not
necessary here to consider this difficult problem. The
macroscopic stationary states are specified by hydro-
dynamic variables g' '(1), that are solutions to the equa-
tions

For nonequilibrium states near a stable stationary state,
the deviations 5$(1;t)=g(1;t)—g' '(1) can be obtained
from (2) by linearization around the stationary state

—6$(1;t)+M[6/; I;t]=0, r»r

where now M[@';I;t] is a linear functional obtained from
N[g; I;t] by functional differentiation. Its dependence on
the stationary-state variables [gI 'I has not been made ex-
plicit.

The linear laws (4) apply only for t » t . In Sec. II an
alternative exact expression for g'( I; t ) is obtained in
terms of the stationary-state correlation functions. Com-
parison of (4) with this latter result for t » t provides
the analog of Onsager's assumption on the decay of fluc-
tuations in equilibrium. The problem of "initial slip, "
identified by McLennan as the reason for the failure of the
usual form of Onsager's symmetry relations outside the
Navier-Stokes domain, is noted in the present context.
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Next, the transformation properties of the correlation
functions under time translation and time reversal are
used to impose constraints on M[@';1;t]; these constitute
the generalized Onsager symmetry. In Sec. V the results
are summarized and an example of their application is
discussed.

For the special case of linearization around equilibrium,
the linear functional M[@',I;t] can be represented as a
spatial convolution

M[5/, 1;t]~f dr m s(r r—')5gp(r', t) (5)

as a consequence of translational invariance in the equilib-
rium state. A Fourier representation of (5) is then quite
natural and the linear laws become a linear set of algebra-
ic equations. In contrast, nonequilibrium stationary states
generally do not have translational invariance, and the
Fourier representation provides no special advantage.
Consequently, the Onsager symmetry relations obtained
below are expressed in coordinate representation. Finally,
it is noted that the general form (4) does not assume a
gradient expansion so that problems related to possible
divergence of such expansions do not restrict the results
obtained here.

II. LINEAR DYNAMICS NEAR STATIONARY STATES

The average values of the hydrodynamic variables
g(1;t) are given by Eq. (1),

g(1;r) = (P(1;r) ) = f dr p(r )g(I;r), (6)

where I denotes a point in phase space and p(I ) is the
distribution function specifying a particular state of the
system. In general it is understood that the system is
open, i.e., interacting with its surroundings. For suitable
boundary conditions it is assumed that there exists a class
of stationary states generically denoted by pp(I ). The hy-
drodynamic variables in such a state, g' '(1), are time in-
dependent. Next, we consider a class of nonequilibrium
states linearized around p0(I ),

p(l ) =pa(l )[1+5y(1)q(1)],

where T, satisfies the linear hydrodynamic equations

—T, +M[T„r]=0,a (12)

T, (1,2) ~, p=5(1 —2) . (13)

The quantity X(1,2) cannot be identified with C(1,2;0)
since Eq. (11) holds only for t »r . Instead, it is defined
by

g(1,2)= lim T, '(1,2)C(1,2;t) . (14)

Equation (11) extends Onsager's hypothesis on the decay
of Auctuations to nonequilibrium steady states: Auctua-
tions in a stable stationary state decay for long times ac-
cording to the linear hydrodynamic equations for non-
equilibrium states near stationarity.

The symmetry properties of C(1,2;r) impose con-
straints on T, ( 1,2) and hence M through Eqs. (11) and
(12). The latter are the desired Onsager symmetry rela-
tions. However, the quantity X(1,2) is also involved in
these constraints and it is useful to explore its interpreta-
tion. The quantities 5g'(I;t) and C(1,2;t) can be decom-
posed into their hydrodynamic and "microscopic" parts,

5g(1;t)=6$H(1;r)+6/ (I;r),
C(1,2;t)=C~(1,2;t)+C (1, ;2t),

(15)

where by definition 6g' and C vanish for t » t, and
the hydrodynamic parts are given by

5$~(1;t)= T, (1,2)6$ (H2;0),

C (H1, 2;t) =—T, (1,2)g(1, 2) .

Equations (15) and (16) are no longer restricted to t » t
so P(1,2) is identified as the initial value for the hydro-
dynamic part of the correlation function. Then g'H(l;0)
can be expressed in terms of 5g'(1;0) using (9),

a stationary state and the correlation functions is obtained
from comparison of (9) and (4) for t » t

C(1,2;r ) = T, (1, 2)X(1,2), t »r

where g(1)=—P(1)—g' (1), and 5y (r) are arbitrary func-
tions characterizing the degree of deviation from the given
steady ensemble. A summation convention, e.g. ,

y(1)g(1)=y f dry (r)P (r),

g'H(1;0) =5/(1;0)

+ [X(1,2) —C(1,2;0)]C '(2, 3;0)5$(3;0) .

