Ab initio study of third-order nonlinear optical properties of the H_2 and D_2 molecules

David M. Bishop^{*} and Janusz Pipin[†]

Department of Chemistry, University of Ottawa, Ottawa, Canada K1N 9B4

(Received 24 February 1987)

Third-order dynamic hyperpolarizabilities (γ) for H₂ and D₂ are calculated using James-Coolidgetype wave functions for several internuclear distances and frequencies. From them, third-order susceptibilities (χ) relevant to dc Kerr, degenerate four-wave mixing, electric-field-induced secondharmonic generation and third-harmonic generation experiments are determined. Agreement with the electric-field-induced second-harmonic generation experimental data is very good: $\chi_{\parallel}^{(3)} = 792$, 821, and 959 a.u. for $\lambda = 6943$, 6328, and 4880 Å, compared with the experimental values: 805, 828, and 973 a.u. Other aspects such as dispersion formulas, Kleinman symmetry, and vibrational contributions are also investigated and discussed.

I. INTRODUCTION

Since the discovery of optical second-harmonic generation in 1961,¹ a new and exciting field of quantum electronics has developed and, with the invention of different types of powerful and tunable lasers, many nonlinear optical processes have been found. Useful reviews, from both theoretical and experimental viewpoints, have been written by Franken and Ward,² Orr and Ward,³ Bogaard and Orr,⁴ Shen,⁵ and Bloembergen.⁶ The processes we are concerned with here are analogous to that responsible for refractive index, that is to say, a coherent scattering effect which arises from the interaction of an intense electric field from a laser beam with the nonlinear microscopic hyperpolarizabilities of the material under observation. In particular, we consider the dc Kerr effect, degenerate four-wave mixing or nonlinear intensity-dependent refractive index (DFWM), generation electric-field-induced second-harmonic (ESHG), and third-harmonic generation (THG). The equally important phenomenon of coherent anti-Stokes Raman spectroscopy (CARS) will not be discussed.

All these processes can be defined by the general equation 4,7

$$P_i(\omega_{\sigma}) = K \bar{\chi}_{ijkl}^{(3)}(-\omega_{\sigma};\omega_1,\omega_2,\omega_3) E_j(\omega_1) E_k(\omega_2) E_l(\omega_3) , \quad (1)$$

where i,j,k,l are laboratory-frame axes, $E_j(\omega)$ is the *j*th component of the applied field oscillating with a frequency ω , $P_i(\omega_{\sigma})$ is the induced macroscopic polarization oscillating at $\omega_{\sigma}(\omega_{\sigma}=\omega_1+\omega_2+\omega_3)$. *K* is a numerical factor, and $\overline{\chi}_{ijkl}^{(3)}$ is the temperature-dependent third-order macroscopic susceptibility.

We report accurate calculations of the parallel components $\bar{\chi}_{ZZZZ}^{(3)} = \bar{\chi}_{\parallel}^{(3)}$ (at T = 22 °C) for the hydrogen molecule (and its isotope D₂) for the following: $\bar{\chi}_{\parallel}^{(3)}(-\omega;0,0,\omega)$, one component of dc Kerr; $\bar{\chi}_{\parallel}^{(3)}(-\omega;\omega,\omega,-\omega)$, DFWM; $\bar{\chi}_{\parallel}^{(3)}(-2\omega;0,\omega,\omega)$, ESHG; and $\bar{\chi}_{\parallel}^{(3)}(-3\omega;\omega,\omega,\omega)$, THG. Values will be given for the static case ($\omega = 0$) and for three frequencies which correspond to the experimentally accessible wavelengths of 4880 Å (argon-ion laser), 6328 Å (He-Ne laser), and 6943 Å (ruby laser). Contributions which result from the displacement of the nuclei by the applied fields will also be separately and explicitly evaluated (the so-called "vibrational" terms).^{7–9}

Though the theory of these processes has been in place for some time, there has so far been very little numerical exploitation for molecules. Exceptions for the hydrogen molecule are the work of Watts and Stelbovics¹⁰ (ESHG at 6943 Å), Jaszuński and Roos¹¹ (DFWM and THG for a range of frequencies), and Huo and Jaffe¹² (CARS). However, all these efforts are, as will be described after we have given our own results, in one way or another limited. This dearth of accurate theoretical values is the more surprising since the experimental values are most commonly found relative to those of another species: hence the need for a "benchmark" value, for, say, H₂, if absolute values are to be known. To date, the 1968 calculation of Sitz and Yaris¹³ on He has had to serve this purpose: a calculation which gives a static result for α which lies outside the rigorous bounds given by Glover and Weinhold.14

Recently, Mizrahi and Shelton¹⁵ have determined ESHG results for H₂ to an accuracy much greater than previous experiments and they detect a discrepancy between published theoretical static values and their own results extrapolated to $\omega = 0$. We wish to investigate this problem, as well as to compare *directly* theory and experiment at a few of the frequencies actually used. The same authors have also suggested¹⁶ that the Kleinman symmetry conjecture for macroscopic susceptibilities (i.e., their invariance to the interchange of the spatial indexes)¹⁷ may also apply to the molecular-axial indexes on the microscopic hyperpolarizabilities. This we can check directly and simply by calculating all the hyperpolarizability components. Furthermore, since we have results for several processes at several frequencies, we will explore the sufficiency of the approximation:¹⁸

$$\bar{\chi}_{\parallel}^{(3)} = A + B\omega_L^2 + C\omega_L^4 + \cdots, \qquad (2)$$

where

$$\omega_L^2 = \omega_\sigma^2 + \omega_1^2 + \omega_2^2 + \omega_3^2 .$$

© 1987 The American Physical Society

A final objective for the work reported is to lay to rest any doubts concerning the fundamental theory which may have been suscitated by the widely differing theoretical and experimental results for FH.^{19,20}

In Sec. II we give the basic formulas we have used these rest on the Orr-Ward³ perturbation formulation of the hyperpolarizabilities. We describe our wave functions, which are the James-Coolidge type (i.e., they explicitly include the interelectronic coordinate) and hence directly incorporate electron correlation.

In Sec. III we give the dynamic dipole polarizability components and the hyperpolarizability components (for the four processes: dc Kerr, DFWM, ESHG, THG) for six internuclear distances and four frequencies for H_2 . These hyperpolarizability components are then combined to obtain values for H_2 and D_2 which can be compared with experiment. In the same section we discuss various aspects of our results, as well as making comparisons with previous work. We also report calculated "vibrational" contributions.

Our final results assume a rotational state population appropriate to T = 22 °C and we have assumed that only the ground vibrational state is populated. We believe, taking into consideration the convergence of what is a very flexible basis set, that our values have an accuracy of 1% or better—and this exceeds, in most cases, the accuracy of the experiments. In Sec. IV we draw some conclusions. In general we use atomic units: $a_0=1$ bohr $\simeq 0.529177$ Å, dipole polarizability $\alpha = e^2 a_0^2 E_h^{-1}$ $\simeq 1.6488 \times 10^{-41}$ C²m²J⁻¹, hyperpolarizability $\gamma = e^4 a_0^4 E_h^{-3} \simeq 5.0372 \times 10^{-40}$ esu $\simeq 0.62360 \times 10^{-64}$ C⁴m⁴J⁻³.

