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The nonlinear evolution of the free-electron-laser (FEL) amplifier is investigated numerically for a
configuration consisting of a planar wiggler with parabolically tapered pole pieces. A set of coupled
nonlinear differential equations is derived in three dimensions which governs the self-consistent evolu-
tion of the TE and TM modes in a loss-free rectangular waveguide as well as the trajectories of an
ensemble of electrons. The initial conditions are chosen to model the injection of a cylindrically sym-
metric electron beam into the wiggler by means of a region with an adiabatically tapered wiggler am-
plitude, and the effect of an initial beam momentum spread is included in the formulation. Both
self-field and space-charge effects have been neglected, and the analysis is valid for the high-gain
Compton regime. In addition, the phase stability of the FEL amplifier against fluctuations in the
beam voltage, the enhancement of the efficiency by means of a tapered wiggler amplitude, and har-
monic generation are also studied. Numerical simulations are conducted to model a 35-GHz
amplifier with an electron beam energy of 3.5 MeV, and good agreement is found between the simu-
lation and an experiment conducted by Orzechowski and co-workers. Significantly, the results indi-
cate that a tapered wiggler configuration is somewhat less sensitive to the beam thermal spread than a
uniform wiggler system.

I. INTRODUCTION

The free-electron laser (FEL) and the ubitron' have
been successfully demonstrated as radiation sources over a
broad frequency range from the microwave' ' through
the optical' ' spectra. The distinction between the ubi-
tron and the FEL is not well defined in the literature;
however, we find it convenient to differentiate between the
FEL and the ubitron primarily on the basis of the
electron-beam energy. As such, we refer to those devices
as ubitrons when the beam energy is below 500 keV. Al-
though this definition is somewhat arbitrary, operation at
these energies generally involves frequencies close to the
waveguide cutoff of the device, and the ubitron may be
thought of as a weakly relativistic FEL operated as a mi-
crowave tube. In either case, however, the physical-
interaction mechanism is the same, and relies on a period-
ically rippled magnetic field (referred to as the wiggler
field) to induce an oscillatory motion in the electron
beam. The interaction between the transverse component
of the oscillatory motion and the radiation field results in
an axial bunching of the electron beam which is the
source of the instability. This axial-bunching mechanism
can be thought of as the result of the ponderomotive po-
tential formed by the beating of the wiggler and radiation
fields. The precise form for the wiggler field can take a
variety of configurations, and ubitrons and FEL's have

been constructed using both helically ' ' ' ' and
linearly' ' ' ' polarized wiggler fields. In addition, a
wiggler configuration has been proposed which makes use
of a rotating quadrupole design.

The motivation for the present work is to develop a
nonlinear theory and simulation code for a ubitron or
FEL amplifier based upon a linearly polarized wiggler
field. The advantage of a planar wiggler design over that
of a helical configuration is ease of construction and
modification. Linearly polarized wigglers are readily con-
structed from permanent magnet arrays which can be
easily adjusted to a tapered wiggler configuration. In this
paper we derive a fully three-dimensional nonlinear
analysis of the FEL and the ubitron for the planar wiggler
configuration. The analysis follows that described previ-
ously for a helical wiggler configuration, and involves
the derivation of a set of coupled nonlinear differential
equations which self-consistently describe the evolution of
both an ensemble of electrons and the electromagnetic
fields in a rectangular waveguide. Space-charge fields are
neglected in the analysis; therefore, the treatment is ap-
plicable to the high-gain Compton (or strong-pump) re-
gime. The nonlinear current which mediates the interac-
tion is computed from the microscopic behavior of the
electrons by means of an average of the electron phases
relative to the ponderomotive wave formed by the beating
of the wiggler and radiation fields. The detailed wiggler
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model we employ includes the effect of parabolically ta-
pered pole pieces in order to provide for electron focusing
in the plane of the bulk wiggler motion. Further, the in-
jection of the electron beam into the wiggler field is
modeled by allowing the wiggler amplitude to increase
adiabatically from zero to a constant level. The procedure
used also permits the inclusion of an arbitrary taper of the
wiggler amplitude for the purpose of the enhancement of
the interaction efficiency. The overlap between the elec-
tron beam and the transverse mode structure of the TE
and-TM modes is included in a self-consistent manner, so
that no arbitrary "filling factor" need be included in the
analysis. Since the problem of interest is that of a FEI. or
ubitron amplifier, only single-frequency propagation is
considered. This permits an average over a wave period to
be performed which eliminates the fast-time-scale phe-
nomena from the formulation, and results in a great in-
crease in computational efficiency over a full-scale
particle-in-cell simulation.

In organization of this paper is as follows. The general
equations are derived in Sec. II. The numerical solution
to the dynamical equations is given in Sec. IV, in which a
particular example is treated in depth which corresponds
to a recent experiment by Orzechowski and co-workers. '

Three distinct waveguide modes are found to grow in
simulation, and we consider each of these modes in detail
including the bandwidths and relative growth rates and
saturation efficiencies. Also considered are the effects of

(1) variations in the length of the entry region on the satu-
ration efficiency, (2) an initial momentum spread in the
electron beam (i.e., prior to the injection into the wiggler),
(3) the scaling of the efficiency with beam current, and (4)
the enhancement of the interaction efficiency through a
linearly tapered wiggler amplitude. These issues are treat-
ed in an abstract manner in Sec. III because the analysis
does not correspond to all aspects of the experimental
configuration. However, a comparison between the simu-
lation and the experiment is made in Sec. IV in which we
give a summary and discussion.

