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Ab initio study of third-order nonlinear optical properties of the Hz and Dz molecules
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Third-order dynamic hyperpolarizabilities (y) for H2 and D2 are calculated using James-Coolidge-

type wave functions for several internuclear distances and frequencies. From them, third-order sus-

ceptibilities (7) relevant to dc Kerr, degenerate four-wave mixing, electric-field-induced second-
harmonic generation and third-harmonic generation experiments are determined. Agreement with

the electric-field-induced second-harmonic generation experimental data is very good: 7~~' ——792, 821,
and 959 a.u. for k=6943, 6328, and 4880 A, compared with the experimental values: 805, 828, and

973 a.u. Other aspects such as dispersion formulas, Kleinman symmetry, and vibrational contribu-
tions are also investigated and discussed.

I. INTRODUCTION

Since the discovery of optical second-harmonic gen-
eration in 1961,' a new and exciting field of quantum
electronics has developed and, with the invention of
different types of powerful and tunable lasers, many non-
linear optical processes have been found. Useful re-
views, from both theoretical and experimental
viewpoints, have been written by Franken and Ward,
Orr and Ward, Bogaard and Orr, Shen, and Bloember-
gen. The processes we are concerned with here are
analogous to that responsible for refractive index, that is
to say, a coherent scattering effect which arises from the
interaction of an intense electric field from a laser beam
with the nonlinear microscopic hyperpolarizabilities of
the material under observation. In particular, we con-
sider the dc Kerr effect, degenerate four-wave mixing or
nonlinear intensity-dependent refractive index (DFWM),
electric-field-induced second-harmonic generation
(ESHG), and third-harmonic generation (THG). The
equally important phenomenon of coherent anti-Stokes
Raman spectroscopy (CARS) will not be discussed.

All these processes can be defined by the general equa-
tion '

P; (co ) =ICX~q'~( —co;co&,co2, co3)Ei(co )Et,. (co2)Et(co3), (1)

where i,j,k, l are laboratory-frame axes, Ei(co) is the jth
component of the applied field oscillating with a frequen-
cy co, P;(co ) is the induced macroscopic polarization os-
cillating at co (co =co~+co2+co3). K is a numerical factor,
and 7;~z& is the temperature-dependent third-order macro-(3)

scopic susceptibility.
We report accurate calculations of the parallel com-

ponents Xzzzz:XI~ (at T=22'C) for the hydrogen mol-
ecule (and its isotope Dz) for the following:
X

I~

'( —co;0,0,co), one component of dc Kerr;
X

~~

'( —;,, — ), DFWM; j
I~

"(—2;0, , ), ESHG;
and Xt~ ( —3co;co,co, co), THG. Values will be given for
the static case (co =0) and for three frequencies which cor-
respond to the experimentally accessible wavelengths of
4880 A (argon-ion laser), 6328 A (He-Ne laser), and 6943

where

+BmL+CcoL +(3) 2 4

+~&+coz+co3 .2 2 2 2 2

(2)

0
A (ruby laser). Contributions which result from the dis-
placement of the nuclei by the applied fields will also be
separately and explicitly evaluated (the so-called "vibra-
tional" terms).

Though the theory of these processes has been in place
for some time, there has so far been very little numerical
exploitation for molecules. Exceptions for the hydrogen
molecule are the work of Watts and Stelbovics' (ESHG
at 6943 A), Jaszunski and Roos'' (DFWM and THG for
a range of frequencies), and Huo and Jaff'e' (CARS).
However, all these efforts are, as will be described after we
have given our own results, in one way or another limited.
This dearth of accurate theoretical values is the more
surprising since the experimental values are most com-
monly found relative to those of another species: hence
the need for a "benchmark" value, for, say, H2, if abso-
lute values are to be known. To date, the 1968 calcula-
tion of Sitz and Yaris' on He has had to serve this pur-
pose: a calculation which gives a static result for a which
lies outside the rigorous bounds given by Glover and
Weinhold.

Recently, Mizrahi and Shelton' have determined
ESHG results for Hz to an accuracy much greater than
previous experiments and they detect a discrepancy be-
tween published theoretical static values and their own re-
sults extrapolated to ~=0. We wish to investigate this
problem, as well as to compare directly theory and experi-
ment at a few of the frequencies actually used. The same
authors have also suggested' that the Kleinman symme-
try conjecture for macroscopic susceptibilities (i.e. , their
invariance to the interchange of the spatial indexes)' may
also apply to the molecular-axial indexes on the micro-
scopic hyperpolarizabilities. This we can check directly
and simply by calculating all the hyperpolarizability com-
ponents. Furthermore, since we have results for several
processes at several frequencies, we will explore the
su%ciency of the approximation. "
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A final objective for the work reported is to lay to rest
any doubts concerning the fundamental theory which may
have been suscitated by the widely differing theoretical
and experimental results for FH. ' '

In Sec. II we give the basic formulas we have used—
these rest on the Orr-Ward perturbation formulation of
the hyperpolarizabilities. We describe our wave functions,
which are the James-Coolidge type (i.e., they explicitly in-
clude the interelectronic coordinate) and hence directly in-
corporate electron correlation.