II. THEORY AND METHOD

In this section we introduce our notation and working formulas; the first step is to relate the macroscopic susceptibilities $\bar{\chi}_{\parallel}^{(3)}$ of Eq. (1) to the microscopic hyperpolarizabilities $\gamma_{\alpha\beta\gamma\delta}$, where the indexes $\alpha,\beta,\gamma,\delta$ denote the molecular axes x, y, and z with the latter lying along the nuclear axis. Since we are dealing with H₂ and D₂, our relations will be those pertinent for a molecule with $D_{\infty h}$ symmetry and will contain no kT second-order component.

 $\bar{\chi}_{\parallel}^{(3)}$ will be a temperature-dependent quantity: a Maxwell-Boltzmann average over the populated rotational levels as labeled by the quantum number *J*, that is,

$$\bar{\chi}_{\parallel}^{(3)} = \sum_{J=0} \rho(J) \chi_{\parallel}^{(3)}(J) , \qquad (3)$$

where

$$\rho(J) = \frac{g_J (2J+1) \exp(-\Delta E_J / kT)}{\sum_J g_J (2J+1) \exp(-\Delta E_J / kT)}$$
(4)

and g_J is the nuclear spin factor; it equals 3 for odd J

and for even J it equals 1 for H₂ and 6 for D₂. ΔE_J are the rotational energy level spacings. $\chi_{\parallel}^{(3)}(J)$ is then the expectation value of the isotropic hyperpolarizability $\overline{\gamma}_{\parallel}(R)$, a function of the internuclear separation R, over the vibrational-rotational wave function $|v, J\rangle$. We will assume that only the lowest vibrational state (v = 0) is of interest, so that

$$\chi_{\parallel}^{(3)}(J) = \langle 0, J \mid \overline{\gamma}_{\parallel}(R) \mid 0, J \rangle \quad .$$
⁽⁵⁾

The isotropic hyperpolarizability $\overline{\gamma}_{\parallel}(R)$ is

$$\overline{\gamma}_{\parallel}(R) = \overline{\gamma} = (\gamma_{\xi\xi\eta\eta} + \gamma_{\xi\eta\xi\eta} + \gamma_{\xi\eta\eta\xi})/15 , \qquad (6)$$

where, for simplicity, we have dropped the "parallel" subscript and the Greek (molecular-axial) subscripts can be equal to x, y, z with a repeated subscript indicating a summation over all three Cartesian components. It should be noted that there is more than one convention for the definition of the susceptibilities and hyperpolarizabilities and that the one we have adopted here leads to hyperpolarizability values in keeping with Buckingham's definition²¹ but six times larger than those of Ward and co-workers.^{3,7} The diatomic symmetry and the allowable permutations of the indexes for the property at hand leads to

$$\overline{\gamma}(-\omega;0,0,\omega) = (8\gamma_{xxxx} + 8\gamma_{xxzz} + 2\gamma_{xzzx} + 2\gamma_{xzzx} + 2\gamma_{zxxz} + 3\gamma_{zzzz})/15 , \qquad (7a)$$

since

$$\gamma_{xxzz} = \gamma_{zzxx} = \gamma_{xzxz} = \gamma_{zxzx} ; \qquad (7b)$$

$$\overline{\gamma}(-\omega;\omega,\omega,-\omega) = (8\gamma_{xxxx} + 8\gamma_{xxzz})$$

$$+4\gamma_{xzzx}+3\gamma_{zzzz})/15$$
, (8a)

since

$$\gamma_{xxzz} = \gamma_{zzxx} = \gamma_{xzxz} = \gamma_{zxzx} , \qquad (8b)$$

$$\gamma_{xzzx} = \gamma_{zxxz} \quad ; \tag{8c}$$

$$\overline{\gamma}(-2\omega;0,\omega,\omega) = (8\gamma_{xxxx} + 2\gamma_{xxzz} + 2\gamma_{zzxx} + 4\gamma_{xzzx})$$

 $+4\gamma_{zxxz}+3\gamma_{zzzz})/15$,

(9a)

(9b)

since $\gamma_{xzzx} = \gamma_{xzxz}$,

since

$$\gamma_{zxxz} = \gamma_{zxzx} \quad ; \tag{9c}$$

 $\overline{\gamma}(-3\omega;\omega,\omega,\omega) = (8\gamma_{xxxx} + 6\gamma_{xxzz} + 6\gamma_{zzxx})$

$$+3\gamma_{zzzz})/15$$
, (10a)

$$\gamma_{xxzz} = \gamma_{xzxz} = \gamma_{xzzx} , \qquad (10b)$$

$$\gamma_{zzxx} = \gamma_{zxzx} = \gamma_{zxxz} \quad . \tag{10c}$$

We will calculate all the necessary independent components $\gamma_{\alpha\beta\gamma\delta}$ for each process by means of Orr and Ward's^{3,16} formula:

$$\gamma_{\alpha\beta\gamma\delta}(-\omega_{\sigma};\omega_{1},\omega_{2},\omega_{3}) = \hbar^{-3}\sum_{P} \left[\sum_{m,n,p,(\neq g)} \frac{\langle g \mid \mu_{\alpha} \mid m \rangle \langle m \mid \bar{\mu}_{\delta} \mid n \rangle \langle n \mid \bar{\mu}_{\gamma} \mid p \rangle \langle p \mid \mu_{\beta} \mid g \rangle}{(\omega_{mg} - \omega_{\sigma})(\omega_{ng} - \omega_{1} - \omega_{2})(\omega_{pg} - \omega_{1})} - \sum_{m,n(\neq g)} \frac{\langle g \mid \mu_{\alpha} \mid m \rangle \langle m \mid \mu_{\delta} \mid g \rangle \langle g \mid \mu_{\gamma} \mid n \rangle \langle n \mid \mu_{\beta} \mid g \rangle}{(\omega_{mg} - \omega_{\sigma})(\omega_{ng} - \omega_{1})(\omega_{ng} + \omega_{2})} \right],$$
(11)

	Numt	per of basis f	unctions					
Σ_g^+	Σ_u^+	Пи	Пg	Δ_g	<i>γ</i> xxxx	γ _{xxzz}	Y zzzz	$\overline{\gamma}$
54	34	34	34	34	525.0	143.1	520.0	498.5
54	64	64	64	64	528.0	189.6	520.4	537.4
54	94	94	94	94	528.4	207.2	520.9	551.8
54	113	124	124	124	528.8	212.8	521.1	556.5
54	113	124	154	124	528.8	215.7	521.1	558.8
54	113	124	160	124	528.8	215.9	521.1	559.0
84	113	124	160	124	563.0	200.8	676.3	596.2
114	113	124	160	124	563.4	200.7	678.1	596.7
144	113	124	160	124	563.4	200.6	678.5	596.7
174	113	124	160	124	564.2	200.1	682.0	597.4
204	113	124	160	124	564.3	200.0	682.3	597.4
249	113	124	160	124	564.3	200.0	682.5	597.5

TABLE I. Convergence of the third-order static hyperpolarizabilities of H₂ (in atomic units) for $R = 1.4a_0$.

where \sum_{P} implies a summation over the 24 terms generated by permuting the frequencies with their associated spatial subscripts, μ_{α} is the α component of the electric dipole moment operator, $|m\rangle$ is an electronic wave function, and

$$\langle m | \overline{\mu}_{\delta} | n \rangle = \langle m | \mu_{\delta} | n \rangle - \delta_{mn} \langle g | \mu_{\delta} | g \rangle$$
.