II. GENERAL FORMULATION

The configuration we consider is that of a relativistic
electron beam propagating through a loss-free rectangu-
lar waveguide in the presence of a linearly polarized
wiggler magnetic field. The wiggler-field model that we

employ is that encountered when the individual magnets
in the wiggler have parabolically tapered pole faces,
which provides for electron-beam focusing in the plane
of the principal wiggler motion. This technique was first
employed experimentally by Phillips. ' A detailed
analysis of the magnetic field produced by a wiggler with
parabolically tapered pole pieces was undertaken by
Scharlemann, who showed that the wiggler field is of
the form

kx ky kx ky
B (x)=B cos(k z) sinh — sinh — e„+cosh — cosh — e~

2 2 V2 V2

—v'2 cosh
kx ky

sinh — sin(k z)e,v'2 v'2

where B denotes the wiggler amplitude, and
k (:2vrlA. ) is th—e wiggler wave number. We model the
injection of the electron beam into the wiggler by allowing
the wiggler amplitude to increase adiabatically from zero
to a constant level over N wiggler periods. In addition,
since we intend to study efficiency enhancement by means
of a tapered wiggler, the wiggler amplitude will be tapered
starting at some point z0 downstream from the entry re-
gion in a linear fashion. To this end, we choose

B sin (k zl4N ), 0&z &N

5A(x, t)= g' 5A&„(z)eI„"(x,y) cosa
I, n =0

for the TE modes, and

(4)

The boundary conditions at the waveguide wall may be
satisfied by expanding the vector potential in terms of the
orthogonal basis functions of the vacuum waveguide.
Thus, we write the vector potential of the radiation in the
form

B (z)= B, N A,„,&z &zo

B [1+@ k (z —zo)], z &zo

where

1 6'
lnB~

(2) 5A(x, t)= g 5A,„(z)eI„'(x,y) cosa
I, n =1

ki„+ sin

n~Y
Q sin

b
single,

describes the slope of the taper. Since the fringing fields
associated with the tapered wiggler amplitude are neglect-
ed, this representation is strictly valid only if the slope of
the taper is small. Within the entry region this implies
that N must be large, while for z &z0 we must require

for the TM modes, where for frequency co and wave num-
ber k (z),

a—= f 'dz'k(z') cot . —
0
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In addition, g' indicates that 1 and n are not both zero,
and

e,„(x,y) —= cos(&j n7T

1n

l~X
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n~Y

X

l~
sin

k]„a
l ~X n~Y

cos ey 7a
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b x

n~+ sin
ki„b

cos
nnY

b y (8)

' 1/2

k]„——
m

a b

denotes the cutoff wave vector. It is implicitly assumed
I

are the polarization vectors. In this representation the
waveguide is assumed to be centered at the origin and
bounded by —a/2(x &a/2 and —b/2&y &b/2. As a

consequence, X:—x +a /2, Y=y +b /2, and

X5[x,—xi;(z;p;o x o y o, t, )]

5[t r;(z—;po xio yio, to)]
X

~

uzi(z i pio&xip~yio& io)
I

(10)

where L is the length of the interaction region, NT is the
total number of electrons, nb is the average electron densi-

ty, v, (z;p;p, x;p, y;o, t;p) is the velocity of the ith electron at
position z which entered the interaction region (i.e.,
crossed the z =0 plane) at time t;p and transverse position
(x;p,y;o) with momentum p;p, and

dz'Z

r(z, p;, x;,y;, t; )=t; +
o u„(z';p;p,x;p,y;p t p)

This discrete sum over particles can be replaced by an in-
tegration over the initial conditions, and we write

that both 5A&„(z) and k(z) vary slowly over a wave

period.
The microscopic source current can be written as the

following sum over individual particle trajectories:

N~

5J(x, t)= —e g v;(z;p;p, x;o,y;p tp)
i =1

T/2
5J(x, t)= enb f—dpou, oFp(p) f f dxpdypo'~(xp yp) dtpo~~(tp)v(z pp xp yo, to)—T/2

A

5[t —r(z; po xo)yo, to)]
X5[xJ xi(z;po xo yo, tp)]

u, (z; po, xp, y p, to)
(12)

f dxodyoo. i &o yo
A

T/2
dto 0'

~

( to ) = T
—T/2

(13)

(14)

f dpoFo(po)=1

Substitution of the microscopic fields and the source
current into Maxwell's equations yields the equations
which govern the evolution of the radiation amplitude and
wave number. The procedure is formally identical to that
described previously for the helical wiggler, cylindrical
waveguide configuration, and involves a modal orthogo-
nalization in the transverse coordinates. In addition, a
quasistatic assumption is made in the sense that particles
which enter the interaction region at times to separated by
integral multiples of a wave period are assumed to execute
identical trajectories. As a result, v(z;po, xo,yo, to

+ 2rrN/tu) = v(z;po, xo,yo, to) for the integer N, and a
time average over a wave period can be performed which

where v, o is the initial axial velocity, A~
—=ab is the area of

the waveguide, T=L/(u, o), and cri(xp, yp), o ~~(tp), and

Fp (pp) describe the distributions of the initial conditions
subject to the normalizations ( Ab is the cross sectional
area of the beam)

d2 2

6a)„+
dz

2 2—k —k]„6a)„
c

CO= 8 F e"j.v (16)

and

CO

zk' )k'~ Z )= —8 F~„e'i'v),
Z

(17)

where 6a]„—=e6A&„/mc, co& =4~e nI, /m, v is the instan-
taneous velocity, and F]„=—

—,
' when either I =0 or n =0

and unity otherwise. For the TM]„mode we obtain a
similar result,

permits consideration of a single "beamlet" that includes
electrons which enter the interaction region within one
ponderomotive (or wave) period. This greatly improves
the computational efficiency. It should be remarked that
the ponderomotive phase of each particle is followed self-
consistently in the analysis, so that while the beamlet is
initially distributed over one ponderomotive wave, the
final state may describe an electron distribution which has
become trapped within several ponderomotive buckets. In
view of this, the equations which govern the evolution of
the TE~„mode are
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2
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Observe that there is no nontrivial TM mode solution when either l =0 or n =0.
The averaging operator (( )) is defined over the initial conditions of the beam (note that the instantaneous posi-

tions and momenta of the electrons are implicit functions of the initial conditions) and includes the effect of an initial
momentum spread by means of the distribution function

Fo(po) = ~ e"pl —(p o po) /~—p )o(po Bio p.—o)H—(p o) (20)

where po and bp, describe the initial bulk momentum and momentum spread of the beam, H(x) is the Heaviside func-
tion, and the normalization constant is

Pp
dpzo exp[ —(pro —po) /Apz 1

0
(21)

bp,= 1 — 1+2(yo2 —1)
3'0

(22)
po

where yo=(1+po/m c )' . There is no fundamental difficulty in the inclusion of an overall energy spread in the
analysis; however, the additional degree of freedom requires an increased number of particles in the simulation. The 5
function allows us to perform one of the momentum-space integrals analytically, and to write the averaging operator in
the form

Observe that the distribution is monoenergetic, but contains a pitch angle spread which describes an axial energy spread
(as well as a transverse energy spread) given approximately by

—1/2

f d&o f 'dp oP oe"p[ —(p o iso) /~u )—f dWoo ~~(&o) f '
dxo f" dXooi(xo Xo)(

(23)

where gp(—: coro) is the init—ial ponderomotive phase,
Po—= tan '(p~o/p o), and 13,o=u, o/c. It is important to
recognize that this average includes the effect of the over-
lap between the electron beam and the transverse mode
structure of the radiation field in a self-consistent way.