In Sec. III we give the dynamic dipole polarizability
components and the hyperpolarizability components (for
the four processes: dc Kerr, DFWM, ESHG, THG) for
six internuclear distances and four frequencies for Hz.
These hyperpolarizability components are then com-
bined to obtain values for H2 and D2 which can be com-
pared with experiment. In the same section we discuss
various aspects of our results, as well as making compar-
isons with previous work. We also report calculated "vi-
brational" contributions.

Our final results assume a rotational state population
appropriate to T =22'C and we have assumed that only
the ground vibrational state is populated. We believe,
taking into consideration the convergence of what is a
very flexible basis set, that our values have an accuracy
of 1% or better —and this exceeds, in most cases, the ac-
curacy of the experiments. In Sec. IV we draw some
conclusions. In general we use atomic units: a 0 = 1

bohr=0. 529 177 A, dipole polarizability a=e a+
= 1.6488& 10 ' C m J ', hyperpolarizability

y =e a OE& =5.0372 X 10 esu=0. 623 60&& 10
C4 4J

II. THEORY AND METHOD

and for even J it equals 1 for H2 and 6 for D2. AEJ are
the rotational energy level spacings. 7 '(J) is then the ex-
pectation value of the isotropic hyperpolarizability y ~~(R),
a function of the internuclear separation R, over the
vibrational-rotational wave function

I
u, J&. We will as-

sume that only the lowest vibrational state (U =0) is of in-
terest, so that

J =& Jly~(R)l0 J
The isotropic hyperpolarizability y~~(R) is

y ~~(R) = y =(yg„„+yg„g„+y~„„~)/15,

(5)

(6)

y( —co;0,0, co) =(8y, „,+Sy„„+2y„
+ 2y,„„,+3y„„)/15,

since

r xxzz 1 zzxx f xzxz f zxzx

y( —co;co, co, —co) =(8y „„+8y„„„
(7b)

where, for simplicity, we have dropped the "parallel" sub-
script and the Greek (molecular-axial) subscripts can be
equal to x,y, z with a repeated subscript indicating a sum-
mation over all three Cartesian components. It should be
noted that there is more than one convention for the
definition of the susceptibilities and hyperpolarizabilities
and that the one we have adopted here leads to hyperpo-
larizability values in keeping with Buckingham's
definition ' but six times larger than those of Ward and
co-workers. ' The diatomic symmetry and the allowable
permutations of the indexes for the property at hand leads
to

In this section we introduce our notation and working
formulas; the first step is to relate the macroscopic suscep-
tibilities P

~~

' of Eq. (1) to the microscopic hyperpolariza-
bilities y p~s, where the indexes a, P, y, 5 denote the
molecular axes x, y, and z with the latter lying along the
nuclear axis. Since we are dealing with H2 and D2, our
relations will be those pertinent for a molecule with D
symmetry and will contain no k T second-order com-
ponent.

will be a temperature-dependent quantity: a
Maxwell-Boltzmann average over the populated rotational
levels as labeled by the quantum number J, that is,

(3)

since
+4y „+3y„„)/15,

since
V xzzx V xzxz

+4y, , +3y„„)/15,

y zxxz f zxzx

y( 3~~~, ~, ~)=(Sy „„+6y

y xzzx f zxxz r

—2' Ococo = Sy +2y, +2y +4y

(8a)

(Sb)

(Sc)

(9a)

(9b)

(9c)

where since
+3y„„)/15, (loa)

gJ (2J + 1)exp( —AEJ /kT )
p(J) =

gg~(2J + 1)exp( bEJ/kT)—
J

and gJ is the nuclear spin factor; it equals 3 for odd J
I

Vzzxx 3 zxzx 3 zxxz

(10b)
(10c)

We will calculate all the necessary independent com-
ponents y ~~~ for each process by means of Orr and
Ward's ' formula:

p&s(
—co; ~, cc)2, F3)=f7—3

P m, n, p, (&g)

m, n(, ~g)

&g fp lm&&m Ipsln&&n Ipr Ip&&p lpplg&
(Cc) g

—Q) )(CO„g —M~ — p)(~&g —
~ )

&g ls. lm&&m ls slg&&g Is, In&&n ls pig&

(~mg ~a)(~ng ~1)(~ng +~a)
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TABLE I. Convergence of the third-order static hyperpolarizabilities of H& (in atomic units) for
R =1.4ao.