In our case (a nondipolar molecule) the bars in Eq. (11) can be dropped.

Since we will briefly mention in Sec. III the dynamic dipole polarizabilities, the equivalent formula for them is

$$\alpha_{\alpha\beta}(-\omega;\omega) = \hbar^{-1} \sum_{P} \sum_{m(\neq g)} \frac{\langle g \mid \mu_{\alpha} \mid m \rangle \langle m \mid \mu_{\beta} \mid g \rangle}{(\omega_{mg} - \omega)} \quad (12)$$

The remaining, but key problem, is therefore to determine sufficiently accurate ground and excited (of appropriate symmetry) electronic wave functions for use in Eqs. (11) and (12). The choice is critical since hyperpolarizabilities are extremely sensitive properties— this was clearly demonstrated some years ago by one of us in a calculation of the static γ_{zzzz} component for H₂.²² We will use James-Coolidge-type wave functions which are composed of basis functions which explicitly include the interelectronic coordinate r_{12} and thus directly incorporate electron correlation. Such wave functions have shown their superiority and accuracy for small systems in numerous calculations.²³⁻²⁵

We will find them by solving the Schrödinger equation variationally for states of the following symmetries: Σ_g^+ (ground state), Σ_u^+ (for the intermediate states needed for γ_{zzzz}), Π_u and Δ_g (for the intermediate states in γ_{xxxx}), and Σ_u^+ , Π_u (again), and Π_g (for the intermediate states in the mixed components). The Π_u and Σ_u^+ states will also

TABLE II. Dynamic dipole polarizability of H_2 as a function of the internuclear distance R, in atomic units.

λ (Å)	α_{xx}	α_{zz}	α_{xx}	α_{zz}
	R =	0.40	R =	= 1.40
œ	1.857 740	1.939 037	4.578 492°	6.387 493 ^b
6943	1.869 270	1.951 294	4.642 811	6.494 329
6328	1.871 640	1.953 815	4.656 173°	6.516 581 ^d
4880	1.881 251	1.964 037	4.710 855	6.607 843
	R =	= 1.0	R =	= 1.45
8	3.341 975 ^e	4.092 918 ^f	4.740 029	6.722 980
6943	3.377 129	4.140 124	4.808 782	6.840 480
6328	3.384 398	4.149 895	4.823 074	6.864 975
4880	3.414 022	4.189 751	4.881 593	6.965 513
	R =	1.35	R =	2.40
8	4.417 948	6.062 466	7.659 246 ^g	14.269 08 ^h
6943	4.477 998	6.159 447	7.833 021	14.775 08
6328	4.490 466	6.179 629	7.869 528	14.882 76
4880	4.541 460	6.262 340	8.020 404	15.332 99

^aBest previous result: 4.578 557 (Ref. 27).

^bBest previous result: 6.387 319 (Ref. 30).

^cBest previous result: 4.656 221 (Ref. 30). ^dBest previous result: 6.516 384 (Ref. 30). ^eBest previous result: 3.342 282 1 (Ref. 29).
^fBest previous result: 4.092 760 0 (Ref. 29).
^gBest previous result: 7.660 486 8 (Ref. 29).
^hBest previous result: 14.266 208 8 (Ref. 29).

The basis functions are defined by the following equations:

$$\psi_i^{\sigma}(1,2) = \exp[-\alpha(\xi_1 + \xi_2)]\xi_1^{m_i}\xi_2^{n_i}\eta_1^{k_i}\eta_2^{l_i}\rho_i^{q_i} , \qquad (13a)$$

$$\psi_i^{\pi}(1,2) = \psi_i^{\sigma}(1,2) [(\xi_1^2 - 1)(1 - \eta_1^2)]^{1/2} \cos\phi_1 , \qquad (13b)$$

$$\psi_i^{\delta}(1,2) = \psi_i^{\sigma}(1,2) [(\xi_1^2 - 1)(1 - \eta_1^2)] \cos(2\phi_1) , \qquad (13c)$$

where ξ_1, η_1, ϕ_1 are elliptical coordinates for electron 1, $\rho = 2r_{12}/R$ (r_{12} is the interelectronic coordinate and R is the internuclear distance), m, n, k, l, and q are integers which define the basis functions, and α is a nonlinear parameter to be optimized. The wave functions are written as the following linear combinations:

$$\Psi(\Sigma_g^+) = \sum_{i=1}^{249} a_i [(1+P_{12})\psi_i^{\sigma}(1,2)] , \quad k_i + l_i \text{ even}$$
(14a)

$$\Psi(\Sigma_u^+) = \sum_{i=1}^{113} b_i [(1+P_{12})\psi_i^{\sigma}(1,2)] , \quad k_i + l_i \text{ odd}$$
(14b)

$$\Psi(\Pi_u) = \sum_{i=1}^{124} c_i [(1+P_{12})\psi_i^{\pi}(1,2)] , \quad k_i + l_i \text{ even}$$
(14c)

$$\Psi(\Pi_g) = \sum_{i=1}^{160} d_i [(1+P_{12})\psi_i^{\pi}(1,2)], \quad k_i + l_i \text{ odd}$$
(14d)

$$\Psi(\Delta_g) = \sum_{i=1}^{124} e_i [(1+P_{12})\psi_i^{\delta}(1,2)], \quad k_i + l_i \text{ even }, \qquad (14e)$$

where P_{12} is the electron permutation operator. The number of terms shown in these sums is that used in the final calculations and will be discussed shortly.

For the nonlinear parameter α , the value for $R = 1.35a_0$, $1.40a_0$, $1.45a_0$ was taken to be 1.027. This value had been previously determined by Kokos and Wolniewicz in a ground-state energy calculation²⁴ and subsequently and successfully used by them in a static dipole polarizability calculation.²⁶ At other internuclear dis-

TABLE III. Hyperpolarizabilities $\gamma(-\omega;0,0,\omega)$ for H₂ as functions of the internuclear distance *R*, in atomic units.

