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We present the results of a numerical study of the invariant amplitudes of ls-ns and 1s-nd two-
photon transitions in hydrogenlike atoms in the nonrelativistic dipole approximation, based on com-
pact analytic formulas. We report also results valid in the limit n— . The ls-nd transitions with
n > 6 are studied for the first time. For other particular cases our numerical results are in agreement
with previous calculations in the literature. The investigated energy region of the two-photon spec-
trum is extended. The position of the transparencies in the second half of the spectrum is found to

be almost n independent.

I. INTRODUCTION

Two-photon transitions in hydrogenlike atoms have
been explored in a large number of papers. The 1s-ns
transition plays a special role, because this transition
determines the lifetime of the metastable 2s state.! In
usual experimental conditions other two-photon transi-
tions are in competition with one-photon transitions.

The existing works on two-photon transitions have used
different analytical and numerical procedures. We men-
tion here some of the previous results. After studying the
1s-2s transition with the Green’s-function method, Zon
et al? have derived analytic expressions for several
bound-bound two-photon transitions in terms of Gauss
functions. At the same time bound-free two-photon tran-
sitions were studied independently by Gavrila,® Klars-
feld,* and Rapoport et al.> Using the Sturmian expansion
of the Coulomb Green’s function, Karule® has obtained
general expressions for the Nth-order bound-bound and
bound-free transitions, for any N >2. Formulas describ-
ing bound-bound two-photon transitions between arbi-
trary hydrogenic states were considered in a paper by
Gazeau,’ but to our knowledge they were not used in a
numerical study. Much more attention continues to be
paid to bound-free transitions.?—!°

Our purpose here is to contribute to a detailed
knowledge of the properties of 1s-ns and 1s-nd two-photon
transitions with n >2 in hydrogenlike atoms. Previous
works with the same purpose are reported in Refs. 11-13.

Quattropani et al.!' have studied in detail two-photon
absorption in 1s-ns transitions. They have presented pre-
cise numerical results for several values of n (n=3, 6, 20,
and 45). Photon transparencies and the behavior of the
transition rates for large values of n (extrapolation to
n— o) have been presented. The analytical formulas
used are nevertheless complicated. Working in both ve-
locity and length gauges, precision was controlled in a sa-
tisfactory way.

Tung et al.'? have studied for the first time some prop-
erties of the ls-nd transitions. Their work, which treats
the cases 3 <n <6 (both ns and nd) is based on analytical
expressions for the transition amplitudes. An indepen-
dent calculation'? for the 1s<>3s,3d cases is in full agree-
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ment with the results reported in Refs. 11 and 12. It is
based on a simple analytic expression for the Kramers-
Heisenberg matrix element.

Recently,'* in connection with the treatment of the
linear response of the hydrogen atom to an external
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FIG. 1. (a) The amplitude a; +a; of the ls-ns transitions for
several values of n, as a function of k for 0.375 <k <0.75. (b)
The amplitude — (b, +b3) of the ls-nd transitions, in the same
conditions as in (a).
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one-mode electromagnetic field, compact analytic expres-
sions for the amplitudes of 1s-ns and 1s-nd two-photon
transitions were derived. This method of calculation
was mention earlier by Luban and co-workers,'’ but the
results were never published. The formulas obtained in
this way contain Appell functions F; which reduce to a
finite number of Gauss functions. It appears that these
equations can be connected with those given by Arnous
et al’ for 1s two-photon ionization. We mention also a
recent analytic work!® oriented toward the simplification
of the analytic expression of two-photon transition am-
plitudes, based on a technique of reducing the number of
Gauss functions to only one.