Number of basis functions
y+ rr. II. j xxxx fxxzz yzzzz

54
54
54
54
54
54
84

114
144
174
204
249

34
64
94

113
113
113
113
113
113
113
113
113

34
64
94

124 '

124
124
124
124
124
124
124
124

34
64
94

124
154
160
160
160
160
160
160
160

34
64
94

124
124
124
124
124
124
124
124
124

525.0
528.0
528.4
528.8
528.8
528.8
563.0
563.4
563.4
564.2
564.3
564.3

143.1

189.6
207.2
212.8
215.7
215.9
200.8
200.7
200.6
200. 1

200.0
200.0

520.0
520.4
520.9
521.1

521.1

521.1

676.3
678.1

678.5
682.0
682.3
682.5

498.5
537.4
551.8
556.5
558.8
559.0
596.2
596.7
596.7
597.4
597.4
597.5

where g~ implies a summation over the 24 terms gen-
erated by permuting the frequencies with their associated
spatial subscripts, p is the cz component of the electric di-
pole moment operator,

I
m) is an electronic wave func-

tion, and

(m
I ps I

n ) =(m
I ps I

n ) —5 „(g I
p, s Ig) .

In our case ( a nondipolar molecule) the bars in Eq. (11)
can be dropped.

Since we will brieAy mention in Sec. III the dynamic
dipole polarizabilities, the equivalent formula for them is

( ) ~ ]~ ~ g I p'a
I

m m
I p'p

I g

P m{&g) (Cdm& —Q7)

The remaining, but key problem, is therefore to deter-
mine sufficiently accurate ground and excited (of ap-

propriate symmetry) electronic wave functions for use in
Eqs. (11) and (12). The choice is critical since hyperpolar-
izabilities are extremely sensitive properties —this was
clearly demonstrated some years ago by one of us in a cal-
culation of the static y„„component for Hz. We will
use James-Coolidge-type wave functions which are com-
posed of basis functions which explicitly include the in-
terelectronic coordinate r &2 and thus directly incorporate
electron correlation. Such wave functions have shown
their superiority and accuracy for small systems in
numerous calculations.

We will find them by solving the Schrodinger equation
variationally for states of the following symmetries: Xg+

(ground state), X+ (for the intermediate states needed for
y„„), II„and Ag (for the intermediate states in y „„),
and X+, II„(again), and II~ (for the intermediate states in
the mixed components). The II„and X+ states will also

TABLE II. Dynamic dipole polarizability of H2 as a function of the internuclear distance R, in atom-
ic units.

k (A)

6943
6328
4880

O'xx

1.857 740
1.869 270
1.871 640
1.881 251

R =0.40

&zz

1.939 037
1.951 294
1.953 815
1.964 037

&xx

4.578 492'
4.642 811
4.656 173'
4.710 855

R =1.40

CX zz

6.387 493
6.494 329
6.516 581"
6.607 843

6943
6328
4880

3.341 975'
3.377 129
3.384 398
3.414 022

R =1.0
4.092 918'
4.140 124
4.149 895
4.189 751

4.740 029
4.808 782
4.823 074
4.881 593

R =1.45
6.722 980
6.840 480
6.864 975
6.965 513

6943
6328
4880

4.417 948
4.477 998
4.490 466
4.541 460

R =1.35
6.062 466
6.159447
6.179 629
6.262 340

7.659 246g

7.833 021
7.869 528
8.020 404

R =2.40
14.269 08"
14.775 08
14.882 76
15~ 332 99

'Best previous result: 4.578 557 (Ref. 27).
Best previous result: 6.387 319 (Ref. 30).

'Best previous result: 4.656221 (Ref. 30).
Best previous result: 6.516384 (Ref. 30).

'Best previous result: 3.342282 1 (Ref. 29).
'Best previous result: 4.092 7600 (Ref. 29).
gBest previous result: 7.660486 8 (Ref. 29).
"Best previous result: 14.2662088 (Ref. 29j.
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g; (1,2) =exp[ —a(j™i+$2)](i'gq'g|'pe'p ',
g; (1,2) =g; (1,2)[(gi —1)(1—g, )]' cosP, ,

g;(1,2)=g; (1,2)[(gi —1)(1—gf)]cos(2$, ),

(13a)

(13b)

(13c)

be required for calculating 0;„and a„, respectively. The
number of states we take for each symmetry, and then use
in Eqs. (11) and (12), is equal to the size of the basis set
used in solving the Schrodinger equation.

The basis functions are defined by the following equa-
tions:

113
V(X+)= gb;[(1+& )Q;(1,2)],

i =1
124

q(n„)= gc;[(1+&,2)p;(1,2)],
i=1
160

+(H ) = g d;[(1+Pi2)g, (1,2)],

e(b, )= ye;[(1++i/)q;(1, 2)],

k;+l; odd

k;+l; even

k;+l; odd

k;+l; even,

(14b)

(14c)

(14d)

(14e)

249

+(Xs+)= pa;[(1+P&z)g; (1,2)], k;+I; even (14a)

vvhe«gi, gi, pi are elliptical coordinates for electron
p=2riq/R (r, 2 is the interelectronic coordinate and & is
the internuclear distance), m, n, k, I, and q are integers
which define the basis functions, and a is a nonlinear pa-
rameter to be optimized. The wave functions are written
as the following linear combinations:

where P12 is the electron permutation operator. The
number of terms shown in these sums is that used in the
final calculations and will be discussed shortly.