(17)

Here, C(1,2;t) is the stationary-state correlation function

C(1,2; r ) = ( q(1; r )1p(2;0) ), (10)

and the brackets ( ), denote an average over the station-
ary state p0(I ). Equation (9) is the desired exact result
for g'( 1;t ).

The connection between linear hydrodynamics around

is employed here and below. The value 5g'(I;t) can be
calculated directly from (6),

6('(1;t)= C(1,2;t) y5(2) = C(1,2;t)C '(2, 3;0)6$(3;0) .

(9)

The first term on the right side is the true value of
g(1;0)—g' (1) in the initial ensemble (7). The proper ini-
tial value for the linear hydrodynamic equations divers
from this by an amount proportional to P(1,2) —C(1,2;0).
This diAerence is referred to as initial slip, and is required
to correct for the initial "boundary layer, " 0 & t & t, dur-
ing which the hydrodynamic equations do not apply. An
argument of McLennan can be extended to show that
X(1,2)~C(1,2;0) up to second order in a gradient expan-
sion. Initial slip is therefore important only for
sufticiently large spatial variations from the stationary-
state values of g'~ '(1).
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III. GENERALIZED ONSAGER SYMMETRY

Next, time reversal is defined microscopically by t~ —t
and a change in sign of all momenta. Without loss of
generality, the hydrodynamic variables may be chosen to
have a definite parity of +1 under time reversal. The time
dependence of g(t) is generated by Hamilton's equation
which are form invariant under time reversal. However,
boundary conditions are required to maintain the station-
ary state p0. Under time reversal p0 transforms to another
stationary state p0 with corresponding boundary condi-
tions. These two states and boundary conditions are sim-

ply related by the sign change of all momenta. Therefore,
we need to consider a related correlation function,

C(1,2;t)= f dIP, 1((1;t)t((2;0) . (19)

It is now understood that P(l;t) has the boundary condi-
tions appropriate for po. It follows that C(1,2;t) and
C(1,2;t) are related by

C(1,2;r ) =r(1,3)C(3,4; —r )r(4, 2), (20)

where r(1,2)=r(l)6(1 —2) and r(1)=+I is the parity.
Equations (18) and (20) can be combined to give

C(1,2;t) =r(1,3)C(4;3;r H-(4, 2) . (21)

For t » t, C and C can be replaced by their hydro-
dynamic parts. Consequently, (21) implies as well

CH(1, 2;t) =r(1,3)CH(4, 3;t)r(4, 2) .

Then, with (16) and an obvious matrix notation (22) can
be written

The Onsager symmetry is a property of M that follows
from the transformation of C ( 1,2; t) under time transla-
tion and time reversal. Since the correlation functions are
defined for the stationary state they are invariant under
time translation. In particular,

(18)

Use has been made of r =1. Combining (26) and (27)
gives the desired result

MX=r(MX) r .

This can be put in a more familiar form

L(1,2) =r(1,3)L (3,4)r(4, 2), (29)

where L =M7. For the equilibrium state I.=L. and the
result of McLennan is regained. If further the hydro-
dynamics is restricted to the Navier-Stokes domain, then
X(1,2)~C(1,2;0) and Onsager's original form follows.
Equation (29) represents the extension of these results to
nonequilibrium stationary states.

IV. MEMORY EFFECTS

The hydrodynamic variables describe the dominant
long-time dynamics because their relaxation times can be
made large for large wavelengths. However, in practice
some systems can have nonhydrodynamic relaxation
times that are comparable to those for the hydrodynamic
variables under typical experimental conditions. Exam-
ples include many rheological materials and supercooled
fluids. Even in simple atomic Auids there are dynamical
effects (mode coupling) that have very slow relaxation
rates. It is still possible in these cases for the long-time
dynamics to have a dominant hydrodynamic part in the
sense of Eq. (11), but this dynamics may be nonlocal in
time. The form (24) is then replaced by

M[5/;I;t]= f 'dr f d2M(1, 2;t —r)5$(2;r) .
0

In this form the system is said to have memory effects.
The solution to the hydrodynamic equations now is most
easily expressed in terms of the Laplace transform

R(z):—f dt e "T,=[z+M(z)] (31)
0

where M(1,2;z) is the transform of M(1,2;t). The trans-
form of (23) leads to

T,X=r(T,X) r . (23) R (z)X = r[R (z)X] r, (32)

MgX (
—Mft)t+

Differentiation of this equation yields

(25)