λ (Å)	<i>γ xxxx</i>	γxxzz	γ _{xzzx}	γzxxz	Y zzzz	$\overline{\gamma}$
			<i>R</i> =	=0.40		
80	76.5	22.0	22.0	22.0	80.1	74.4
6943	78.3	22.6	22.3	22.4	82.0	76.2
6328	78.6	22.7	22.4	22.4	82.4	76.5
4880	80.1	23.1	22.7	22.7	84.0	77.9
			<i>R</i> =	= 1.00		
8	278	90.3	90.3	90.3	314	283
6943	289	94.1	92.8	93.1	327	295
6328	291	94.9	93.4	93.8	330	297
4880	300	98.2	95.6	96.3	342	306
			<i>R</i> =	= 1.35		
80	521	182	182	182	624	548
6943	547	192	189	190	658	576
6328	553	194	190	192	666	583
4880	576	203	197	199	669	607
			<i>R</i> =	= 1.40		
×	564	200	200	200	683	597
6943	594	211	208	210	722	629
6328	600	214	210	212	730	636
4880	627	224	217	220	766	665
			<i>R</i> =	= 1.45		
×	610	219	219	219	745	650
6943	643	232	228	230	790	686
6328	650	235	230	233	799	694
4880	680	246	239	243	839	726
			<i>R</i> =	= 2.40		
8	1793	754	754	754	3137	2187
6943	1942	826	801	823	3447	2382
6328	1974	842	812	838	3516	2425
4880	2113	911	855	903	3812	2610

<u>36</u>

tances α was chosen by minimizing the ground-state energy with a 107-term basis set described, with the notation of Bishop and Cheung,²⁵ as (6342/5). This led to the values $\alpha = 0.411$, 0.879, and 1.622 at $R = 0.4a_0$, 1.0 a_0 , and 2.4 a_0 , respectively.

The choice of basis functions selected for the final wave functions in Eq. (14) was based on the convergence of the static hyperpolarizabilities at $R = 1.4a_0$. Initially, we started with the 54-term selection of Kolos and Wolniewicz²⁴ for $\Psi(\Sigma_g^+)$ and their 34-term selection²⁶ for the other states. Our final selection consisted of addition to these sets of all nonrepetitive terms appearing in the sets (6453/7) for Σ_g^+ , (6453/5) for Σ_u^+ , (5342/5) for Π_u , (6453/6) for Π_g , and (5342/5) for Δ_g , i.e., 249, 113, 124, 160, and 124 terms, respectively. Convergence, using intermediate-sized basis sets (adding 30 terms at a time) is shown in Table I and justifies our final choice.

So far, we have not explicitly discussed the distortion of the nuclear frame by the electric fields. If in Eq. (11) we replace the electronic wave functions by the complete rovibronic wave functions, which would be the rigorous thing to do, then the summation can be split into three

parts which can be crudely identified as electronic, rotational, and vibrational.²⁷ The first part, where the intermediate states involve excited electronic states, is what we have so far been considering. The second part, which involves intermediate states with ground electronic and vibrational wave functions, is commonly called orientational polarization⁴—a temperature-dependent contribution which is separated from the experimental data. The third part (once unfortunately termed atomic polarizability) comes from intermediate states having the ground electronic wave function but excited vibrational wave functions. It is a result of nuclear displacement by the applied fields and is in addition to the averaging accomplished in Eq. (5). Approximate formulas (equivalent to assuming a classical orientational average) for this contribution have been established by Bishop^{8,9} and Shelton²⁸ for the thirdorder susceptibilities. They are

$$\chi_{\parallel}^{v}(-\omega,0,0,\omega) = \sum_{k} 2a_{k} [(\omega_{k} - \omega)^{-1} + (\omega_{k} + \omega)^{-1} + \omega_{k}^{-1}]/15\hbar, \qquad (15a)$$

TABLE IV. Hyperpolarizabilities $\gamma(-\omega;\omega,\omega,-\omega)$ for H₂ as functions of the internuclear distance *R*, in atomic units.

λ (Å)	γ _{xxxx}	γ xxzz	γ _{xzzx}	γzzzz	$\overline{\gamma}$
			R = 0.40		
×	76.5	22.0	22.0	80.1	74.4
6943	80.1	22.7	23.6	84.0	77.9
6328	80.9	22.8	23.9	84.8	78.6
4880	84.1	23.4	25.3	88.2	81.7
			R = 1.00		
œ	278	90.3	90.3	314	283
6943	300	95.8	100	341	306
6328	305	97.0	103	347	311
4880	326	102	113	372	333
			R = 1.35		
×	521	182	182	624	548
6943	576	198	208	696	607
6328	588	201	214	712	620
4880	641	216	240	782	677
			R = 1.40		
×	564	200	200	683	507
6943	626	218	229	765	664
6328	640	222	236	783	679
4880	700	239	266	864	745
			R = 1.45		
8	610	219	219	745	650
6943	679	240	252	838	725
6328	695	245	260	859	742
4880	763	265	294	952	817
			R = 2.40		
×	1793	754	754	3137	2187
6943	2110	875	943	3798	2603
6328	2185	903	990	3956	2702
4880	2530	1028	1213	4691	3159

$$\chi_{\parallel}^{\nu}(-\omega;\omega,\omega,-\omega) = \sum_{k} a_{k} [(\omega_{k}-2\omega)^{-1} + (\omega_{k}+2\omega)^{-1} + 4\omega_{k}^{-1}]/15\hbar, \qquad (15b)$$

$$\chi_{\parallel}^{\nu}(-2\omega;0,\omega,\omega) = \sum_{k} a_{k} [2(\omega_{k}-\omega)^{-1} + (\omega_{k}-2\omega)^{-1} + (\omega_{k}+2\omega)^{-1} + (\omega_{k}+2\omega)^{-1}]/15\hbar, \quad (15c)$$

$$\chi_{\parallel}^{\nu}(-3\omega;\omega,\omega,\omega) = \sum_{k} 3a_{k} [(\omega_{k}-2\omega)^{-1} + (\omega_{k}+2\omega)^{-1}]/15\hbar, \qquad (15d)$$

where

$$a_k = 8\langle \alpha_{xx} \rangle_{0k}^2 + 4\langle \alpha_{xx} \rangle_{0k} \langle \alpha_{zz} \rangle_{0k} + 3\langle \alpha_{zz} \rangle_{0k}^2 .$$
 (16)

The summations run over the vibrational excited states (k)

with frequencies ω_k and $\langle \alpha_{xx} \rangle_{0k}$ is the vibrational static dipole polarizability transition element, i.e., $\langle 0,0 | \alpha_{xx} | k,0 \rangle$. That the exclusion of excited rotational states $(J \neq 0)$ from these equations is a good approximation for H₂ and D₂ has been demonstrated by Shelton,²⁸ who also considered a freely rotating molecule; unlike his evaluations, however, we do sum over more than just the first vibrational excited state. We will therefore use Eq. (15) for evaluating the vibrational susceptibilities.

III. RESULTS AND DISCUSSION

In Table II we give our dynamic dipole polarizability (α) results for $R = 0.4a_0$, $1.0a_0$, $1.35a_0$, $1.40a_0$, $1.45a_0$ and $2.4a_0$ and $\lambda = \infty$, 6943, 6328, and 4880 Å. Though not directly germane to this work, they are a useful indication of the accuracy of our wave functions. They were obtained from Eq. (12) with a 249-term Σ_g^+ ground-state wave function, and 113 Σ_u^+ and 124 Π_u intermediate states. Where comparison with the previous accurate results of Rychlewski^{29,30} and Bishop and Cheung²⁷ can be

TABLE V. Hyperpolarizabilities $\gamma(-2\omega;0,\omega,\omega)$ for H₂ as functions of the internuclear distance R, in atomic units.