Besides its intrinsic interest, the study of the hydrogen-
like case served in the past to lead to qualitative under-
standing of two-photon transitions in many-electron
atoms, as shown by Freund.!’ Double-photon decay has
been observed in atoms with a K-shell vacancy, molybde-
num atoms in the experiment of Bannett and Freund,'®
and xenon atoms in the study of Ilakovac and co-
workers.!"” The two-photon spectrum was analyzed in the
last paper in terms of transitions from 2s, 3s, 3d, and 4s
states. The experiments reveal a more complex situation
than in the hydrogenic model. The results of the first rel-
ativistic self-consistent-field calculation of two-photon
bound-bound transitions for xenon have been published
very recently.?°

In this paper we present the results of a systematic
study of the amplitudes for the 1s-ns and 1s-nd transitions
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with n >3, based on analytic formulas in terms of F,
functions. In Sec. II we present the analytic formulas we
use together with particular simple expressions valid at
the end of the spectrum. The analytic results valid for
n— oo are given in Sec. III. The conclusions of the nu-
merical calculations are reported in Sec. IV as graphs. A
table with the energies of the transparencies is also given.
Some relations used in the analytical or numerical work
are given in Appendixes.

II. ANALYTIC EXPRESSIONS
FOR THE INVARIANT AMPLITUDES

Our study of two-photon 1s-ns and 1s-nd transitions in
hydrogenlike atoms is based on an analytic technique,
developed in Ref. 14, for the evaluation of the Kramers-
Heisenberg matrix element. This matrix element for arbi-
trary initial and final states is

M p=— [ p( Q)+ Ty 1 ( Q) s 11525 1

where s, and s,; are the Cartesian components of the po-

larization vectors of the photons in the absorption case, or
their complex conjugate in the emission case, and
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FIG. 2. (a) Same as 1(a), but for 0.75 < k < 0.8889. (b) Same as 1(b), but for 0.75 < k < 0.8889.
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P is the momentum operator, G the resolvent operator for
the Coulomb field, m, the electron mass; Q;,Q, will be
specified further. The knowledge of the vectors (3) allows
a straightforward evaluation of the Kramers-Heisenberg
matrix element. The same vectors determine the linear
response of the atomic state i/ to a one-mode electromag-
netic field in the dipole approximation.'4?!

Given two atomic states i and f with E; < E;, the ma-
trix element (1) corresponds to the absorption of two pho-
tons of energies #iw; and #w; connected by

ﬁa)1—+-ﬁ£02=Ef—E,' (4)
if one takes

Qu=E; +#w,, a=12. (5)

The matrix element JM; (with s;,—s3 ) describes two-
photon emission if ; and , interchange their roles.
Due to the Hermitian properties of P and G, one has the
relation ./“f,,' Z(Mi,f)‘.

The connection between the matrix element and the
measurable quantities is shown in Sec. IV.

Here we study only the case of 1s-ns,nd transitions and
we refer to the matrix element (1) for the case of absorp-
tion, i.e., we use (5) with E; =FE,;. The dependence on j
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and k of the quantity (2) is rather simple in this case:
Iy, 15ns(Q)=a(T)8j (6)
ij;ls,nlm(ﬂ):b(r)cr:,jk » (7)

where 8y is the Kronecker symbol and C,, j the
coefficients appearing in the expansion of the spherical
harmonics of rank 2 in terms of Cartesian coordinates

Yo (B) = —— S Cpjxxjxi /72 .
V4 ik
C,n,jx are symmetric in j and k. In this way, in Eq. (7) the
dependence on the magnetic substate m is specified, too.
The functions a and b are the invariant amplitudes of 1s-ns
and, respectively, 1s-nd transitions. The analytic results
that follow show that the invariant amplitudes depend on
a unique variable 7 defined by

r=aZm.c/(—2m, Q)% , (8)

where a is the fine-structure constant, ¢ the velocity of
light and Z the nuclear charge. () is negative in two-
photon bound-bound transitions, and, consequently, 7 and
the invariant amplitudes are real. With the notation
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FIG. 3. (a) Same as 1(a), but for 0.8889 < k <0.9375. (b) Same as 1(b), but for 0.8889 < k <0.9375.
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the Kramers-Heisenberg matrix elements we are interest-
ed in become

Mysns=—(ar1+az)s; sy, (10)
Migng=—(b1+b2)Cp jks1jS2k - (11)

We reproduce now the expressions of the invariant am-
plitudes a and b used in this work and derived with the
method in Ref. 14. With the notation

