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Squeezing of the cavity vacuum by charged particles
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It is shown that the electromagnetic vacuum in a cavity is squeezed if one or several charges are
present. For a bright electron beam typical of present high-intensity free-electron lasers, the effect

is not necessarily small.

INTRODUCTION

With the recent advances in superconducting mi-
crowave cavities it has become possible to build and
monitor a cavity with extremely high-Q factors (Q ~ 10°
and higher).! In such a cavity a single-quantum mode of
the electromagnetic field can be excited and sustained for
a long time. If such an empty cavity is left alone, with
no external or internal perturbers, the state of the elec-
tromagnetic field is the cavity vacuum defined simply by
a |0)=0, where a is the annihilation operator for the
single-mode cavity excitation. If atoms are injected into
such a cavity, subtle quantum effects like the so-called
collapses and revivals? can occur as a result of resonant
interaction of the atom with the cavity field. Due to
modern Rydberg state spectroscopy the cavity field and
its dynamics can be monitored experimentally in a very
accurate way.

In this paper we present a completely different single-
mode cavity effect, leading to squeezed or reduced quan-
tum fluctuations of the cavity electromagnetic field. We
show that if instead of a resonant atom a pointlike
charged particle is injected into an empty cavity, the
cavity vacuum is modified by the interaction of the
charge with the zero mode of the empty cavity vacuum
field. This modified vacuum that we shall call the
charged vacuum and denote by |0) has many interest-
ing properties. In a framework of a very simple quan-
tum electrodynamical model we show that this charged
vacuum is a squeezed empty cavity vacuum |0). Such
states have attracted considerable experimental and
theoretical attention in the last few years’ due to new
possibilities of measurements with a background level of
noise below the quantum-mechanical fluctuations.

DYNAMICS OF A CHARGED PARTICLE
IN A CAVITY

We consider a single charged particle interacting with
one electromagnetic mode of frequency w, confined to a
very-high-Q cavity of volume V. The Hamiltonian of
such a system has the form

1
H = T +—(p— 2
#iwa 'a 2 (p—e A) (1)

where in Coulomb gauge the operator of the electromag-
netic field vector potential is
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In this expression € denotes the polarization of the field
and we have neglected the spatial dependence of the cav-
ity mode. This amounts to a dipole approximation for
the electromagnetic field, which in general may not be
very well justified. For the solubility of our model we
perform this approximation nevertheless, and comment
on its applicability at the end of the paper. The dynam-
ics of this simple quantum electrodynamical model can
be solved exactly. This is due to the fact that the
Heisenberg equations of motion generated by Eq. (1) are
linear. Thus they can be solved like c-number equations
using, for example, the Laplace transform method (see
e.g., Ref. 4). After some simple but tedious algebra the
solution for the field variables has the following form:

a()=f1()a(0)+f,()at(0)+£5(0), (3a)
a'()=[f1(0]1*aT0)+[f2(D]*a(O)+[f3(D]*, (3b)

where the c-number complex functions f;(¢) are given by
the following expressions:

f1(t)=e " cosh?r —e ™ sinh?r , (4a)
f2(t)= —isin(Qt)sinh(2r) , (4b)
f3()=—ale =" _1)coshr +ale’¥—1)sinhr . (4c)

The three parameters (2, r, and a that define these func-
tions have the following explicit relation to the coupling
constants of the Hamiltonian [Eq. (1)]:

r=%1n(1+o)=%ln£ , (5a)
w
Q=w(l+0)2, (5b)
) 1/2 .
e T
a € pm ﬁQV Q ’ (SC)

where p denotes the eigenvalue of the canonical momen-
tum operator P (which is a constant of motion) and
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In the last version of Eq. (6) r, denotes the classical elec-
tron radius and A=2mc /w the wavelength of the (unper-
turbed) cavity mode. The explicit form of the time evo-
lution of the electromagnetic field variables gives the full
dynamics of the charged particle described by the Ham-
iltonian (1).