The phase variation of each mode can be analyzed by
the addition of an equation to integrate the relative phase

4(z) = f dz'[k(z') —ko], (24)

where ko —=(co /c —k~„)'~ is the wave number of the
vacuum guide. Since the departure of k (z) from the vacu-
um wave number describes the effect of the wave-particle
interaction, N(z) represents a measure of the dielectric
effect of the FEL interaction. Thus, we integrate the ad-
ditional equation

k —ko
dz

(25)

d e
u, p= —e5E&„——vX(B +5B~„),'dz C

(26)

for both the TE and TM modes.
In order to complete the formulation, the electron-orbit

equations must also be specified. Since we describe an
amplifier model, we choose to integrate in z and write the
Lorentz force equations in the form

where B is given by Eqs. (1) and (2) and the radiation
fields are given by the vector potentials

5E1n= — 5 A1n~ 681n= V X & A1n
& a
C

Finally, the electron coordinates obey the equations

(27)

and

Uz X=Ux ~

dz

d
Uz, y =Vy

az

d Cc)P=k+k
dz Uz

(28)

(29)

(30)

describes the evolution of ponderomotive phase

it=go+ f dz' k+k ——
0 Uz

(31)

III. NUMERICAL ANALYSIS

The set of coupled differential equations described in
Sec. II is solved for an amplifier configuration in which a
single mode of frequency co is injected into the system at
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z=0. The dynamical equations [Eqs. (16)—(19) and (25)]
for the fields can be reduced to a set of four first-order
ordinary differential equations for 6a]„,
1 ~„[—:k 'd(ln5a&„)/dz], k, and the relative phase
Hence, the numerical resolution of the problem consists in
the simultaneous solution of 6NT+4 first-order ordinary
differential equations, where NT is the number of elec-
trons. The algorithm we employ is the fourth-order
Runge-Kutta-Gill technique. While this technique is
somewhat less stable than the fourth-order Adams-
Moulton predictor-corrector scheme, it has the advantage
of being less memory intensive. Indeed, the requirements
placed on the available size of computer memories
represents a critical practical limitation when momentum
spread is included. The averages in Eqs. (16)—(19) are
performed by means of an Nth-order Gaussian quadrature
technique in each of the variables (xo,yo, fo,p, o, go)

The initial conditions on the radiation field are chosen
such that 1 &„(z=0)=0, k (z =0) =ko, and &P(z =0)=0
for an arbitrary initial power level. Observe that the
time-averaged Poynting Aux P]„for the waveguide modes
is related to the field amplitude by the relation

o.so P

N
U

3-
U ,

~
0.80 I—

0.75—

Axial Phase Space (k z = 0}

0

Beam Cross Section (k z = 0}
2 4mc ab

2
(32)

for the TE~„mode, and

mc ab2 4 k]„2

P)„—— cu k+ 6a )„32e
(33)

y oP

for the TM~„mode. The initial state of the electron beam
is chosen to model the injection of a continuous, axisym-
metric electron beam with a uniform cross section; hence,
we choose o~~

—1 for ~(go(~ and o—~= 1 for ro (R&.
The particular example we analyze is that of a 35-GHz

amplifier employing an electron beam with an energy of
3.5 MeV, a current of 800 A, and an initial radius of 1.0
cm which propagates through a waveguide characterized
by a =9.8 cm and b =2.9 cm. In order to obtain peak
growth rates in the vicinity of 35 GHz we choose a
wiggler field with an amplitude of 3.72 kG and a period of
9.8 cm, with an entry taper of N„=5.For purposes of il-
lustration, the first case we consider is that of a beam with
zero momentum spread (Ay, =0). For all cases discussed
in this work with Ay, =0 the choice of a tenth-order
Gaussian algorithm in each of the coordinates (Po, ro, Oo)
was found to provide an accuracy of the order of 0.1%.
The initial electron distributions in the axial phase space
and beam cross section are shown in Fig. 1. Each dot in
the illustration of the axial phase space describes a phase
sheet composed of 100 electrons distributed throughout
the cross section of the electron beam. Each phase sheet,
therefore, represents a cross-sectional slice of the electron
beam, which is chosen initially as shown in Fig. 1(b). Al-
though each phase sheet is initially chosen to be identical,
the subsequent evolution of the electron trajectories in the
presence of the radiation field is followed self-consistently.
It should also be remarked that the distribution shown
represents a uniform electron beam. The nonuniformity
in the positions of the electrons chosen by means of the

b
2

-0.12a 0.12a

FIG. 1. Initialization of (a) the axial phase space, and (b) the
beam cross section. Each point in the axial phase space
represents the superposition of 100 particles distributed
throughout the cross section of the beam.

Gaussian algorithm is compensated for by a nonuniformi-
ty in the weighting of the electrons.

There are three modes which are resonant in the vi-
cinity of 35 GHz; specifically, the TEO&, TE2] and TM2&
modes. The analysis presented in this work deals with
wave-particle interactions with single modes, and we
shall deal with each of these modes individually. The
first mode we treat is the TEO& mode which is the
lowest-order resonant mode at the frequency of interest.
The detailed evolution of the wave power as a function
of axial position is shown in Fig. 2 for the injection of a
50-kW signal at a frequency of m/ck = 11.3 (34.6 GHz).
As shown in the figure, saturation occurs at k„z=115
(1.79 m) at a power level of approximately 214 MW
which corresponds to an efficiency of g —7.75%. Wave
amplification occurs principally within the uniform
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Q, ~v„— sin(k z)e„.
3 0

(34)

The source terms contained in the dynamical equations
(16)—(19) are derived essentially from a calculation of
(J.5E ); hence, the principal wave-particle coupling is
with the x component of the radiation field. If we assume
that 5E —5E„sin(kz cot), the—n it is evident that

(J.BE)—— 6E ( cosP —cos(2k z —g)) .
2@Ok

(35)

The interaction occurs when the ponderomotive phase is a
slowly varying function of axial position [i.e. ,

co=(k+k )v, ), and the upper beat wave which varies as
cosP describes wave amplification. The lower beat wave
describes the oscillation at half the wiggler period. Al-
though the spatial average of the contribution of the lower
beat wave vanishes and this term provides no contribution
to the bulk growth of the wave, the instantaneous values

wiggler region (z &X A, ) which is 1.30 m for this case
and yields an average gain of about 28 dB/m. Although
this value for the average gain is lower than that ob-
served in some other experiments (a gain of approxi-
mately 120 dB/m has been observed by Gold and co-
workers ), the average normalized growth rate
I o&/k =0.05 is quite high and is attributable to the rel-
atively high wiggler amplitude and long wiggler period.