1

Si=——
T T l—7+j

Fi(1—74j,34n,3—n,2—74+j;x,y),
(12)

where F; is the Appell function (see Appendix A) of the
variables

x=(1-7)n—-7)/(1+7)n+1),
y=(1—7)n+7)/(1+7)n —1),

we have

a, +a,
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2 (1) 3

31478 (n 41 +3

a(r)

X {1 +7)2[372=27(n2+2)+3n2]S,

—6(1=7)n%=7%)8,

+(1—7)?[3724+27(n%+2)+3n2%]S;} , (14)
_ 2"’7'%5/26 2_g)lp2_qypnin —7)n 3

15(147) (n +7)"t+3

X[(147)28 —(1—7)%S3] . (15)

For n =3 we mention the agreement®? with Ref. 13.

For |x | <1 and |y | <1 the Appell function F; can
be expressed as a double-series expansion in x and y [see
(AD)]. In our problem the third parameter of the Appell
functions is a nonpositive integer, so the expansion (A2)
contains a finite number of terms and can be used even
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FIG. 4. (a) Same as 1(a), but for 0.9375 <k <0.96. (b) Same as 1(b), but for 0.9375 < k <0.96.
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for |y |>1.

The explicit expressions of 7; and 7, corresponding to
Q, and Q, in (5) are
—122

n=01—=k)"12 1= , (16)

—5 +k
n2

where k is the energy of one of the photons, measured in
Z?x Rydberg units,

As k goes from O to 1—1/n?, 7, increases from 1 to n,
while 7, decreases from n to 1.

The expressions of a and b given here are analytically
close to those published by Arnous et al.’ for the ampli-
tudes of two-photon ground-state ionization. In particu-
lar, our equation (15) for the amplitude b appears to
resemble Eq. (4.7) of Arnous et al. for an amplitude
denoted by T'j,. This last amplitude, defined in Eq. (2.6)
of Ref. 9, is a partial amplitude referring to 1s-d
continuume-state transition. It corresponds to the quantity
T'0,n2 defined in our equation (C5) and used in the calcu-
lations performed in the length gauge. Some care has to
be taken in the comparison of our results with those in
Ref. 9, based on the general rules of passage from bound
to continuum states, because the results of Arnous et al.
work for photons of the same energy. The formula con-
necting b and T, is equation (C4). For wj=w;=w it

_,
o

-

|

\

|

‘

|
U

|-
| \
| \ :
— \ -
\
- \\ n=7 —
\\
057 S._ n=6 -
| S
L n=10 _
L n=16 -
n=20
- —
C‘;‘ 00 n=30 ) —= !
T n=30'
o L —
B E
1 |
_05:—- L
- i

% (a) —{

—1.0L |

0.960 0.965

l |
0.970 35/3

2159

reduces to
b(T)=1m,0’T g ,,(Q),

where the unique value of Q is (E+E,)/2 and 7 is given
by (8). Our expressions (14) and (15) and those published
in Ref. 9 can be compared only for w;=w;; one finds
agreement if the energy conservation, Eq. (4), with
w1 =w,, is explicitly used.

The Kramers-Heisenberg matrix element [Egs. (10) and
(11)] is symmetric with respect to the middle of the spec-
trum k=1(1—1/n?). The variable x in (13) is negative
and subunitary, while y goes monotonically from 0 to
— oo when 7 goes from 1 to n.

For 7=1 and 7=n the expressions of the amplitudes a
and b drastically simplify. For 7=1 one has x =y =0
and, consequently, one obtains directly from (14) and (15)

3
a(l):_23_n5/2(n_l)n—2/(n+1)n+2 ,

(18)

5
b(1)=—2n¥2n? )2 n — 11520 1) 4572

For 7=n the situation is apparently complicated because
in this case the variable x goes to zero, while y goes to
— co. This limit is described in Appendix B. The results,
based on (B1)-(B3), are
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FIG. 5. (a) Same as 1(a), but for 0.96 <k <0.972. For n =6 (dashed curve) the function represented is %(al +a;). (b) Same as

1(b), but for 0.96 < k <0.972.
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a(n)=1(3n*-5)a(1),

(19)
b(n)=—13n2+1)b(1).