For the nonlinear parameter a, the value for
R = 1.35ap, 1.40ap 1.45ap was taken to be 1.027. This
value had been previously determined by KoJos and Wol-
niewicz in a ground-state energy calculation and subse-24

quently and successfully used by them in a static dipole
polarizability calculation. At other internuclear dis-

TABLE III. Hyperpolarizabilities y( —co', 0,0,co) for H2 as functions of the internuclear distance R, in
atomic units.

A, (A)

6943
6328
4880

P XXXX

76.5
78.3
78.6
80.1

P XXZZ

22.0
22.6
22.7
23 ~ 1

P XZZX

22.0
22.3
22.4
22.7

R =0.40

P ZXXZ

22.0
22.4
22.4
22.7

f ZZZZ

80.1

82.0
82.4
84.0

74.4
76.2
76.5
77.9

6943
6328
4880

278
289
291
300

90.3
94.1

94.9
98.2

90.3
92.8
93.4
95.6

R =1.00
90.3
93.1

93.8
96.3

314
327
330
342

283
295
297
306

6943
6328
4880

521
547
553
576

182
192
194
203

182
189
190
197

R =1.35
182
190
192
199

624
658
666
669

548
576
583
607

6943
6328
4880

564
594
600
627

200
211
214
224

200
208
210
217

R =1.40
200
210
212
220

683
722
730
766

597
629
636
665

6943
6328
4880

610
643
650
680

219
232
235
246

219
228
230
239

R = 1.45
219
230
233
243

745
790
799
839

650
686
694
726

6943
6328
4880

1793
1942
1974
2113

754
826
842
911

754
801
812
855

R =2.40
754
823
838
903

3137
3447
3516
3812

2187
2382
2425
2610
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tances a was chosen by minimizing the ground-state ener-

gy with a 107-term basis set described, with the notation
of Bishop and Cheung, ' as (6342/5). This led to the
values a=0.411, 0.879, and 1.622 at R =0.4ao, 1.0ao,
and 2.4ao, respectively.

The choice of basis functions selected for the final wave
functions in Eq. (14) was based on the convergence of the
static hyperpolarizabilities at R = 1.4a o. Initially, we
started with the 54-term selection of KoJos and Wol-
niewicz for %(X~+) and their 34-term selection for the
other states. Our final selection consisted of addition to
these sets of all nonrepetitive terms appearing in the sets
(6453/7) for Xs+, (6453/5) for X+, (5342/5) for II„,
(6453/6) for IIg, and (5342/5) for bg, i.e., 249, 113, 124,
160, and 124 terms, respectively. Convergence, using
intermediate-sized basis sets (adding 30 terms at a time) is
shown in Table I and justifies our final choice.

So far, we have not explicitly discussed the distortion of
the nuclear frame by the electric fields. If in Eq. (11) we
replace the electronic wave functions by the complete ro-
vibronic wave functions, which would be the rigorous
thing to do, then the summation can be split into three

X~~(
—m, O, O, co) =+2ak [(mk —m) '+ (mk +m)

+coq ']/1M, (15a)

parts which can be crudely identified as electronic, rota-
tional, and vibrational. The first part, where the inter-
mediate states involve excited electronic states, is what we
have so far been considering. The second part, which in-
volves intermediate states with ground electronic and vi-
brational wave functions, is commonly called orientational
polarization —a temperature-dependent contribution
which is separated from the experimental data. The third
part (once unfortunately termed atomic polarizability)
comes from intermediate states having the ground elec-
tronic wave function but excited vibrational wave func-
tions. It is a result of nuclear displacement by the applied
fields and is in addition to the averaging accomplished in

Eq. (5). Approximate formulas (equivalent to assuming a
classical orientational average) for this contribution have
been established by Bishop ' and Shelton for the third-
order susceptibilities. They are

TABLE IV. Hyperpolarizabilities y( —co, co, co, —cu) for H& as functions of the internuclear distance R,
in atomic units.

k (A)

6943
6328
4880

Pxxxx

76.5
80.1

80.9
84. 1

Pxxzz

22.0
22.7
22.8

23.4

j xzzx

R =0.40
22.0
23.6
23.9
25.3

80.1

84.0
84.8
88.2

74.4
77.9
78.6
81.7

6943
6328
4880

278
300
305
326

90.3
95.8
97.0

102

R =1.00
90.3

100
103
113

314
341
347
372

283
306
311
333

6943
6328
4880

521
576
588
641

182
198
201
216

R =1.35
182
208
214
240

624
696
712
782

548
607
620
677

6943
6328
4880

564
626
640
700

200
218
222
239

R =1.40
200
229
236
266

683
765
783
864

507
664
679
745

6943
6328
4880

610
679
695
763

219
240
245
265

R = 1.45
219
252
260
294

745
838
859
952

650
725
742
817

6943
6328
4880

1793
2110
2185
2530

754
875
903

1028

R =2.40
754
943
990

1213

3137
3798
3956
4691

2187
2603
2702
3159



2176 DAVID M. BISHOP AND JANUSZ PIPIN 36

yak [(cok 2(Q) +(cok +2cp)
k

+4(Q„']/15%,

X~i(
—2(o;O, cp, cp) =gak [2(cok —cp)

k

+2(cok+cp) '+(cpk —2(Q)

+(cpk+2cp) ']/15k,

(15b)

(15c)

with frequencies cpk and &a „&Ok is the vibrational static
dipole polarizability transition element, i.e.,
&0,0

i a„„ i k, O&. That the exclusion of excited rotational
states (J&0) from these equations is a good approxima-
tion for H2 and Dz has been demonstrated by Shelton,
who also considered a freely rotating molecule; unlike his
evaluations, however, we do sum over more than just the
first vibrational excited state. We will therefore use Eq.
(15) for evaluating the vibrational susceptibilities.