One feature of interest shown in Fig. 2 which merits
some discussion is the oscillation in the instantaneous
power which occurs with a period of A, /2. This is not
found for the case of helical wiggler configurations for
which the bulk transverse wiggler motion describes a helix
with a transverse velocity of relatively constant magni-
tude. In contrast, a linearly polarized wiggler will induce
a bulk wiggler motion in the plane normal to that of the
wiggler field characterized by an oscillatory velocity. In
order to illustrate this qualitatively, we observe that for
the present configuration the bulk transverse wiggler
motion is aligned along the x axis and varies approximate-
ly as

TED' Mode ta = 9.8 cm; b = 2.9 cm; P;„=50 kW)
I

y
100—

~ ~ ~ ~

of the power are affected. Indeed, the instantaneous varia-
tion of the relative phase also exhibits an oscillation at
half the wiggler period.

A full spectrum of the TEO& mode is shown in Fig. 3 in
which we plot the saturation efficiency and distance to
saturation as a function of frequency within the unstable
band. As shown in the figure, wave amplification is found
for frequencies extending from co/ck =10 (30.6 GHz)
through cv/ck =14.2 (43.5 GHz) with a peak efficiency
of the order of approximately 9.8%%uo. The peak growth
rate (as measured by the distance to saturation) occurs for
co/ck =12.3 (37.7 GHz), which is somewhat higher than
the targeted 35 GHz. However, the gain bandwidth is
sufficiently broad that the growth rate has not decreased
significantly from the peak value.

The variation of the relative phase versus axial position
is illustrated in Fig. 4 for co/ck =10.4, 10.7, 11.0, 11.3,
and 11.9. As is evident from the figure, the oscillation at
one half the wiggler period is also manifested in the rela-
tive phase. The bulk variation (i.e., averaged over a
wiggler period) shows the same qualitative behavior as
that found for a helical wiggler. Specifically, for fre-
quencies at the low end of the gain band the relative phase
decreases up to a point just short of the position at which
the power saturates (indicated in the figure by an arrow),
after which the phase remains relatively constant. As the
frequency increases, the variation in the relative phase de-
creases until a critical frequency is reached (cv/ck =11
for the particular case under consideration) for which the
phase is found to vary little over the course of the interac-
tion. This critical frequency is typically found to be about

TE01 Mode (a = 9.8 cm; b = 2.9 cm; ~lck~ ——11.3; P;„=50 kW)

Vb =3.5 MeV
Ib =800 A

Rb =1.0 cm
hyz =0
Bw —— 3.72 kG
kw —— 9.8 crn
Nw= 5

1 1 T I

&=34.6 GHz
g = 7.75o/o 10—

Vb =3.5 MeV
)b =800 A

Rb =1.0 cm
hyz =0

100 I—

0~O

5

Bw =3.72 kG

w
——9.8 crn

Nw=5
~ ~

kwz
10 12

Cu/Ckw

13
I

14

FICs. 2. Plot of the growth of the TEol mode with axial posi-
tion.

FIG. 3. Graph showing the distance to saturation and the
efficiency of the TEO 1 mode as a function of frequency.
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TEoq Mode {a=9.8 cm; b =2.9 cm; P;„=50kW) TED' Mode {a=9.8 cm; b =2.9 cm; cu/ck~ ——11.3)

120—
Vb
Ib

Rb
hyz

Bw
~w

Nw

1.3

Ql
Q 40—

Q
lh
lO

20-
CL

~~
0

Q
K

1.0

6—
o&
0

Vb =3.5 MeV
lb =800 A

Rb =1.0 cm
dyz =0
Bw =3 72 kG
~w=9.8 cm

I

6 8

Zentry/ ~w
10 12

kw

FIG. 4. Plot of the relative phase of the TEO& mode vs axial
position for co/ck =10.4, 10.7, 11.0, 11.3, and 11.9.

FIG. 5. Plot of the distance to saturation and the efficiency of
the TEOI mode as a function of the length of the entry taper re-
gion for co/ck =11.3.

10%%uo below the frequency of peak growth. For frequen-
cies above the critical frequency, the bulk phase increases
monotonically. It should be remarked that the gain band
under discussion corresponds to the upper frequency in-
tersection between the beam resonance line [co= (k
+k )U, ] and the vacuum waveguide dispersion curve.
There is also a gain band associated with the lower-
frequency intersection which shows a similar variation in
the relative phase, except, that there is an inversion in the
frequency dependence.

The question of the effect of the injection process of the
electron beam can be addressed by varying the length of
the entry taper region. The results of this analysis are
shown in Fig. 5 in which we plot the saturation efficiency
and the distance to saturation as functions of the length of
the entry taper region for N ) 3. We have arbitrarily
chosen the minimum length of the entry taper region to
be three wiggler periods since the fringing fields associated
with the tapered wiggler field have been neglected, and we
feel that below this value the fringing fields will be impor-
tant. The results indicate that the saturation efficiency in-
creases markedly as the length of the entry region in-
creases from 3k to approximately 6A. , after which the
increase in the efficiency becomes more gradual. We attri-
bute this increase in the efficiency to a decrease in the
effective momentum spread induced by the injection of

the beam into the increasing wiggler field. It should also
be noted that the increase in the distance to saturation is
roughly linear for N ) 5 and corresponds to the increase
in the length of the entry region (i.e. , the length of the
uniform wiggler region remains relatively constant).