From (18) and (19) one gets the following results valid at
the ends of the spectra (k =0 or k =1—1/n?):

a1+a; | =4S — 1) 1)
k=1—1/n (20)

bi+b2 ’k:l—l/n2

=322 —4) 2 n — 1) T f(n 1) 2

For 7=N (1 <N <n) the amplitudes @ and b become
infinite if we do not include the finite widths of the energy
levels. The behavior in the vicinity of a resonance can be
obtained directly from the starting expressions (2) and (3).
Some details are given in Appendix C.

III. THE LIMIT OF LARGE VALUES FOR n

For large values of n the invariant amplitudes decrease
smoothly as n ~3/2, In the ns case Quattropani et al.!!
have estimated the values of the product of n3 with the
square of the amplitude for n — oo, for several photon en-
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ergies,”® by extrapolating the numerical results obtained
for large values of n. From our analytic expressions (14)
and (15) we have derived analytic results valid in the limit
n— . The calculation of this limit is similar to that per-
formed for Compton scattering amplitudes by Gavrila.?
Even the results are in a close connection, as is proved by
an adequate analysis.”* The results are

3 T
lim HS/ZQZL% 27 —27
n— oo 3 (1+’T) 1+T
X[4743=27)T1—127(1 —7)T,
+(1=7)23427)T5], Q21
. 32 72 2T T
1 3/2b=__ —27
i 15 (1472 | 147
X[ =4 T, +(1—7)*T5] , 22)
where we have used the notation
1 . , .
T}ET:"T-_,T]_‘QM(1—-7‘+j,—4—7'—+—_],2—7'+_];§,7]) ,  (23)

with
E=(r—1)/27, n=2r—1).
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FIG. 6. (a) Same as 1(a), but for 0.972 < k <0.9796. For n =7 (dashed curve) the function represented is %(al +a,). (b) Same as

1(b), but for 0.972 < k <0.9796.
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TABLE I. Two-photon transparency energies for several 1s-ns and 1s-nd transitions, in the energy region 0.375 < k <0.984.

k 0.375-0.75 0.75-0.8889 0.8889-0.9375 0.9375-0.96 0.96-0.972 0.972-0.9796
1s-3s 0.6936
1s-4s 0.6912 0.8714
1s-4d 0.8381
1s-5s 0.6905 0.8707 0.9299
1s-5d 0.8307 0.9215
1s-6s 0.6901 0.8705 0.9295 0.9560
1s-6d 0.8274 0.9192 0.9529
1s-10s 0.6897 0.8704 0.9294 0.9557 0.9697 0.9780
1s-10d 0.8232 0.9163 0.9510 0.9676 0.9767
15-20s 0.6895 0.8703 0.9293 0.9557 0.9697 0.9780
1s-20d 0.8216 0.9160 0.9505 0.9672 0.9766
1s-c0s 0.6894 0.8703 0.9293 0.9557 0.9697 0.9780
1s-0d 0.8211 0.9157 0.9503 0.9671 0.9765
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FIG. 7. The function & in Eq. (26) for n = « (solid curve)
and for n =20 (dashed curve) vs k, for 0.5 <k <0.75. (b) The FIG. 8. (a) The function & in Eq. (26) for n = vs k, for
function D in Eq. (27) for n = oo (solid curve) and for n =20 0.75 < k <0.8889. (b) The function D in Eq. (27) for n = « vs k,
(dashed curve) vs k, for 0.5 <k <0.75. for 0.75 <k <0.8889.
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¢, is the Humbert confluent hypergeometric function [see
(A3) and (A4)]. From Eq. (18) one deduces that n3/%a (1)
and n32b(1) have finite limits for n— 0, in agreement
with (21) and (22) taken for =1, while n32a(n) and
n3"2b (n) go to infinity.

The functions expressed by (22) have the same trend in
their dependence on the photon energy as in the case of
finite n: They become infinite for 7=N >3, having
different signs on the two sides of a resonance.