III. RESULTS AND DISCUSSION

+ (cok + 2(Q) ']/15%, (15(l)

where

ak =g&& &ok+4&(( &ok &~ &ok+3&cc &ok

The summations run over the vibrational excited states (k)

In Table II we give our dynamic dipole polarizability
(a) results for R =0.4ao, 1.0ap 1.35ap 1.40ap 1.45ap
and 2.4ao and A, = oo, 6943, 6328, and 4880 A. Though
not directly germane to this work, they are a useful indi-
cation of the accuracy of our wave functions. They were
obtained from Eq. (12) with a 249-term Xs+ ground-state
wave function, and 113 2+ and 124 H„ intermediate
states. Where comparison with the previous accurate re-
sults of Rychlewski ' and Bishop and Cheung can be

TABLE V. Hyperpolarizabilities y( —2';O, co, co) for H2 as functions of the internuclear distance R, in

atomic units.

A, (A)

6943
6328
4880

PXXXX

76.5
82.0
83.2
88.2

j XXZZ

22.0
23.9
24.4
26.2

PXZZX

22.0
23.3
23.5
24.7

P ZXXZ

R =0.40
22.0
23.3
23.6
24.8

P ZZXX

22.0
24.0
24.4
26.2

80.1

86.0
87.3
92.7

74.4
79.7
80.9
85.8

6943
6328
4880

278
312
320
354

90.3
103
106
120

90.3
99.6

102
111

R =1~ 00
90.3

100
103
112

90.3
104
107
121

314
356
365
406

283
318
327
362

6943
6328
4880

521
606
626
715

182
216
225
262

182
208
213
240

R =1.35
182
211
217
247

182
218
227
266

624
736
762
883

548
640
661
758

6943
6328
4880

564
660
683
785

200
239
249
292

200
230
236
267

R =1.40
200
233
241
276

200
241
251
297

683
811
841
980

597
702
726
838

6943
6328
4880

610
718
743
858

219
263
274
323

219
253
261
296

R = 1.45
219
257
266
307

219
266
277
330

745
891
926

1086

650
768
795
923

6943
6328
4880

1793
2297
2424
3048

754
1008
1074
1410

754
940
985

1204

R =2.40
754
995

1057
1375

754
1039
1116
1521

3137
4213
4496
5963

2187
2857
3029
3897
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TABLE VI. Hyperpolarizabilities y( —3',m, co, co) for H2 as functions of the internuclear distance R,
in atomic units.

6943
6328
4880

Pxxxx

76.5
88.0
90.7

103

Pxxzz

22.0
25. 1

25.9
29.1

P zzxx

R =0.40
22.0
25.2
25.9
29.3

fzzzz

80.1

92.5
95.3

108

74.4
85.6
88.2
99.9

6943
6328
4880

278
353
371
462

90.3
113
119
147

R =1.00
90.3

115
121
152

314
405
428
541

283
360
379
474

6943
6328
4880

521
712
762

1027

182
245
262
349

R = 1.35
182
253
272
376

624
879
948

1324

548
755
810

1103

6943
6328
4880

564
780
838

1145

200
273
292
395

R =1.40
200
282
305
428

683
976

1056
1501

597
833
897

1240

6943
6328
4880

610
853
919

1272

219
303
325
445

R =1.45
219
314
340
486

745
1080
1174
1698

650
918
991

1390

6943
6328
4880

1793
3020
3409
5992

754
1250
1406
2438

R =2.40
754

1435
1682
3824

3137
5949
6972

15830

2187
3874
4448
8867

made, it appears that our a„component is always superi-
or (a larger value) and there is also very good agreement
(five significant figures at R =1.4ao) for the a„„com-
ponent.

In Tables III—VI we give our major results, which in
nearly all cases are new ones. They are the electronic hy-
perpolarizability tensors for H2, defined by Eq. (11), and
the isotropic values y, defined by Eqs. (7)—(10), for
R =0.4ao, 1.0ao, 1.35ao, 1.40ao, 1.45ao, and 2.4ao and
A, = ~, 6943, 6328, and 4880 A. They are based on the
electronic wave functions of Eq. (14) and concern the non-
linear optical experiments: dc Kerr (Table III), DFWM

R
R
R

1.4522
2, 1371
3.1866

1.4381
2.0880
3.0600

TABLE VII ~ Thermally averaged values of powers of the in-
ternuclear distance, R ", at T =22'C.