SQUEEZED FLUCTUATIONS

For many of the systems in nonlinear optics which ex-
hibit squeezing, the quantity of interest is rotating-wave
squeezing® where one and the same of the two quadra-
ture amplitudes of the electric field, i.e., the coefficient of
either cos(wt) or sin(wt), has reduced fluctuations in-
dependent of time. This is not so in the present case
where, owing to the time dependence of a (z) as exhibit-
ed in Egs. (3) and (4), the rotating-wave squeezing will
oscillate between one and the other of these amplitudes.
We therefore calculate laboratory-frame squeezing, i.e.,
we compute the fluctuations of the two Hermitian parts
of  the time-dependent annihilation operator
a(t)=a,(t)+ia,(t). We impose boundary conditions
such that the charge enters at t =0 the cavity which at
this time is in its vacuum state defined by @ (0)|0)=0.
In this cavity vacuum state we have
[Aa,(0)]2=[Aa,(0)]*=1. As a result of the interaction
with the injected charge the vacuum of the cavity is
changed and the fluctuations in these components are
given by the expressions

Aai(t)=L[cos’(Qt)+e ¥sin®(Q1)]< L, (7a)

Aa3(t)=1[cos’(Qt)+e* sin*(Qr)] > (7b)

i
30
where r > 0. From these equations it is clear that during
the time evolution the fluctuations of Aa?(¢) can be re-
duced below the quantum-mechanical empty-cavity
noise. For example, for )t =7 /2 we have

T —4r 2 m 1, 4r
Adl |t=—— |=Le ™, Ad}|t=—— |=1le", (8)
! 20 | ¢ 2 20 | ¢
i.e., an e ~* reduction of the empty-cavity noise is possi-

ble. Note that it is never possible to reduce the a, com-
ponent below the vacuum noise. This is related to the
choice of the phase made in Eq. (2) and will be discussed
below. As a consequence of the interaction between the
charge and the cavity mode the initial complete symme-
try between the two variables a, and a, does not hold
any more for finite . We also note that

Aai(t)Aas(t)= L {1+1sin*(Qr)[cosh(4r)—1]} . 9)

This implies that [except for sin(Qz)=0] the state that
develops out of the initial vacuum is no longer a
minimum uncertainty state.

If the time scales involved in the measurement process
are longer than 1/Q, the maximum squeezing exhibited
in Eq. (8) cannot be observed. If a time average over the
fast oscillations given by (¢ is performed we obtain
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Aal=1(14+e~*), Aa}=L(l1+e*), (10)

e., the noise in the a; quadrature is effectively squeezed
by at most a factor of 2.

The situation encountered here is very similar to a re-
cent calculation of the squeezing induced by a harmonic
oscillator interacting with one mode of the electromag-
netic field.’ In the latter case it was pointed out that it
is the fluctuations of the magnetic field that are de-
creased while those of the electric field are increased.
Equations (7a) and (7b) show that this also holds true in
the present case.

THE CHARGED VACUUM

There is a simple explanation of the phenomenon cal-
culated in the previous section. In the empty cav1ty,
|0) is the vacuum state of the cavity energy #iwa a.
When the cavity interacts with the charged particle, it is
clear that the state |0) is no longer the ground state of
the full Hamiltonian [Eq. (1)]. As a result of this in-
teraction a new vacuum emerges, which we denote by
|0) and call a charged vacuum. It is also clear that
(0]0)s«1, leading to all kinds of effects including the
squeezing property discussed above.

Because of the quadratic form of the interaction Ham-
iltonian it is easy to diagonalize the energy operator, i.e.,
to find solutions of the eigenvalue problem®

H‘¢np>:Enp|¢np> . (11
Simple algebra shows that

| 6, ) =exp %[az—(af)z] exp[a(a*—a)]lp,n) (12)
and
202
E,, = %-{—ﬁﬂ(n%— )+M—ﬁzﬂ, (13)

where all the relevant parameters are defined by Egs. (5)
and (6) and |p,n) are the empty cavity eigenstates of
p2/2m +#iwa'a. For given p, it is then clear that | g, )
is the state with lowest energy. In particular, for p =0
we obtain from this relation the charged vacuum

T)Z]

|0) =exp 10> (14)

r.2
2 [a*—(a
where we recognize in the exp{r/Z[az—(a+)2]} the
well-known squeezing operator. This operator acts on
the empty cavity vacuum |0), dressing it with an
infinite number of photons. This formula shows that
indeed the charged vacuum is the squeezed vacuum with
the squeezing parameter given by r.

The expectation value of the photon number with
respect to the state |é,, ) is

N={¢,, |a'(ta(1)|¢,,)

=sinh?r +n cosh(2r)+a?e ~ 2", (15)

which is independent of time as it should be. For p =0
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and n =0, only the first term survives and specifies the
mean photon number in the squeezed vacuum state (14).
Since the parameter r is independent of #, so is this first
term. Consequently, it appears as a quantum-
mechanical contribution to the mean-field energy #iwN.
Equation (15) for n =0 should be compared with the
photon number for the case when the charge enters the
empty cavity at ¢t =0:

N(=(0|a'(t)a(1)]|0)

= sinh?(2r)sin?(Q1)
Qe
2

e cos?