IV. EMISSION AND ABSORPTION RATES

The measurable quantities are connected with the
squared modulus of the Kramers-Heisenberg matrix ele-
ment. In the emission case the primary quantity is the
differential emission rate d°’T';; from which one con-
structs the dimensionless quantity

_ d3I‘,~,f r%mlwz
Y= d0d0,d,  8rc?

|Mif |2, (24)
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FIG. 9. (a) Same as 7(a), but for 0.8889 <k <0.9375. (b)
Same as 7(b), but for 0.8889 < k <0.9375.
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where r is the classical electron radius, dw; a frequency
interval, and dQ; and d 2, solid-angle elements. The en-
ergy of one of the photons is variable, while the energy of
the second photon is given by (4). The emission rate (24)
depends also on the photon directions and polarizations.
From it one can obtain other different measurable quanti-
ties, explicitly shown in Sec. IV of Ref. 13, in which the
indexes 3s and 3d have to be replaced now by ns and nd.

In the absorption case the basic quantity is the absorp-
tion rate

(2'TT)3 2 C4
ki, ks,
P ro a)%w% p( 1 S1)p( 2 Sz)

d*Ts 3
da)ldwzdﬂldﬂz -

X |-/n,',f x 25(Ef—E,‘—ﬁa)1—‘ﬁwz) ’
(25)

where p(k,s) denotes the spectral density of the external
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FIG. 10. (a) Same as 7(a), but for 0.9375 <k <0.96. (b) Same
as 7(b), but for 0.9375 < k <0.96.
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field analyzed over directions and polarizations. The to-
tal energy density is Wk 2.pk,s)dQdw, where
w=ck. & is the Dirac function, which appears in con-
nection with the neglect of the energy level width.

V. NUMERICAL PROCEDURE AND RESULTS

Our numerical evaluation of the invariant amplitudes is
based on Egs. (14) and (15). We have found that the use
of the expansion (A2) for the Appell functions F;, which
contains a number of Gauss functions of the order of the
quantum number n, can be used without special problems
for values of n as high as 50. The use of Kummer rela-
tion in order to change the variable x defined by (13) to
x1=x/(x —1) is advantageous because x; is a positive
variable smaller than 0.5.

In the case of the limit » — «, we have evaluated the
Humbert functions in (22) with the expansion (AS5). We
have tested our codes by comparison with all the previous
data available to us: the numbers of Quattropani et al.!!
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FIG. 11. Same as 7(a), but for 0.96 <k <0.972. (b) Same as
7(b), but for 0.96 < k <0.972.

for 6s, 20s, and 45s transitions, the numbers of Tung
et al.'? for n =3, 4, and 6 (s and d transitions), and our
numbers'® for n =3. The agreement was always in the
limits of precision claimed by the different authors.

We found it convenient to represent the results for the
invariant amplitudes in the second half of the photon
spectrum [from the middle of the spectrum at
k:%(l—l/nz) up to its end at k =1—1/n?], as done
earlier in Ref. 11. In such a representation the position of
the resonances is independent of n, in contrast to the situ-
ation in the first part of the spectrum. The resonances in
the second part of the spectrum are located at
ky=1—1/N? with 2<N <n —1. The end of the spec-
trum for the transitions ls—ns,nd is the last resonance
for the transitions 1s—(n +1)s,(n +1)d.

We have studied systematically six regions of the pho-
ton energy defined in Eq. (17). The first region starts at
k=0.375, which is the middle of the spectrum for n =2,
and goes up to the first resonance for the transitions with
n >3, located at k=0.75. For n >3 this region also in-
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FIG. 12. (a) Same as 7(a), but for 0.972 <k <0.9796. (b)
Same as 7(b), but for 0.972 < k <0.9796.
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cludes a portion from the first part of the spectrum, name-
ly, the region from 0.375 to +(1— 1/N?). The other five
regions continue the first one, extending from a resonance
to the next one.

Our results are presented as graphs. Figures 1(a)-6(a)
give the dependence of a;+a; in Eq. (10), and Figs
1(b)-6(b) that of b; +b, in Eq. (11), on the variable k for
several values of n. In the first energy region (Fig. 1) the
values of n are 3, 4, 5, 6, 10, and 16. The case of n =20
is included in the other regions, and also n =30 in the
last two energy regions (Figs. 5 and 6). We mention that
our results for 1s-nd transitions with n > 6 are completely
new, and that in the cases investigated previously in the
literature the energy region explored was usually less ex-
tended than in our case.