The particle dynamics during the course of the TEO&
mode interaction are illustrated in Figs. 6 and 7. In the
first place, we remark that saturation proceeds by means
of the phase trapping of the beam in the ponderomotive
potential ~ This is shown in Fig. 6 in which we plot the
phase-space distribution of the beam at saturation. The
dashed line in the figure represents an approximate
separatrix calculated for particles at the beam center;
hence, many of the electrons which appear outside of the
separatrix may instead be on trapped particle orbits at the
edge of the beam. The cross-sectional evolution of the
beam is shown in Fig. 7. The cross-sectional projection of
the beam at the start of the uniform wiggler region (i.e. ,
k z=31) is shown in Fig. 7(a). The bulk motion of the
beam exhibits four essential features. The first is the pri-
mary wiggler-induced oscillatory notion which shifts the
center of the beam off axis in the x direction, and this
shift is clearly shown in Fig. 7(a). The second feature is
that the transverse wiggler gradient introduces a betatron
oscillation which causes a macroscopic scalloping of the
beam envelope. In addition, on a microscopic level the
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FIG. 6. Plot of the beam distribution in axial phase space at
saturation.

individual electrons come into a focus and out again on
the opposite side of the beam. This becomes evident in
Fig. 7(a) by noticing that the two closely spaced "spokes"
are oriented in the negative-x direction while in the initial
state [Fig. (1b)] these same spokes were oriented in the
positive-x direction. The third feature is that the trans-
verse wiggler gradient also has a focusing effect on the
beam which results in a reduction in the maximum beam
radius relative to the initial state. The betatron oscillation
occurs over a length of approximately b,z~ —3.08K (i.e.,

k„Az&—19.3), and the evolution of the beam cross section
over this distance is shown in Fig. 7 (from k z=31—51).
Lastly, the geometry of the wiggler and the transverse
gradients tends to distort the beam into an elliptical cross
section. While this is evident in Fig. 7 at an early stage of
the wiggler, it is shown even more dramatically in Fig.
7(f) which shows the cross section at saturation
(k z=115).

We now consider the TE2& mode, and plot the evolu-
tion of the wave power versus axial position in Fig. 8 for a
50-kW input signal at co/ck =11.3 and an electron beam
with a zero initial momentum spread. As is evident from
the figure, the power saturates at k z=104 at about 194
MW for an efficiency g =6.85%. In comparison with the
TEp~ mode, therefore, we conclude that the average
growth rate is somewhat higher and the efficiency lower
for the TE2] mode at this frequency. A complete spec-
trum for the TEz& mode is shown in Fig. 9 in which we
plot the distance to saturation and the efficiency versus
frequency. As shown in the figure, gain is found for fre-
quencies ranging from co/ck =8.9 through co/ck ~14
with a peak efficiency of approximately 12%. As a result,
both the bandwidth and peak efficiency are higher for the
TE2& mode than for the TEp& mode. In addition, while
this frequency falls slightly below the frequency of peak

growth rate for the TEp& mode, it is close to the frequency
of maximum growth rate for the TEz& mode.

The evolution of the wave power versus axial position
is shown in Fig. 10 for a 50-kW input signal in the TM2&
model at co/ck„=11.3 and an electron beam with zero
initial momentum spread. As shown in the figure, the
power saturates at k z =237 with approximately 68.5
MW for an efficiency g=2. 45%. This is a much lower
growth rate and efficiency than found for either the TEp&
or TE2& modes, despite the fact that the cutoff frequency
and dispersion curves are degenerate for the TM2& and
TE2& modes. The difference between the two modes lies
in the transverse mode structure. As mentioned previ-
ously, the principal component of the wiggler-induced
motion is aligned with the x axis; hence, the wave-
particle interaction is governed largely by the x com-
ponent of the electric field. Comparison of the mode
structures for the TE2& and TM2& modes given by Eqs.
(4) and (5) shows that for a given mode amplitude
(5Hz& ) the ratio of the x component of the electric field
of the TM2& to that of the TE2 &

mode is approximately
2b/a =0.59. As a result, the wave-particle coupling is
weaker for the TM2& mode. Note that this conclusion
would be reversed if the configuration were altered such
that the principal component of the wiggler motion were
aligned with the y axis. However, one effect arising from
the degeneracy of the dispersion curves is that the fre-
quency of interest (co/ck = 11.3 ) lies near to peak
growth for both TE2& and TM2& modes. This is shown
clearly in Fig. 11 in which we plot the distance to satu-
ration and the saturation efficiency as a function of fre-
quency for the TM2] mode. As might be expected, the
reduced wave-particle coupling and growth rates for the
TM2& mode result in a narrower bandwidth for instabili-
ty, and we obtain wave growth for frequencies ranging
from co/ck = 10.2 —12.

The question of the variation in the phase of FEL
amplifiers has important implications for many of the
potential applications of these devices. Since high
powers and efficiencies have been demonstrated experi-
mentally, ' one such application may be as a high-power
microwave source for the next generation of radio-
frequency electron accelerators. However, one require-
ment for such an application is good phase stability of
the output radiation against fluctuations in the electron-
beam voltage. Examination of Fig. 4 shows that the rel-
ative phase at saturation varies rapidly with frequency.
Since there is a correspondence between variations in the
frequency at fixed voltage and variations in the voltage
at fixed frequency, we might expect the phase at satura-
tion to vary rapidly with beam voltage. This is indeed
the case as shown in Fig. 12, in which we plot the rela-
tive phase at a fixed axial position (chosen to correspond
to the saturation point for a beam voltage of 3.5 MeV)
versus beam voltage for the TEp&, TE2&, and TM2&
modes. The variation in the relative phase is approxi-
mately 51'/1% variation in the beam voltage for the
TEp& mode, 43 /1% variation in the beam voltage for
the TE2& mode, and 89 /1% variation in the beam volt-
age for the TM2& mode. Such rapid variations in the
phase are consistent with results obtained previously for
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FIG. 8. Plot of the growth of the TE» mode with axial posi-
tion.

FIG. 10. Plot of the growth of the TM» mode with axial po-
sition.

a helical wiggler, cylindrical waveguide configuration,
and contrasts with 8 /1% variation in beam voltage for
a typical Stanford Linear Accelerator (SLAC) klystron.
We conclude, therefore, that applications which require
an extremely phase-stable microwave source will also re-
quire an electron-beam source with a very low level of
voltage fluctuations.