λ (Å)	γ_{xxxx}	γ _{xxzz}	γ _{xzzx}	γzxxz	γzzxx	Y zzzz	$\overline{\gamma}$
				R = 0.40			
œ	76.5	22.0	22.0	22.0	22.0	80.1	74.4
6943	82.0	23.9	23.3	23.3	24.0	86.0	79.7
6328	83.2	24.4	23.5	23.6	24.4	87.3	80.9
4880	88.2	26.2	24.7	24.8	26.2	92.7	85.8
				R = 1.00			
8	278	90.3	90.3	90.3	90.3	314	283
6943	312	103	99.6	100	104	356	318
6328	320	106	102	103	107	365	327
4880	354	120	111	112	121	406	362
				R = 1.35			
œ	521	182	182	182	182	624	548
6943	606	216	208	211	218	736	640
6328	626	225	213	217	227	762	661
4880	715	262	240	247	266	883	758
				R = 1.40			
œ	564	200	200	200	200	683	597
6943	660	239	230	233	241	811	702
6328	683	249	236	241	251	841	726
4880	785	292	267	276	297	980	838
				R = 1.45			
80	610	219	219	219	219	745	650
6943	718	263	253	257	266	891	768
6328	743	274	261	266	277	926	795
4880	858	323	296	307	330	1086	923
				R = 2.40			
8	1793	754	754	754	754	3137	2187
6943	2297	1008	940	995	1039	4213	2857
6328	2424	1074	985	1057	1116	4496	3029
4880	3048	1410	1204	1375	1521	5963	3897

λ (Å)	γ _{xxxx}	Y xxzz	γzzxx	<i>Υ 2222</i>	$\overline{\gamma}$
			R = 0.40		
80	76.5	22.0	22.0	80.1	74.4
6943	88.0	25.1	25.2	92.5	85.6
6328	90.7	25.9	25.9	95.3	88.2
4880	103	29.1	29.3	108	99.9
			R = 1.00		
8	278	90.3	90.3	314	283
6943	353	113	115	405	360
6328	371	119	121	428	379
4880	462	147	152	541	474
			R = 1.35		
8	521	182	182	624	548
6943	712	245	253	879	755
6328	762	262	272	948	810
4880	1027	349	376	1324	1103
			R = 1.40		
∞	564	200	200	683	597
6943	780	273	282	976	833
6328	838	292	305	1056	897
4880	1145	395	428	1501	1240
			R = 1.45		
∞	610	219	219	745	650
6943	853	303	314	1080	918
6328	919	325	340	1174	991
4880	1272	445	486	1698	1390
			R = 2.40		
×	1793	754	754	3137	2187
6943	3020	1250	1435	5949	3874
6328	3409	1406	1682	6972	4448
4880	5992	2438	3824	15830	8867

TABLE VI. Hyperpolarizabilities $\gamma(-3\omega;\omega,\omega,\omega)$ for H₂ as functions of the internuclear distance *R*, in atomic units.

made, it appears that our α_{zz} component is always superior (a larger value) and there is also very good agreement (five significant figures at $R = 1.4a_0$) for the α_{xx} component.

In Tables III-VI we give our major results, which in nearly all cases are new ones. They are the electronic hyperpolarizability tensors for H₂, defined by Eq. (11), and the isotropic values $\overline{\gamma}$, defined by Eqs. (7)-(10), for $R = 0.4a_0$, $1.0a_0$, $1.35a_0$, $1.40a_0$, $1.45a_0$, and $2.4a_0$ and $\lambda = \infty$, 6943, 6328, and 4880 Å. They are based on the electronic wave functions of Eq. (14) and concern the nonlinear optical experiments: dc Kerr (Table III), DFWM

TABLE VII. Thermally averaged values of powers of the internuclear distance, $\overline{R^n}$, at $T = 22 \,^{\circ}$ C.

	H ₂	D ₂
R	1.4522	1.4381
$\overline{R^2}$	2.1371	2.0880
$\overline{R^{3}}$	3.1866	3.0600

(Table IV), ESHG (Table V), and THG (Table VI).

To evaluate the averages of $\overline{\gamma}(R)$ over the rotationalvibrational wave functions $|0,J\rangle$, as in Eq. (7), we have fitted the six $\overline{\gamma}(R)$ for each of the four phenomena to the equation:

$$\overline{\gamma}(R) = a + bR + cR^2 + dR^3 , \qquad (17)$$

(the values of a,b,c,d are given in the Appendix) and then, using known values^{31,32} of the integrals $\langle 0,J | R^n | 0,J \rangle$ and the rotational energies E_J^{31} , we have found

$$\overline{R^{n}} = \sum_{J} \rho(J) \langle 0, J | R^{n} | 0, J \rangle, \ n = 1, 2, 3$$
(18)

where $\rho(J)$ is defined in Eq. (4). Values for H₂ and D₂ are given in Table VII for T=22 °C, which is the temperature of the ESHG experiment.¹⁵ $\bar{\chi}_{\parallel}^{(3)}$ is then found from

$$\overline{\chi}_{\parallel}^{(3)} = a + b\overline{R} + c\overline{R^2} + d\overline{R^3} .$$
⁽¹⁹⁾

Values for H_2 and D_2 are displayed in Table VIII for the

	$\overline{\chi}_{\parallel}^{(3)}(-\omega;0,0,\omega)$		$\overline{\chi}_{\parallel}^{(3)}(-\omega;\omega,\omega,-\omega)$		$\overline{\chi}_{\parallel}^{(3)}(-2\omega;0,\omega,\omega)$		$\overline{\chi}^{(3)}(-3\omega;\omega,\omega,\omega)$	
λ (Å)	H ₂	D ₂	H_2	D ₂	H_2	D ₂	H ₂	\mathbf{D}_2
×	666	647	666	647	666	647	666	647
6943	704	683	746	723	792	766	954	920
6328	713	691	764	740	821	794	1035	995
4880	747	724	844	816	959	924	(1502) ^a	(1425) ^a

TABLE VIII. Values of $\bar{\chi}_{\parallel}^{(3)}$ for various nonlinear processes at T=22 °C in atomic units. (The purely vibrational component is not included.)

^aMay be less accurate than the other results, since 3ω is approaching the lowest electronic excitation energy at $R > 2.0a_0$.

four processes at $\lambda = \infty$, 6943, 6328, and 4880 Å—they should be directly comparable with experiment in those cases where the pure vibrational contributions, Eq. (15), are small or have been extracted from the experimental data (we will discuss this point later). We believe that our accuracy, on the basis of the convergency tests, is 1% or better.