Our graphs show some general features of the sum of
the invariant amplitudes (a; +a; in the ns case, b; +b; in
the nd case): (i) a monotonous behavior from one reso-
nance to another, with a change of sign at each resonance;
(i1) the existence of a transparency in each region with the
following exceptions: nd transitions in the first energy re-
gion [see Fig. 1(b)], all transitions in the energy region be-
tween the last resonance and the end of the spectrum; (iii)
a not too strong dependence of n, especially in the first re-
gions; and (iv) in the last energy region for a given transi-
tion, its amplitude differs much more from the others
than in the previous regions (compare the situation of
n =5 in Figs. 4(a) and 4(b) to its situation in Figs. 1-3, or
notice the situation of n =7 in Fig. 6).

We have determined numerically the position of the
transparencies in the six photon-energy regions studied.
The results are contained in Table I. For n > 10 the posi-
tion of the transparency is practically n independent. The
last two lines, corresponding to the limit n = o, were ob-
tained from a calculation based on Eqgs. (21)-(23). As
remarked by Tung er al.'? for small values of n, the posi-
tion of the transparency is different for ns and nd transi-
tions in the first energy region.

Our results concerning the limit case n = are con-
tained in Figs. 7-12. We have considered the same di-
mensionless functions as Quattropani et al.,!' namely,

= ndla;+a,|?, (26)

kik3

D

n’lby+by|%, (27)

kik3

where k; =k and k,=1—1/n*—k, are the photon ener-
gies measured as indicated in Eq. (17). In Figs. 7(a)-12(a)
we have represented the function &, and in Figs.
7(b)—12(b) the function D, in the limit n = . They were
evaluated with Eqgs. (21)-(23). In Figs. 7 and 9-12 we
present also the values of the function & or D for n =20
(dashed curves). We can see that the relative differences
between & and D for n =20 and for n =« are usually
smaller than 10%. In the first two energy regions the
differences are much smaller than in the other cases; the
case n =20 is not shown in Fig. 8. With increasing pho-
ton energy, the relative differences between the compared
quantities increase. Nevertheless, we think that a tabula-
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tion of the functions & and D for n = » would allow use-
ful conclusions about the functions & and 2D for n > 20.
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APPENDIX A: EXPANSIONS
FOR THE APPELL FUNCTION F,
AND THE HUMBERT FUNCTION ¢

For [x | <1 and |y | <1 the function F; is given by
the double series?’

, had . Am anB;l
Fl(a,B,B,y;X,y)= z E I

, (A1)
m=0 n=0 VM—f—nlm ln

where a, =T'(a+m)/T(a).
pansion

For |y | <1 one has the ex-

2 Uy fm
Fila,B,B,7;x,9)= 3

oo Ymlm

y"oF i (a+m,B,y+m;x).

(A2)

A relation useful for the limit n — « presented in Sec. I1I
£ (25
is

Fl(ayB’B’:’y;x’y)
2 AmBm
=2

m =0 Ymlm

(y —x)"

XoFla+m,B+B +m,y+m;x) . (A3)

For |x | <1 the Humbert confluent hypergeometric
function is represented by the double series®

o0 © am nb
biabeixp)= 3 P ST xmyn (A4)
m=0n=0 Cm+n1m1n
It can be written also as
oo a” yn
dila,b,c,;x,p)= 3 —<—Fila +n,b,c +n;x) . (A5

n=0 €n 1"

The last expansion is valid in the whole complex plane of
the variable x except the region (1, oo ) of the real axis.