The eA'ect of an initial momentum spread is shown in
Fig. 13 in which we plot the efficiency versus Ay, /yp for
the TEp~ TE2 &, and TMz

&
modes. From the beam-

resonance condition, it is apparent that the transition to a

thermally dominated regime occurs when Av, / vp —I &„/
(k+k ). Making use of Eq. (22) we find that this transi-
tion occurs at about Ay, /yp- 18% for the TEp& and TE2&
modes, and Ay, /yp-8% for the TMz& mode. As a conse-
quence, the cases shown in Fig. 19 are well short of the
thermal-beam regime. The e'fficiency is found to decrease
in an approximately linear fashion with increasing Ay, for
each of these modes, which corresponds with results ob-
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FIG. 9. Graph showing the distance to saturation and the
efficiency of the TE2& mode as a function of frequency.

FIG. 11. Graph showing the distance to saturation and the
efficiency of the TM» mode as a function of frequency.
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tained for a helical wiggler configuration. Note, however
that the present results were obtained with the same mod-
el distribution (20) as for the helical wiggler, and the de-
tailed variation in the efficiency with momentum spread
can be expected to vary with the choice of distribution. Be
that as it may, we find that the efficiency drops from
g =7.75 /o to g =4.98% for the TEp& mode as Ay, /yp in-
creases to about 2.3%%uo. For the TEz& mode, the efficiency
drops from g =6.85% to g =3.76%%uo as Ay, /yp increases
to 2.3%%u&. The efficiency of the TMz& mode decreases from
g =2.45% to rl = l.27% as b, y, /yo increases to 1%. This
is more rapid than for the TEp& and TEz& modes, and
occurs because the transition to the thermal-beam regime
is found for a lower value of the momentum spread for the
TMz& mode.

The scaling of the saturation efficiency with beam
current for the TEp~, TEp&, and TMz& modes is shown in
Figs. 14—16, respectively, for Ay, =0 and ~y, /yp ——1%.
On the basis of an idealized one-dimensional model, it
has been shown that the saturation efficiency should scale
as g-Ib for frequencies corresponding to peak growth
rates. As shown in Fig. 14, this type of scaling law is ob-
tained for the TEp& mode over a range of currents extend-
ing from approximately 300—1000 A. Observe that the
dielectric effect of the electron beam on the waveguide
mode is included in the formulation, and the bandwidth of
the interaction shifts with the beam current. As a conse-
quence, the increasing divergence between the simulation
results and the scaling law for currents below 300 A is at-
tributed to a shift in the frequency of peak growth away
from co/ck = 11.3. It should also be noted that the curve
for hy, /yp ——1% increases with current only slightly fas-
ter than that obtained for Ay, =0 and, other parameters
being equal, the II, scaling law seems to be relatively in-
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FIG. 17. Plot of the evolution of the TEpl mode for a tapered
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FIG. 19. Plot of the evolution of the relative phase during the
course of the tapered wiggler interaction for co/ck„,=10.7, 11.0,
and 11.3.

tive phase versus axial position for e = —0.007, and
co/ck =10.7, 11.0, and 11.3. Note that the start taper
point is chosen to be the optimum value for each frequen-
cy, and is indicated in the figure by the arrow. Three
features are readily apparent from the figure. The first is
that the variation in the relative phase subsequent to the
start-taper point is approximately the same for each of the
three frequencies shown, and the spacing between the
curves remains approximately constant. Second, while
the phase variation within the tapered wiggler region ini-
tially increases immediately after the start-taper position,
the phase variation appears to saturate and remain rela-
tively constant over an extended interaction length.
Third, the oscillations at one-half the wiggler appear to
decrease in amplitude over the course of the tapered
wiggler region.
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The effect of an initial beam momentum spread on the
tapered wiggler-efticiency enhancement process has also
been investigated, and the results are summarized in Fig.
20 in which we plot the maximum realizable efficiency (if
the wiggler field is tapered to zero) versus hy, /yo. The
maximum efticiency at a fixed start-taper point
(k zo = 110) chosen to correspond to the optimum posi-
tion for b,y, =0 is shown in Fig. 20(a) versus the axial
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FIG. 20. Illustration of the effect of beam momentum
spread on the tapered wiggler interaction at (a) fixed zp, and (b)
variable zp. Observe that in (b) the optimal start-taper points
correspond to k„,zp ——110 for Ay, /yp ( 1%, k„,zp ——117 for
~y, /yp ——1.5%, and k zp ——124 for 4y, /yp ——2%.
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momentum spread. As is evident from the figure, the
efficiency-enhancement process is unaffected by the
momentum spread for Ay, /yo - 1%, but decreases rapid-
ly for axial energy spreads above this value. There are
two principal reasons for this decrease in g,„.The first
is that the phase-trapping mechanism becomes less
effective as the momentum spread increases because a pro-
portionally greater fraction of the beam remains outside
the trapped orbit region of the axial phase space. The
second reason is that the increase in the momentum
spread results in a decrease in the growth rate and a
longer distance to saturation. Because of this, the op-
timum start-taper point is an increasing function of the
momentum spread. Thus, if we determine the optimum
start-taper point versus Ay„then the maximum efficiency
can be expected to decrease less rapidly with axial energy
spread than is shown in Fig. 20(a). This is indeed the
case, as shown in Fig. 20(b) in which we plot g,„versus
Ay, for the optimum start-taper points. Note that for
&y /po ~

1%%uo this point coincides with that for Ay, =0
(for the current choice of parameters). As seen in the
figure, g „=26.6% for Ay, /yo ——2% and a start-taper
point of k zo ——124. This contrasts with an g,„=11.8%
(and by, /yo ——2%) when k zo =110. As a consequence,
we conclude that although the untapered efficiency de-
creases relatively quickly with increasing momentum
spread, the tapered-wiggler interaction can accept a small
level of momentum spread without suffering a significant
degradation in the interaction efficiency. However, the
upper limit on the allowable momentum spread must be
determined by the particular choice of experimental pa-
rameters, and the value of Ay, /yodel% should not be
construed to be a general result.