In comparing our results with the few calculations which exist in the literature, we will start with the static values $(\lambda = \infty)$. Using the same basis functions as here, Bishop and Cheung²² obtained $\gamma_{zzzz} = 674$ a.u. at $R = 1.4a_0$; since that work shows that convergence for this component is from below, our present value of 683 a.u. is considered to be better. Berns and Wormer³³ have made a very thorough study of the static hyperpolarizabilities of H_2 using the finite-field method and a full configurational-interaction (CI) wave function with a (10s4p2d) Gaussian basis set. The same basis, without scaling, was used at all internuclear distances. As is seen in Table IX, their results are very similar to ours. They can be used to obtain $\bar{\chi}_{\parallel}^{(3)}(0)$, leading to the values $672(H_2)$ and $652(D_2)$, where we have $666(H_2)$ and $647(D_2)$ at T = 22 °C. Watts and Stelbovics,¹⁰ in a random-phaseapproximation treatment (which many consider accounts for only first-order electron correlation effects) and using a 42-term basis set, obtained for $R = 1.4a_0$ results distinctly different from ours (and those of Berns and Wormer), i.e., 610, 183, and 330 a.u. for γ_{xxxx} , γ_{xxzz} , and γ_{zzzz} , respectively. They also computed (assuming Kleinman microsymmetry) the ESHG susceptibility at $\lambda = 6943$ Å.

TABLE IX. Comparison of the static hyperpolarizability γ of H₂ with previous work (atomic units).

	R	This work	Ref. 33	Ref. 11
γ _{xxxx}	1.4	564	557	572
γ x x 22	1.4	200	211	225
γ	1.4	683ª	686	689 ^b
$\overline{\gamma}^{c}$	1.4	597	603 ^d	623
•	1.0	283	292	304
	2.4	2187	2183	2265

^aPreviously, the best static value of this component (using similar wave functions as here) was 674 (Ref. 22).

^bThe value 666.8 given in Table 7 of Ref. 11 should be 688.8 as in their Table 6.

^c $\overline{\gamma} = (8\gamma_{xxxx} + 12\gamma_{xxzz} + 3\gamma_{zzzz})/15.$

^d $\overline{\gamma}$ is found from Ref. 33 by using 9G₀/5.

But in the light of their static values, their result of $\overline{\gamma}_{\parallel}(R = 1.4a_0) = 702$ must be reckoned as *fortuitously* good (cf. Table V).

Jaszuński and Roos¹¹ made both static and dynamic calculations for DFWM and THG for H₂ (in fact, the only previous theoretical study of these properties). They used a steady-state formulation of the time-dependent Schrödinger equation, which is equivalent to the approach taken here, provided the summations are over the entire CI space. With full CI wave functions and basis sets of the type (12s6p3d), they obtained results said to be accurate to a few percent. Calculations were made for $R = 1.0a_0, 1.2a_0, 1.4a_0, 1.6a_0, 2.0a_0$ and $2.4a_0$ (using the same basis for each distance) and a range of frequencies. Some of their static values are compared with ours in Table IX and are always larger than both ours and those of Berns and Wormer, e.g., their $\overline{\gamma}$ is 4% greater at $R = 1.4a_0$. In Table X we compare their dynamic values of $\gamma(-\omega;\omega,\omega,-\omega)$, $\gamma(-3\omega;\omega,\omega,\omega)$, and $\overline{\gamma}(-3\omega;\omega,\omega,\omega)$ with our results. We cannot compare $\overline{\gamma}(-\omega;\omega,\omega,-\omega)$ since they did not report the γ_{xzzx} component which is needed for this quantity. Their results are again consistently higher than ours, e.g., $\overline{\gamma}(-3\omega;\omega,\omega,\omega)$ is 5% greater at $\lambda = 6943$ Å. The largest differences occur for the mixed components. Their values lead to $\overline{\chi}_{\parallel}^{(3)}(0) = 693$ for H_2 , where we have 666 a.u.

Of much more interest, perhaps, is to make comparison with the available experimental data. Ward and New³⁴ in THG experiments found $\bar{\chi}_{\parallel}^{(3)}(-3\omega;\omega,\omega,\omega)$ at 6943 Å to be 950±140 (we have multiplied their value by 6 to be in accord with our definition) which agrees (too well?) with our value of 954 a.u. Note that the neglected vibrational contribution, to be discussed later, is comparatively very small for THG. Though there have been dc Kerr experiments for H₂,³⁵ we cannot make any comparisons since the experiment measures the difference in $\bar{\chi}_{\parallel}^{(3)}$ and $\bar{\chi}_{\perp}^{(3)}$ and we have not calculated the latter (it requires the γ_{xxyy} component).

The most fruitful comparison is for the ESHG experiment: Following earlier work by Shelton and Buckingham³⁶ and by Ward and Miller,³⁷ Mizrahi and Shelton¹⁵ have measured $\bar{\chi}_{\parallel}^{(3)}(-2\omega;0,\omega,\omega)$ as ratio for H₂ to He. In Table XI we give their absolute values (using the Sitz and Yaris¹³ values for He) after the theoretical vibrational contribution has been extracted. The agreement for nonzero frequency values is very satisfying. There is, however, a significant difference between the values they obtain by linear extrapolation (in ω^2) to $\omega = 0$ (645 a.u.)

		γ($-\omega;\omega,\omega,-$	-ω)		$\gamma(-3\omega)$			
λ(Å)	Ref.	xxxx	xxzz	ZZZZ	xxxx	xxzz	zzxx	ZZZZ	$\overline{\gamma}(-3\omega;\omega,\omega,\omega)$
6943	BP ^a	626	218	765	780	273	282	976	833
	\mathbf{JR}^{b}	632	250	769	790	312	322	987	872
6328	BP	640	222	783	838	292	305	1056	897
	JR	648	256	787	853	338	352	1079	947
4880	BP	700	239	864	1145	395	428	1501	1240
	JR	708	282	872	1174	468	507	1557	1328

TABLE X. Comparison of dynamic hyperpolarizability components for H_2 (at $R = 1.4a_0$) with those of Ref. 11, in atomic units.

^aThis work.

^bValues interpolated from the results of Ref. 11.

and our value (666 a.u.). We think that this is due to inadequacy in the extrapolation, which has to run from approximately 14000 cm⁻¹ to 0 cm⁻¹. In fact, if we make a quadratic extrapolation (i.e., in ω^2 and ω^4) of the experimental data, we get 665, but we place no more credence in this value than the other one, since removal of some higher frequency points gives 705 a.u. The moral seems to be to compare pure experiment with pure theory, rather than try to meet on some middle ground (ω =0). Mizrahi and Shelton¹⁵ also give the ratios of the H₂ to D₂ $\overline{\chi}_{\parallel}^{(3)}$ values—they all hover around 1.03 as do the theoretical ratios which can be derived from the susceptibilities in Table VIII.