APPENDIX B: DETAILS ON THE LIMIT 7—n

When 7—n the products (n —7)" ~3S;, with j =1 and
j=3, and (n —7)" ~2S,, where S; is defined by Eq. (12),
are finite. They can be evaluated using the expression
(A2) for the Appell functions, which reduces to a sum of
(n —2) Gauss functions

n—3 1

(3—n)
S;= : £
/ p§0 l—74+j4+p 1,

yP
XoF\(1=7+j +p,34n,2—74+j+p;x) .
even for

For 7—n the Gauss functions are finite,
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p=hn—2—j, because the variable x defined by (13) goes to
zero. The variable y goes to infinity, but its increase is
compensated by an adequate power of (n —7). In the case
of j=1 and 2 only the last term in the series contributes,
while in the case of j =3 the last two terms have to be re-
tained. We get in this way:

n-3 n-—3
lim | 2=T s _—3n2—4n+3 n—1
g T 2n(14n) n+1 ’
(B1)
n—2 1 1 n—3
lim |[2=T | §=— |2— , (B2)
r—n | +T 2n | n+1
n-—3 n-—3
lim | 2=T Sie —3n’4+4n +3 |n—1
ron | B4+T T 2n(1—n) n+1
(B3)

With Egs. (B1)-(B3) replaced in Egs. (14) and (15), one
obtains the expressions (19) for the invariant amplitudes at
T=n.

APPENDIX C: THE VICINITY OF RESONANCES

As mentioned in Sec. II, if we do not include the finite
widths of the energy levels, the invariant amplitudes a and
b [Egs. (14) and (15)] become infinite for ) equal to an
energy eigenvalue situated between E; and the final ener-
gy E,. The behavior of the amplitudes in the vicinity of a
resonance can be obtained from Egs. (14) and (15), or
directly from the starting expression (2) of the Kramers-
Heisenberg matrix element, in which the Green function
is expressed by its expansion in terms of energy eigenfunc-
tions. After simple transformations (the replacement of
the matrix elements of the operator P by those of r, and
the performance of the angular integrals), Eq. (2) leads to

m, (En'_En )(E]—En') B B
alr)=— 35 RI'RY, (€D
3%2 nl>2) E’l'_Q "
(n's#n)
2m, (Ey—E, E{—E,) ..,
b(r)=— RAERIY . (C2)
15ﬁ2 A E,,'——Q n2 10
(n'£n)

The sum is extended over the energy spectrum of the hy-
drogenlike atom (discrete and continuum). RJ" denotes
the matrix element of r in the notations of Ref. 26. One
of the methods used in the study of ls—ns transitions
(see Ref. 11) was the numerical evaluation of an expres-
sion identical (up to a factor) to Eq. (C1).

We mention also that by standard manipulations one

2165
can transform a and b as
m " E,\+E
a(‘r)=% ﬁ; ' 'Q—_—‘l ) - ]SlO,nO
—(E1 —QNE, —Q)Tp,,0(Q) |, (C3)
2 me E1+En
b( )_TS_ 7 l[ -——-2—~— S1o,n2
—(E1—Q)E, —Q)T10,,2(Q) | , (C4)
where
Snl,n‘1'~:— fow r4Rn1Rn’l'dr
and
RIMRM,
T )= —_— C5
10,1 (£2) : E.—q (C5)

When work is performed in the length gauge, the main
quantities to be evaluated are the amplitudes Tq, ;.

In the vicinity of Q=Ex only the contribution of the
term with E, =Ey is important in (C1) and (C2) and,
consequently,

(n’—N?)N?*—1)
12(+—N)Nn?
b(r)~2a(r)RNM /R .

a(r)~ RNRVY (C6)

(C7)

In the above equations we made explicit the dependence
on the variable 7, connected with by Eq. (8). To
Q=Ey corresponds 7=N. According to Eq. (16) this
corresponds to the photon energies k=1/N2—1/n?
(when 7,=N) and k =1—1/N? (when 7;=N). The first
set of energies is located in the first half of the spectrum
and the other set in the second half.

The matrix element R%) in Eq. (C6) has a simple ex-
pression. The other matrix elements can be evaluated
from the general formula given in Ref. 26. We write here
only the expressions of the amplitudes near the first reso-
nance, corresponding to ( in the vicinity of E, (r=2):

n

212 p2y n—2 1
CETE ey | nt2 | 2-7 8
172
8 | n2—1
b~— .
P a (C9)
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