IV. SUMMARY AND DISCUSSION

In this paper a fully self-consistent nonlinear theory and
numerical simulation has been developed for the FEL
amplifier in three dimensions. The particular config-
uration of interest consists of a cylindrically symmetric
electron beam of arbitrary cross section (on entry at z =0)
injected into a loss-free rectangular waveguide in the pres-
ence of a linearly polarized wiggler magnetic field. The
wiggler-field model is that generated by a magnet stack in
which the individual magnets have parabolically tapered
pole pieces in order to provide for electron focusing in the
plane of the bulk wiggler-induced motion. In addition,
the adiabatic injection of the electron beam is modeled by
the inclusion of an initial taper of the wiggler amplitude.
The system of equations derived is a generalization of a
previously described analysis of a helical wiggler-
cylindrical waveguide configuration which treats
the self-consistent evolution of the trajectories of an en-
semble of electrons and the radiation fields. The analysis
includes both the TE and TM modes, and includes the
overlap of the transverse mode structure and the electron
beam (i.e., the filling factor) in a self-consistent way.
Space-charge fields have been neglected; hence, the
analysis is restricted to the high-gain Compton (strong-
pump) regime of operation. Since the problem of in-
terest is the FEL amplifier, only single-frequency propa-

gation is considered, which permits an average over a
wave period to be performed that eliminates the fast-
time-scale phenomena formulation. This results in a
great increase in computational efficiency over a full-
scale particle-in-all simulation code, and allows the ap-
plication of the technique to short (i.e., optical) wave-
lengths given an appropriate mode structure.

The electron trajectories are integrated using the com-
plete Lorentz-force equations, so we are able to study the
detailed orbital dynamics in the combined wiggler-
radiation field structure. The overall bulk motion of the
electron beam exhibits a dominant oscillation at the
wiggler period, as well as a slow-time-scale betatron oscil-
lation due to the transverse inhomogeneity in the wiggler
field. The dynamics of the adiabatic injection of the elec-
tron beam were studied by means of a comparison of the
saturation efficiency with the length of the entry taper re-
gion. The results indicate that the saturation efficiency in-
creases relatively quickly with the length of the entry
taper region for N 56, and more slowly thereafter. The
reason for this is that the injection process itself in a real-
istic (i.e., three-dimensional) wiggler field introduces a
effective momentum spread on the beam which decreases
as the axial wiggler gradient becomes more gradual. For
practical purposes N ~ 5 appears to be an adequate
compromise between the minimization of the overall
wiggler length and the maximization of the interaction
efficiency, and this is the regime in which many mi-
crowave FEL's have been operated. ' ' In addition,
the effect of a tapered wiggler amplitude on the enhance-
ment of the interaction efficiency can be included in a
straightforward manner.

The numerical analysis has been performed for the case
of a 35-GHz FEL amplifier which employs a 3.5-MeV,
800-A electron beam with an initial radius of 1.0 cm.
The beam propagates through a rectangular waveguide
with dimensions a =9.8 cm and b=2. 9 cm in the pres-
ence of a wiggler field with a 3.72-kG amplitude and 9.8-
cm period. Three distinct waveguide modes are found to
be amplified: the TEo&, TE2&, and TM2& modes. For this
choice of frequency, the TEO] mode exhibits the highest
(untapered) efficiency, while the TE2& mode has the
highest growth rate. The wave-particle coupling for the
TM2& mode is the weakest of the three modes and has the
lowest growth rate and efficiency as well as the narrowest
bandwidth. The effect of an initial momentum spread is
investigated for axial energy spreads Ay, /yo-2% which,
for this choice of parameters, is well within the cold-beam
regime. Results indicate that over this range of Ay, the
efficiency decreases in an approximately linear fashion
with increasing axial energy spread. This is in substantial
agreement with the results obtained for a helical wiggler
configuration; however, it should be remarked that the
same distribution has been used for both the planar and
helical wiggler configurations. Thus, while the planar and
helical wigglers behave in substantially the same manner,
the detailed scaling of the efficiency with the momentum
spread can be expected to vary with the detailed choice of
distribution.

The phase variation of the planar wiggler configuration
discussed herein is also in qualitative agreement with that
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found for helical wiggler configurations. The principal
difference is that an oscillation at one-half the wiggler
period is superimposed on the bulk variation in the phase
due to details of the wave-particle coupling with a planar
wiggler. Specifically, for the gain band associated with
the upper (high-frequency) intersection between the
beam-resonance line and the waveguide-dispersion curve,
we observe that the bulk variation of the relative phase de-
creases with axial position up to a point short of that at
which the power saturates for frequencies at the low end
of the band. As the frequency increases, the phase varia-
tion decreases until a critical frequency is reached for
which the phase remains relatively constant over the
course of the interaction. This critical frequency has been
found to occur at approximately 10% below the frequen-
cy of peak growth rate for all parametric cases studied for
both the helical and planar wigglers. Above this critical
frequency the average relative phase tends to increase with
axial position. In view of the high power potential of the
FEL amplifier, applications such as microwave sources for
the next generation of radio-frequency electron accelera-
tors are natural considerations and the question of the
phase stability of these devices against fluctuations in the
electron-beam voltage is of importance. Again, we find
qualitative agreement on this issue between simulations of
helical and planar wiggler configurations. The results in-
dicate a much poorer phase stability than the current gen-
eration of SLAC klystrons, and we conclude that applica-
tions of FEL amplifiers which require an extremely
phase-stable microwave source will also require an elec-
tron beam with a very low level of voltage fluctuations.

The enhancement of the interaction efficiency by means
of a tapered wiggler amplitude shows maximum
efficiencies of the order of 35—45%%uo are possible for this
choice of parameters. This brings maximum power levels
into the CsW range. The simulation results also indicate
that the tapered wiggler-efficiency-enhancement mecha-
nism is relatively less sensitive to the effect of momentum
spread than the uniform-wiggler case, and no degradation
in the maximum efficiency is found for Ay, /yo 5 1% in
the present case. Examination of the phase variation dur-
ing the tapered wiggler interaction shows similar results
over the entire gain band (Fig. 19), and there is no de-
crease in the phase separation for the various frequencies
observed in the tapered wiggler region. Since variations in
the frequency at fixed beam voltage are fundamentally
equivalent to a variation in the voltage at fixed frequency
(i.e. , both processes sweep through the gain band), we find
that our conclusion regarding the phase stability of FEL
amplifiers is unaltered for the case of tapered wiggler in-
teractions.