Several formulas for the dispersion properties (frequency dependence) of these processes have appeared in the literature, usually having a form which is linear in ω^2 . We find that a very satisfactory fit can be made to our results by a three-term expression in ω^2 and ω^4 and in Table XII we give the appropriate coefficients. The THG numbers give the poorest fit and we think that this is because the largest frequency we use leads to a value of 3ω which is getting close to the lowest electronic excitation energy and consequent near resonance. Deletion of this point gives an improved fit. We should note that we could not satisfactorily fit the THG values of Jaszuński and Roos.¹¹ Further, it has been suggested¹⁸

TABLE XI. Comparison of theoretical and experimental ESHG susceptibilities: $\bar{\chi}_{\parallel}^{(3)}(-2\omega;0,\omega,\omega)$ in atomic units, for H₂ at 22 °C.

λ (Å)	Theory ^a	Expt. ^b
8	666	(645) ^c
6943	792	805 ^d
6328	821	828
4880	959	973

^aPresent work and excluding purely vibrational contributions.

^bFrom Ref. 15, using the χ_{H_2}/χ_{He} (vibrationally corrected) values and $\chi_{He} = 42.6\{1 + [\omega/(58\ 300\ \text{cm}^{-1})]^2\}.$

^cThis value comes from a linear extrapolation to $\omega = 0$ of the experimental data; see text.

^dAn earlier experimental value (Ref. 37) is 777 ± 10 .

that all four processes could be unified by a single dispersion formula in ω_L^2 where $\omega_L^2 = \omega_\sigma^2 + \omega_1^2 + \omega_2^2 + \omega_3^2$. This appears to be very nearly true: Taking the processes in the order dc Kerr (parallel component), DFWM, ESHG, THG, the ratio for A (the constant) is predicted (see Table XII) and found to be 1:1:1:1; the ratio for B (the coefficient of ω^2 or λ^{-2}) is predicted to be 1:2:3:6 and found to be 1:2.0:2.9:4.2; the ratio for C (the coefficient of ω^4 or λ^4) is predicted to be 1:4:9:36 and found to be 1:4.5:10.6:69. That the THG results conform most poorly may be due to the inaccuracy of the results or the limitation of the hypothesis for this experiment. To find the same coefficients (A, B, and C) for D_2 , one need simply divide the ones in Table XII by 1.03.

From Tables III–VI we are in a position to comment on the applicability of the Kleinman symmetry conjecture¹⁷ to the microscopic hyperpolarizabilities.¹⁶ For ESHG at 4880 Å the γ_{xxzz} , γ_{xzxx} , γ_{zxxz} , and γ_{zzxx} values (at $R = 1.4a_0$) vary by as much as 10% and to this extent the hypothesis is not valid at the microscopic level. Mizrahi and Shelton¹⁶ have measured $\overline{\chi}_{ZZZZ}^{(3)}(-2\omega;0,\omega,\omega)/\overline{\chi}_{ZZXX}^{(3)}(-2\omega;0,\omega,\omega)$, which would be 3 if the "conjecture" applied, and find 2.86 from the raw data for H₂ (or 2.87 from the vibrationally corrected data)—that is to say, only a 4.5% discrepancy. It is clear that the value of this ratio is not a stringent enough test. We are unable to compute the ratio directly, since we have not calculated one of the components (γ_{xxyy}) which is needed for $\overline{\chi}_{ZZX}^{(3)}$.

In Table XIII we show the purely vibrational contributions for H_2 and D_2 , which were calculated with Eqs. (15)

TABLE XII. Theoretical values of A, B, and C in the expression $\overline{\chi}_{\parallel}^{(3)} = A + B / [\lambda (\mathring{A})]^2 + C / [\lambda (\mathring{A})]^4$ for H₂ at T = 22 °C. (Values for D₂ can be found by dividing those in the table by 1.03.)

	A	<i>B</i> / 10 ⁷	$C/10^{13}$
$\overline{\chi}_{\parallel}^{(3)}(-\omega;0,0,\omega)$	666	175	435
$\bar{\chi}^{(3)}_{\parallel}(-\omega;\omega,\omega,-\omega)$	666	342	1961
$\overline{\chi}^{(3)}(-2\omega;0,\omega,\omega)$	666	504	4610
$\overline{\chi}_{\parallel}^{(3)}(-3\omega;\omega,\omega,\omega)$	666	736	29846

	λ (Å)	∞	6943	6328	4880
H ₂	$\chi^v_{\parallel}(-\omega;0,0,\omega)$	184.24	50.00	52.08	56.03
	$\chi^{v}_{\parallel}(-\omega;\omega,\omega,-\omega)$	184.24	121.47	121.70	122.15
	$\chi^{v}_{\parallel}(-2\omega;0,\omega,\omega)$	184.24	-12.73	-10.42	-6.01
	$\chi^v_{\parallel}(-3\omega;\omega,\omega,\omega)$	184.24	- 3.98	- 3.30	-1.95
D ₂	$\chi^v_{\parallel}(-\omega;0,0,\omega)$	177.39	53.73	54.68	56.53
	$\chi^{v}(-\omega;\omega,\omega,-\omega)$	177.39	117.61	117.72	117.94
	$\chi^{v}(-2\omega;0,\omega,\omega)$	177.39	-6.05	- 4.99	-2.92
	$\chi^{v}_{\parallel}(-3\omega;\omega,\omega,\omega)$	177.39	- 1.95	-1.62	-0.96

TABLE XIII. Vibrational components of the nonlinear susceptibilities in atomic units.

and (16), and the values for ω_k , $\langle \alpha_{zz} \rangle_{0k}$, $\langle \alpha_{xx} \rangle_{0k}$ from Hunt *et al.*³⁸ The value for the static case for H₂, i.e., $\chi_{\parallel}^{\nu}(0) = 184.74$, agrees with an independent calculation by Shelton,²⁸ who also finds a value of 182.8 a.u. when classical orientational averaging is *not* assumed—thus justifying this approximation which is embedded in Eq. (15). He also gives values at $\lambda = 6328$ Å which for DFWM, ESHG, and THG can be compared with ours. Bearing in mind that in Eq. (15) he sums only over the first excited vibrational state, his corrected numbers³⁹ are in good agreement with those in Table XIII. At the usual experimental frequencies it is clear that χ_{\parallel}^{ν} is important for DFWM and may also be important for the dc Kerr experiment (we cannot tell since we have not computed χ_{\perp}^{ν}) but is of much less significance for ESHG and THG—though still to be considered if any accuracy better than 1% is desired.