Dp

(Table IV), ESHG (Table V), and THG (Table VI).
To evaluate the averages of y(R) over the rotational-

vibrational wave functions ~O, J), as in Eq. (7), we have
fitted the six y(R) for each of the four phenomena to the
equation:

y(R)=a+bR+cR +dR (17)

(the values of a, b, c,d are given in the Appendix) and
then, using known values ' of the integrals
(O,J

~

R"
~

O, J) and the rotational energies Fz', we have
found

R"=gp(J)(O, J
~

R"
~

O, J), n =1,2, 3
J

where p(J) is defined in Eq. (4). Values for H2 and Dz are
given in Table VII for T=22'C, which is the temperature
of the ESHG experiment. ' 7

~~

' is then found from

g
~~

' ——a +bR +cR +dR (19)

Values for H2 and Dz are displayed in Table VIII for the
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TABLE VIII. Values of P
tI

' for various nonlinear processes at T=22 C in atomic units. (The purely vibrational component is not
included. )

A, (A)
y (~~3)( —~;0,0,~)

H2 D2
( —CO, CO) M, —~)(3)

H2 D2
( —2u, O, m, u)

H2 D2
( —3','M, co, M )

H2 D2

6943
6328
4880

666
704
713
747

647
683
691
724

666
746
764
844

647
723
740
816

666
792
821
959

647
766
794
924

666
954

1035
(1502)'

647
920
995

(1425)'

ay be less accurate than the other results, since 3' is approaching the lowest electronic excitation energy at R & 2.0ao.

TABLE IX. Comparison of the static hyperpolarizability y of
H2 with previous work (atomic units).

This work Ref. 33 Ref. 11

fXXXX

Pxxzz

Pzzzz

1.4
1.4
1.4
1.4
1.0
2.4

564
200
683'
597
283

2187

557
211
686
603
292

2183

572
225
689b
623
304

2265

'Previously, the best static value of this component (using simi-

lar wave functions as here) was 674 (Ref. 22).
The value 666.8 given in Table 7 of Ref. 11 should be 688.8 as

in their Table 6.
'

y =(8y + 12y „+3y„„)/15.
y is found from Ref. 33 by using 9Go/5.

four processes at A, = ap, 6943, 6328, and 4880 A —they
should be directly comparable with experiment in those
cases where the pure vibrational contributions, Eq. (15),
are small or have been extracted from the experimental
data (we will discuss this point later). We believe that our
accuracy, on the basis of the convergency tests, is 1% or
better.

In comparing our results with the few calculations
which exist in the literature, we will start with the static
values (A. = co). Using the same basis functions as here,
Bishop and Cheung obtained pz z:674 a.u. at
R = 1.4ao, since that work shows that convergence for this
component is from below, our present value of 683 a.u. is
considered to be better. Berns and Wormer have made
a very thorough study of the static hyperpolarizabilities of
Hz using the finite field method and a full
configurational-interaction (CI) wave function with a
(10s4p2d) Gaussian basis set. The same basis, without
scaling, was used at all internuclear distances. As is seen
in Table IX, their results are very similar to ours. They
can be used to obtain X

I~~

'(0), leading to the values
672(H2) and 652(Dz), where we have 666(Hz) and 647(D2)
at T=22 'C. Watts and Stelbovics, ' in a random-phase-
approximation treatment (which many consider accounts
for only first-order electron correlation effects) and using a
42-term basis set, obtained for R =1.4ao results distinctly
difFerent from ours (and those of Berns and Wormer), i.e.,
610, 183, and 330 a.u. for y, y „,and y„„,respec-
tively. They also computed (assuming Kleinman mi-
crosymmetry) the ESHG susceptibility at A. =6943 A.

But in the light of their static values, their result of
y~~(R = 1.4ao) =702 must be reckoned as fortuitously good
(cf. Table V).

Jaszunski and Roos" made both static and dynamic
calculations for DFWM and THG for Hz (in fact, the
only previous theoretical study of these properties). They
used a steady-state formulation of the time-dependent
Schrodinger equation, which is equivalent to the approach
taken here, provided the summations are over the entire
CI space. With full CI wave functions and basis sets of
the type (12s6p3d), they obtained results said to be accu-
rate to a few percent. Calculations were made for
R =1.0ao, 1.2ao, 1.4ao, 1.6ap, 2.0ao and 2.4ao (using the
same basis for each distance) and a range of frequencies.
Some of their static values are compared with ours in
Table IX and are always larger than both ours and those
of Berns and Wormer, e.g. , their y is 4% greater at
R =1.4ao. In Table X we compare their dynamic values
of y( —cu;co, co, ~), y( —3';co, co, co), and y( —3';cg, co, co)
with our results. We cannot compare y( —co;~, co, —co)

since they did not report the y „component which is
needed for this quantity. Their results are again con-
sistently higher than ours, e.g. , y( —3';co, co, cu) is 5%%uo

greater at A, =6943 A. The largest differences occur for
the mixed components. Their values lead to X '~ '(0)=693
for Hz, where we have 666 a.u.