The symbol f denotes the transpose, and a bar over a ma-

trix indicates the corresponding quantity associated with
the correlation function C. To be more explicit, consider
first the case of time-local hydrodynamic equations. The
linear transport operator then has the form

M[@';I;t]=f d2 M(1, 2)6('(2;t), (24)

and (23) becomes

or, with R(z)=z '[1—R(z)M(z)],

X—rX r=R(z)M(z)X —r[R(z)M(z)X] r . (33)

R (z)M(z)X = r[M(z)R (z)X] r

=r[R(z)X]"rr[M(z)] r

=R(z)Xr[M(z)] r,

With the mild requirement that M(z)/z vanish for large z,
Eq. (27) is regained and (33) becomes

~VX =I~M ~ .
Next, writing (25) for 2t yields

(26) or,

M(z)X =Xr[M(z) ] r .

Mt( MtX)
—

( MtX)t (
Mt—)t- —

Mt
( M&X—)t MiX (

Mr)t— — —
Combining (34) and (27) gives the Onsager symmetry rela-
tion for systems with memory,

and therefore,

vx 1-=L .

L(1,2;z ) = rL (1,2;z)r,

(27) where L(z) —=M(z)X in analogy to (29).

(35)
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V. DISCUSSION

M(g)X(g)=r[M(g)X(g)] r . (36)

Although the Onsager symmetry applies to the exact
asymptotic dynamics for the systems, it can be used also
as an important constraint on approximate models for
such dynamics. To illustrate such applications, consider
the case of a Auid under uniform shear fiow. This station-
ary state has been studied in detail by computer simula-
tion, and is generated by periodic boundary conditions in
the local Lagrangian frame of the Quid. In this frame the
Liouville equation has an additional inertial force propor-
tional to the shear rate a. ' In addition, a nonconserva-
tive force is employed to maintain constant temperature,

The primary results here are Eqs. (29), or their exten-
sion for fiuids with memory (35). They express a relation-
ship of the generator for dynamics near a stationary state
to the corresponding generator for the time-reversed sta-
tionary state. For the special case of equilibrium, these
two stationary states are the same and a simple symmetry
condition on the matrix L is obtained. For nonequilibri-
um states, the time-reversed state typically represents a
physically difterent but related state. The utility of gen-
eralized Onsager symmetries therefore depends on an abil-

ity to characterize the time-reversal properties of a given
stationary state. No attempt has been given here to ad-
dress this dificult problem, although some explicit results
can be obtained from semiphenomenological Fokker-
Planck models. Also, the transformation properties of
stationary states generated by external conservative fields

are easily identified: the fields transform with the same

parity as the observables to which they couple. Stationary
states with dissipative processes have been modeled by dy-
namics with nonconservative forces, suitable for computer
simulation, ' and again the transformation under time re-
versal is easily identified. More realistically, systems in-
teracting with reservoirs at their boundaries are di%cult to
analyze except in certain limits (e.g. , the boundary-value
problem for the Boltzmann equation "). However, it
might be expected that a wide class of stationary states
could be characterized primarily by the hydrodynamic
variables themselves, such that po(g')=po(g). Then, for
example, Eq. (29) would simplify to

also proportional to the shear rate. It is then easily
verified that Po(a)=po( —a). The hydrodynamics around
this stationary state is quite complex since the state is in-
homogeneous. Furthermore, comparison with the com-
puter simulation requires consideration of very-short-
wavelength phenomena outside the Navier-Stokes domain.
A model for this dynamics has been proposed' using the
exact short-time dynamics for a Quid of hard spheres.
The justification is based on the fact that hard spheres
have finite momentum transport even over infinitesimal
times. To check the validity of the Onsager symmetry for
this model, first note that there is no initial slip, so
X(1,2)=c(1,2;0). The short-time dynamics is then easily
shown to give

M(1, 3)X(3,2) = ( [5+(a)g(1)]g(2);a ), (37)

The average on the right side of (38) can be recognized as
the transposed short-time dynamics for the time-reversed
state (MX), and therefore the Onsager symmetry (29)
holds for this model.
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where 5+(a) is the Liouville operator (in the local rest
frame) for a shear rate a, and (;a ) denotes an average
over the corresponding stationary state. The adjoint of
5+(a) is —5 (a) (where the subscripts + refer to the
singular hard-sphere interactions for positive and negative
times, respectively). ' Also, a change of integration vari-
able, p ~—p, for all momenta gives 5+(a)= —S ( —a)
and (;a )~(;—a ). Consequently, (37) can be written

M(1, 3)g(3,2)=r(1,3)(g(3)[$ +( —a)g(4)); —a )r(4, 2) .

(38)
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