IV. CONCLUSIONS

The first, and perhaps most important, conclusion is that it appears to be possible to make accurate calculations of the third-order susceptibilities for small molecules which can be used as a "benchmark" or standardization of the experimental results. At experimental frequencies $(\omega \neq 0)$ our results are in excellent agreement with recent ESHG experiments. It is cautioned, however, that such experimental values should not be extrapolated to zero frequency if their precision is to be maintained. The conjecture of Kleinman symmetry on the microscopic level appears to be only partially valid. Expressions for dispersion as short polynomials in ω^2 work well except for THG. Vibrational contributions (over and above conventional vibrational averaging) should always be investigated (it is not difficult), especially when 1% accuracy is

	λ (Å)	а	b	С	d
$\overline{\gamma}(-\omega;0,0,\omega)$	∞	7.497[1]	-1.141[2]	2.557[2]	6.607[1]
	6943	7.007[1]	- 8.788[1]	2.224[2]	8.981[1]
	6328	7.125[1]	- 9.094[1]	2.232[2]	9.305[1]
	4880	7.056[1]	- 8.029[1]	2.015[2]	1.137[2]
$\overline{\gamma}(-\omega;\omega,\omega,-\omega)$	œ	7.497[1]	-1.141[2]	2.557[2]	6.607[1]
	6943	6.986[1]	-7.813[1]	2.006[2]	1.132[2]
	6328	6.810[1]	-6.748[1]	1.845[2]	1.254[2]
	4880	5.615[1]	-2.764[0]	9.253[1]	1.864[2]
$\overline{\gamma}(-2\omega;0,\omega,\omega)$	∞	7.497[1]	- 1.141[2]	2.557[2]	6.607[1]
• • • •	6943	6.723[1]	-5.732[1]	1.643[2]	1.433[2]
	6328	5.767[1]	- 1.391[1]	1.120[2]	1.707[2]
	4880	2.671[1]	1.438[2]	- 1.099[2]	3.008[2]
$\overline{\gamma}(-3\omega;\omega,\omega,\omega)$	∞	7.497[1]	-1.141[2]	2.557[2]	6.607[1]
	6943	2.756[1]	1.401[2]	-1.064[2]	2.983[2]
	6328	-3.658[0]	2.877[2]	-3.043[2]	3.989[2]
	4880	-4.247[2]	2.146[3]	-2.649[3]	1.403[3]

TABLE XIV. Values of a, b, c, d for Eq. (17) in atomic units, the power of ten in square brackets.

demanded. Further work along the lines of this article is underway for He and H_2^+ .

ACKNOWLEDGMENTS

It is a pleasure to thank Dr. Lap Cheung and Dr. Brenda Lam for their computational assistance, Dr. David P. Shelton for much helpful correspondence and prepublication results, and the Natural Sciences and Engineering Research Council of Canada for financial support.

APPENDIX

The parameters for Eq. (17) are listed in Table XIV.

- Author to whom correspondence should be addressed.
- [†]Permanent address: Higher Pedagogical School, Bydgoszcz, Poland.
- ¹P. A. Franken, A. E. Hall, C. W. Peters, and G. Weinreich, Phys. Rev. Lett. 7, 118 (1961).
- ²P. A. Franken and J. F. Ward, Rev. Mod. Phys. 35, 23 (1963).
- ³B. J. Orr and J. F. Ward, Mol. Phys. 20, 513 (1971).
- ⁴M. P. Bogaard and B. J. Orr, in *Molecular Structure and Properties*, International Review of Science, Physical Chemistry Ser. 2, Vol. 2, edited by A. D. Buckingham (Butterworths, London, 1975), p. 149.
- ⁵Y. R. Shen, Rev. Mod. Phys. 48, 1 (1976).
- ⁶N. Bloembergen, Rev. Mod. Phys. 54, 685 (1982).
- ⁷D. S. Elliott and J. F. Ward, Mol. Phys. 51, 45 (1984).
- ⁸D. M. Bishop, J. Chem. Phys. 86, 5613 (1987).
- ⁹D. M. Bishop and B. Lam, Chem. Phys. Lett. 134, 283 (1987).
- ¹⁰R. S. Watts and A. T. Stelbovics, Chem. Phys. Lett. **61**, 351 (1979).
- ¹¹M. Jaszuński and B. O. Roos, Mol. Phys. 52, 1209 (1984).
- ¹²W. M. Huo and R. L. Jaffe, Phys. Rev. Lett. 47, 30 (1981).
- ¹³P. Sitz and R. Yaris, J. Chem. Phys. **49**, 3546 (1968).
- ¹⁴R. M. Glover and F. Weinhold, J. Chem. Phys. **65**, 4913 (1976).
- ¹⁵V. Mizrahi and D. P. Shelton, Phys. Rev. A 32, 3454 (1985).
- ¹⁶V. Mizrahi and D. P. Shelton, Phys. Rev. A **31**, 3145 (1985).
- ¹⁷D. A. Kleinman, Phys. Rev. **126**, 1977 (1962).
- ¹⁸D. P. Shelton, J. Chem. Phys. 84, 404 (1986).
- ¹⁹J. W. Dudley II and J. F. Ward, J. Chem. Phys. 82, 4673 (1985).
- ²⁰H. Sekino and R. J. Bartlett, J. Chem. Phys. 84, 2726 (1986).
- ²¹A. D. Buckingham, Adv. Chem. Phys. **12**, 107 (1967).

- ²²D. M. Bishop and L. M. Cheung, Phys. Rev. A 20, 1310 (1979).
- ²³D. M. Bishop and L. M. Cheung, Adv. Quantum Chem. 12, 1 (1980).
- ²⁴W. Kolos and L. Wolniewicz, J. Chem. Phys. 41, 3663 (1964).
- ²⁵D. M. Bishop and L. M. Cheung, Phys. Rev. A 18, 1846 (1978). The notation $(a_0a_1a_2.../b)$ used in this article indicates $\max(m_i+k_i)=\max(n_i+l_i)=a_p$ for $q_i=p$ and $\max(m_i+n_i+k_i+l_i)=b$ for any value of q_i (the power of ρ) and all basis functions within these constraints are included.
- ²⁶W. Kolos and L. Wolniewicz, J. Chem. Phys. 46, 1426 (1967).
- ²⁷D. M. Bishop and L. M. Cheung, J. Chem. Phys. 72, 5125 (1980).
- ²⁸D. P. Shelton, Mol. Phys. 60, 65 (1987).
- ²⁹J. Rychlewski, Mol. Phys. 41, 833 (1980).
- ³⁰J. Rychlewski, Chem. Phys. Lett. 73, 135 (1980).
- ³¹R. J. LeRoy, J. Chem. Phys. 54, 5433 (1971).
- ³²J. D. Poll (private communication).
- ³³R. M. Berns and P. E. S. Wormer, Mol. Phys. 44, 1215 (1981).
- ³⁴J. F. Ward and G. H. C. New, Phys. Rev. 185, 57 (1969).
- ³⁵A. D. Buckingham and B. J. Orr, Proc. R. Soc. London, Ser. A 305, 259 (1968).
- ³⁶D. P. Shelton and A. D. Buckingham, Phys. Rev. A **26**, 2787 (1982).
- ³⁷J. F. Ward and C. K. Miller, Phys. Rev. A 19, 826 (1979).
- ³⁸J. L. Hunt, J. D. Poll, and L. Wolniewicz, Can. J. Phys. 62, 1719 (1984).
- ³⁹D. P. Shelton (private communication): The first line of Table 4 of Ref. 28 should read H_2 , 4156, -0.032^* , +0.759, +1.194, -0.064, -0.020. The second line should read D_2 , 2988, $+0.007^*$, +0.737, +2.464, -0.031, -0.010.