Of much more interest, perhaps, is to make comparison
with the available experimental data. Ward and New in
THG experiments found X

I~

'( —3';~,co, cu) at 6943 A to
be 950+140 (we have multiplied their value by 6 to be in
accord with our definition) which agrees (too well?) with
our value of 954 a.u. Note that the neglected vibrational
contribution, to be discussed later, is comparatively very
small for THG. Though there have been dc Kerr experi-
ments for H2, we cannot make any comparisons since
the experiment measures the difference in 7

~~

and 7 &

'

and we have not calculated the latter (it requires the y„~~
component).

The most fruitful comparison is for the ESHG experi-
ment: Following earlier work by Shelton and Bucking-
ham and by Ward and Miller, Mizrahi and Shelton'
have measured XI~

'( —2';O, co, co) as ratio for Hz to He.
In Table XI we give their absolute values (using the Sitz
and Yaris' values for He) after the theoretical vibrational
contribution has been extracted. The agreement for
nonzero frequency values is very satisfying. There is,
however, a significant difference between the values they
obtain by linear extrapolation (in co ) to co=0 (645 a.u. )
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TABLE X. Comparison of dynamic hyperpolarizability components for H2 (at R =1.4ao) with those
of Ref. 11, in atomic units.

A, (A) Ref.
p( —co;co,co, —co)

xxzz zzzz
y( —3','m, m, m)

xxzz zzxx zzzz y( —3u,'co, co, co)

6943

6328

4880

BP'
JRb
BP
JR
BP
JR

626
632
640
648
700
708

218
250
222
256
239
282

765
769
783
787
864
872

780
790
838
853

1145
1174

273
312
292
338
395
468

282
322
305
352
428
507

976
987

1056
1079
1501
1557

833
872
897
947

1240
1328

'This work.
Values interpolated from the results of Ref. 11.

and our value (666 a.u. ). We think that this is due to
inadequacy in the extrapolation, which has to run from
approximately 14000 cm ' to 0 cm '. In fact, if we
make a quadratic extrapolation (i.e., in ru and co ) of the
experimental data, we get 665, but we place no more
credence in this value than the other one, since removal of
some higher frequency points gives 705 a.u. The moral
seems to be to compare pure experiment with pure theory,
rather than try to meet on some middle ground (co=0).
Mizrahi and Shelton' also give the ratios of the Hz to D2
X

~~

' values —they all hover around 1.03 as do the theoret-
ical ratios which can be derived from the susceptibilities in
Table VIII.

Several formulas for the dispersion properties (fre-

quency dependence) of these processes have appeared in

the literature, usually having a form which is linear in

co . We find that a very satisfactory fit can be made to
our results by a three-term expression in cu and co and

in Table XII we give the appropriate coefficients. The
THG numbers give the poorest fit and we think that this
is because the largest frequency we use leads to a value

of 3' which is getting close to the lowest electronic exci-
tation energy and consequent near resonance. Deletion
of this point gives an improved fit ~ We should note that
we could not satisfactorily fit the THG values of
Jaszunski and Roos." Further, it has been suggested'

TABLE XI. Comparison of theoretical and experimental
ESHG susceptibilities: I' ~~"( —2', O, co, ~) in atomic units, for H2
at 22'C.

that all four processes could be unified by a single disper-
sion formula in ~L where ~L —cL)~+ct)/+cop+cc)3 This2 2 2 2 2 2

appears to be very nearly true: Taking the processes in
the order dc Kerr (parallel component), DFWM, ESHG,
THCs, the ratio for A (the constant) is predicted (see
Table XII) and found to be 1:1:1:1;the ratio for B (the
coefficient of cu or A, ) is predicted to be 1:2:3:6and
found to be 1:2.0:2.9:4.2; the ratio for C (the coefficient
of co or k ) is predicted to be 1:4:9:36and found to be
1:4.5:10.6:69. That the THG results conform most poor-
ly may be due to the inaccuracy of the results or the lim-

itation of the hypothesis for this experiment. To find the
same coefficients (A, B, and C) for Di, one need simply
divide the ones in Table XII by 1.03.

From Tables III—VI we are in a position to comment
on the applicability of the Kleinman symmetry conjec-
ture' to the microscopic hyperpolarizabilities. ' For
ESHG at 4880 A the y „,y „,y, „and y„values
(at R = 1.4ao) vary by as much as 10% and to this
extent the hypothesis is not valid at the microscopic
level. Mizrahi and Shelton' have measured
X zzzz( —2~;0,~,ci))/X zz~~( —2~;0,~,~),
be 3 if the "conjecture" applied, and find 2.86 from the
raw data for H2 (or 2.87 from the vibrationally corrected
data) —that is to say, only a 4.5% discrepancy. It is clear
that the value of this ratio is not a stringent enough test.
We are unable to compute the ratio directly, since we
have not calculated one of the components (y,„~~) which
is needed for X zzxx.