Indeed, the bulk features of the FEL interaction mecha-
nism are found to be in substantial agreement for both
helical and planar wiggler configurations. The most evi-
dent distinction is the rapid oscillation in both the power
and relative phase which appears for planar wigglers at
half the wiggler period. While the bulk wave
amplification is unaffected by this oscillation, it may intro-
duce an uncertainty in the measurement of the gain
and/or power from planar wiggler configurations which is
of the order of 10%%uo (apart from systematic instrumental

errors). In addition, the relative phase also exhibits this
oscillation, which indicates a periodic modulation in wave
refraction also occurs. It is, therefore, an open question
whether this may affect the focusing (i.e. , optical guiding)
of the radiation, and this will be addressed in a future
work by the inclusion of multiple modes in the formula-
tion. However, this question may be moot for tapered
wiggler configurations since the oscillation appears to be
attenuated (Fig. 19).

Although the configuration described in this paper does
not precisely coincide with the experiment conducted by
Orzechowski and co-workers, ' the parameters chosen
for the numerical analysis coincide with those of the ex-
periment and it is useful to compare the simulation with
the experiment. The fundamental differences between the
experimental configuration and the analytical model are
that in the experiment (1) the beam was injected into the
wiggler by means of an entry taper region one wiggler
period in length, (2) a quadrupole field was used to pro-
vide electron focusing instead of parabolically shaped pole
pieces, and (3) in the tapered wiggler experiment' the am-
plitude was tapered nonlinearly. A 50-kW 34.6-GHz (i.e. ,
co /ck = 11.3 ) magnetron was used to drive the FEL
amplifier, and the signal was injected in such a way as to
couple primarily to the TEO& mode. As a result, the TED~
mode was the predominant component of the output sig-
nal; however, significant power levels were also detected
in the TE2I and TM2i modes. The detailed experimental
parameters we choose to compare with the experiment in-
volve a 3.5-MeV, 850-A electron beam used in the tapered
wiggler experiment. Although the beam is thought to ex-
hibit a slightly elliptical cross section, the average of the
semimajor and semiminor radii is about 1.0 cm and we
choose this value for the beam radius in the numerical
simulation. The waveguide and wiggler parameters are
those used previously in Sec. III, and we note that since
the fringing fields are not included in our model of the en-
try taper region the choice of cV =5 is a compromise.
The evolution of the wave power in the TEoI mode as a
function of axial position for these parameters is shown in
Fig. 21 for a uniform wiggler (e =0), and for
e = —0.007. The results are similar to those described
in the preceding section for an 800-A beam, and the best
fit with the experiment is found for an axial energy spread
of Ay, /yo-l%%uo. As shown in the figure, the untapered
wiggler results give a saturated power of 194 MW over a
uniform wiggler-interaction region (i.e. , Z„,—Sit ) of 1.4
m in length. This compares well with the experimental
measurement of 180 MW over an interaction length of 1.3
m, and the discrepancies are within the experimental un-
certainty. We remark, however, that the simulation re-
sults may be affected by as much as 20% by the choice of
the length of the entry taper region. It is more difficult to
compare the simulation (with a linear wiggler taper) and
the experiment (with a nonlinear taper) in such a detailed
fashion. It is certainly reasonable to expect that a non-
linear taper might be more efficient than a linear one in
the sense that the efficiency enhancement can be accom-
plished over a shorter interaction region. Thus, in the
comparison of the tapered wiggler results we interpret the
simulation as an indication of limits on the energy extrac-
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FIG. 21. Plot showing the evolution of the TEpl mode vs axi-

al position for a uniform and tapered wiggler interaction.

tion. With this in mind we observe that the optimal
start-taper point is at k zo=1 1 1 (slightly more than one
wiggler period short of the saturation point for a uniform
wiggler). We choose the slope of the taper to correspond
roughly with the auerage taper in the experiment, and find
a maximum efticiency of about g „=35.6% at a power
level of 1.06 GW. This differs by only about 8% from
that found in the experiment, and we interpret this as
good agreement within the uncertainty introduced by the
differences in the slope of the taper. We conclude, there-
fore, that the simulation is consistent with the interpreta-
tion of a 1% axial beam energy spread, which is support-
ed by an electron-spectrometer measurement indicating an
upper limit on the energy spread of 2%%uo. Furthermore,
in view of the relative insensitivity of the tapered wiggler
interaction (see Fig. 20), we conclude that the perfor-
mance of the tapered wiggler experiment would not be
markedly improved by a further improvement in beam
quality (i.e., a decrease in the momentum spread).

It is useful to compare the analysis and simulation de-
scribed herein with other models in order to assess the rel-
ative merits of the various formulations of the problem.
To this end, we consider the simulation code FRED in use
at the Lawrence Livermore National Laboratory ' be-
cause this code has been used extensively to model and in-

terpret the experiment. It is important to recognize that
simulational models and computer codes undergo rapid
development which renders an accurate description
dificult; hence, I will confine my remarks to fundamental
properties which include the particle dynamics and the
treatment of the radiation field. The particle dynamics in
FRED are treated in a reduced form by averaging the orbit
equations over a wiggler period. The transverse motion is
described in terms of the bulk wiggler and betatron oscil-
lations by means of an analytical approximation, and the
self-consistent effect of the radiation field on the trans-
verse motion is not included. The dynamics in the axial
direction are handled by integration of equations for the
particle phase and energy. This is the most common ap-
proach used in the simulation of free-electron lasers and,
as shown by the comparison between FRED and the exper-
imental results, ' it works well. However, certain effects
are excluded from this formulation. First, we observe
that the rapid oscillation at the second wiggler harmonic
is lost entirely due to the averaging of the orbit equations
over a wiggler period. Second, the injection of the elec-
tron beam into the wiggler is excluded from the simula-
tion, and must be described explicitly. Third, because the
self-consistent effect of the radiation field on the trans-
verse electron motion is not included, the initial transients
associated with the injection of the radiation into the
amplifier are not properly handled. As a result, launching
losses cannot be described by FRED, and the wave power
must be initialized at a lower value than that actually in-
jected into the amplifier. Thus, it is our opinion that the
approach to the particle dynamics described in this paper
is superior to that employed in FRED. The advantage of
FRED over the single-mode analysis we have described is
that the radiation field is treated by means of a field solver
which implicitly handles multiple modes and, thus, de-
scribes the optical guiding (i.e. , focusing) of the radiation
due to the electron-beam interaction. However, optical
guiding can be treated via a multimode formulation of the
present analysis as well. Indeed, such an analysis is now
under study, and the results will be presented in the forth-
coming work.
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