+4a?sin?

i
2

Ot

2

—2r in2

+e sin (16)

The time average of N () is larger than N for n =0.
Of course, the charged vacuum (14) is squeezed. In
the state | ¢, ) we have in place of Egs. (7a) and (7b)

Aai(t)=1le ¥, Aaj(t)=1le¥ 17

1
4
independently of a and ¢. Comparing with Eq. (8), we
notice that the maximal squeezing [at t =(2n + 1)7/2Q]
induced by a charge entering the cavity overshoots the
steady-state squeezing (17) of the charged vacuum. For
small » the latter agrees with the time-averaged squeez-
ing (10) induced by the entering charge.

CONCLUSIONS

Before we estimate the amount of squeezing we want
to reemphasize the limitations of our model. These
derive from the two standard assumptions that we made
for the sake of simplicity, viz., the long-wavelength ap-
proximation and the restriction to one mode of the elec-
tromagnetic field. It is the long-wavelength approxima-
tion that rendered the model readily solvable. For by
suppressing the mode functions exp(ikz) it essentially
made the electron momentum a ¢ number. As a conse-
quence, all recoil effects are neglected, and the electron’s
canonical momentum is conserved. If we keep the mode
functions exp(ikz) the model does not seem to allow for
an analytic solution anymore. However, it is not
difficult to see that the following effects will show up:
first, the total momentum of the electron plus the field
will be conserved. Second, the squeezing will, as a func-
tion of z, continuously change from one quadrature to
the other. In general, neither a; or a, will be squeezed
but rather ae®+a’e ¢ where the phase ¢ depends on
the state of the electron. This is a well-known effect.’
The single-mode restriction could be removed at the ex-
pense of a significant increase of the involved algebra.
This is because due to the A? term the individual modes
are coupled. We should also emphasize that we did not
take proper care of the boundary conditions. We as-
sumed that the electromagnetic field was in its ground
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state up to the time ¢t =0. At this time we turned on the
electron-field interaction which is equivalent to turning
on the electron’s charge. A proper treatment would
have to consider that the electron enters (and leaves) the
cavity while its charge is conserved.

From Eq. (7a) the noise reduction factor for
cos(Qt)=0is
e ¥=(1+o0)"". (18)

For a single electron in a cavity with the volume V the
parameter o defined in Eq. (6) is normally a very small
quantity. For the volume of the cavity cannot be much
smaller than A® in which case o is of the order of
ro/A <<1. We may, however, consider an electron beam
with the density N, /V =p,. Then o is replaced by

o =roA\p, /T . (19)

Current free-electron-laser facilities employ very bright
electron beams with currents up to 10 kA.® For squeez-
ing at optical wavelengths the value of o is under these
conditions still very small: for a current of 10 kA and a
beam area of 1 mm? we obtain 0 =2x10"" at A=1 um.
However, the situation changes drastically for longer
wavelengths; for example, under the same conditions but
for A=0.5 cm we have o =35 corresponding to a noise
reduction of approximately 80%. It then appears in
view of the A? dependence of the parameter ¢ that this is
a typical infrared effect which would have to be con-
sidered with due caution. Again, for very long wave-
lengths the boundary conditions would have to be recon-
sidered. However, in one respect long wavelengths ap-
pear to be more favorable: in order that the long-
wavelength approximation apply, the length of the elec-
tron pulse must be small compared to the wavelength.
For the assumed high current, this seems to be ruled out
at optical wavelengths while it appears possible at
A=0.5 cm.

The squeezing discussed in this paper (and, in a simi-
lar situation, in Ref. 5) is related to fluctuations in the
magnetic energy density in a cavity due to the presence
of a single charge. On the basis of this calculation one is
led to expect this type of squeezing to be an ubiquitous
feature on the microscopic level which should be present
in the vicinity of atoms and molecules quite generally.’
It is also interesting to speculate that the charged
squeezed vacuum in a cavity considered in this paper
bears a strong resemblance to the color dielectric vacu-
um of quantum chromodynamics inside a hadron.!® We
hope to come back to this aspect of the present model in
a future publication.
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