In Table XIII we show the purely vibrational contribu-
tions for H~ and Dz, which were calculated with Eqs. (15)

k (A)

6943
6328
4880

Theory'

666
792
821
959

Expt. '

(645)'
80S'
828
973

TABLE XII. Theoretical values of 2, B, and C in the expres-
sion Y~~ = A+B/[A. (A)] +C/[A, (A)] for Hq at T=22'C.
(Values for D2 can be found by dividing those in the table by
1.03.)

'Present work and excluding purely vibrational contributions.
From Ref. 15, using the +H /PH, (vibrationally corrected) values

2

and XH, =42.6[1+[co/(58300 cm ')] ].
'This value comes from a linear extrapolation to ~=0 of the ex-
perimental data; see text.
An earlier experimental value (Ref. 37) is 777+10.

g
~~

'( —co;0,0,u)
( —Q7 ~ CL) j CO) —M )

(3)

( —367;6),67, Cc) )

666
666
666
666

B /10

175
342
S04
736

C/10"

435
1961
4610

29846
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6328

TABLE XIII. Vibrational components of the nonlinear susceptibilities in atomic units.

A. (A) QO 4880

H2

gii( —CO,'Cc), CO, —M )

( —2~;0,~,~)
g ( —3Q)', Q7, cc), co )

184.24
184.24
184.24
184.24

50.00
121.47

—12.73
—3.98

52.08
121.70

—10.42
—3.30

56.03
122.15
—6.01
—1.95

Dq Yii( —co,'0, 0, cL) )

g~~(
—2', O, co, &)

Jib( —3'; co, cu, co )

177.39
177.39
177.39
177.39

53.73
117.61
—6.05
—1.95

54.68
117.72
—4.99
—1.62

56.53
117.94
—2.92
—0.96

and (16), and the values for coq, (a„)pg, (a«)pl, from
Hunt et al. The value for the static case for Hz, i.e.,

X~i(0) =184.74, agrees with an independent calculation by
Shelton, who also finds a value of 182.8 a.u. when clas-
sical orientational averaging is not assumed —thus justify-
ing this approximation which is embedded in Eq. (15).
He also gives values at A, =6328 A which for DFWM,
ESHG, and THG can be compared with ours. Bearing in
mind that in Eq. (15) he sums only over the first excited
vibrational state, his corrected numbers are in good
agreement with those in Table XIII. At the usual experi-
mental frequencies it is clear that 7ii is important for
DFWM and may also be important for the dc Kerr exper-
iment (we cannot tell since we have not computed XI') but
is of much less significance for ESHG and THG —though
still to be considered if any accuracy better than 1% is
desired.

IV. CONCLUSIONS

The first, and perhaps most important, conclusion is
that it appears to be possible to make accurate calcula-
tions of the third-order susceptibilities for small molecules
which can be used as a "benchmark" or standardization
of the experimental results. At experimental frequencies
(co&0) our results are in excellent agreement with recent
ESHG experiments. It is cautioned, however, that such
experimental values should not be extrapolated to zero
frequency if their precision is to be maintained. The con-
jecture of Kleinman symmetry on the microscopic level
appears to be only partially valid. Expressions for disper-
sion as short polynomials in cu work well except for
THG. Vibrational contributions (over and above conven-
tional vibrational averaging) should always be investigated
(it is not difficult), especially when 1% accuracy is

TABLE XIV. Values of a, b, c,d for Eq. (17) in atomic units, the power of ten in square brackets.

k (A)

y( —~;0,0,~)
6943
6328
4880

7.497[1]
7.007[1]
7.125[1]
7.056[1]

—1.141[2]
—8.788[1]
—9.094[1]
—8.029[1]

2.557[2]
2.224[2]
2.232[2]
2.015[2]

6.607[1]
8.981[1]
9.305[1]
1.137[2]

6943
6328
4880

7.497[1]
6.986[1]
6.810[1]
5.615[1]

—1.141[2)
—7.813[1]
—6.748[1]
—2.764[0]

2.557[2]
2.006[2]
1.845[2]
9.253 [1]

6.607[1]
1.132[2]
1.254[2]
1.864[2]

y( —2','0, co, cu)

6943
6328
4880

7.497[1]
6.723[1]
5.767[1]
2.671 [1]

—1.141[2]
—5.732[1]
—1.391[1]

1.438[2]

2.557[2)
1.643 [2]
1.120[2]

—1.099[2]

6.607[1]
1.433[2]
1.707[2]
3.008[2]

y( —3',m, co, co)

6943
6328
4880

7.497[1)
2.756[1]

—3.658[0]
—4.247[2]

—1.141[2]
1.401[2]
2.877[2]
2.146[3]

2.557[2]
—1.064[2]
—3.043 [2]
—2.649[3]

6.607[1]
2.983[2]
3.989[2]
1.403[3]
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demanded. Further work along the lines of this article is
underway for He and H2+.
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APPENDIX

The parameters for Eq. (17) are listed in Table XIV.
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