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We present the results of a numerical study of the invariant amplitudes of 1s-ns and 1s-nd two-
photon transitions in h dro enlikey g

'
atoms in the nonrelativistic dipole approximation based

Pact anal tic fy ic ormulas. We report also results valid in the lim t ~ Th 1

'
n, ase on com-

i n ~ oo. e s-n transitions with
n & 6 are studied for the first time. For other ar ier particular cases our numerical results are in agreement
with previous calculations in th
trum is exten

n the literature. The investigated energy region of the t - hn th .
' '

n o e wo-p oton spec-
rum is extended. The position of the transparencies in the second half of the spectrum is found to

be almost n independent.

I. INTRODUCTION

Two-photon transitions in hydro genlike atoms have
been explored in a large number of papers. The 1s-ns
transition plays a special role, because this transition
determines the lifetime of the metastable 2s state. ' In
usual experimental conditions other two-photon transi-
tions are in competition with one-photon transitions.

The existing works on two-photon transitions have used
different analytical and numerical procedures. We men-
tion here some of the previous results. After studying the
1s-2s transition with the Green's-function method Zon)

et al. have derived analytic expressions for several
bound-bound two-photon transitions in terms of Gauss
functions. At the same time bound-free two-photon tran-
sitions were studied independently by Gavrila Kl
feld ande, and Rapoport et al. Using the Sturmian expansion
of the Coulomb Green's function, Karule has obtained
general expressions for the Nth-order bound-bound and
bound-free transitions, for any N )2. Formulas describ-
ing bound-bound two-photon transitions between arbi-
trary hy rogenic states were considered in a paper b

azeau, but to our knowledge they were not used in a
paper y

numerical study. Much more attention continues to be
paid to bound-free transitions.

Our purpose here is to contribute to a detailed
knowledge of the properties of ls-ns and ls-nd two-photon
transitions with n & 2 in hydrogenlike atoms. Previous
works with the same purpose are reported in Refs. 11—13.

Quattropani et al. " have studied in detail two-photon
a sorption in 1s-ns transitions. They have presented pre-
cise numerical results for several values of n (n=3, 6, 20,
and 45). Photon transparencies and the behavior of the
transition rates for large values of n (extrapolation to
n~ co) have been presented. The analytical formulas
used are nevertheless complicated. Working in both ve-
locity and length gauges, precision was controlled in a sa-
tisfactory way.

Tung et al. ' have studied for the first time some prop-
erties of the 1s-nd transitions. Their work, which treats
the cases 3&n &6 (both ns and nd) is based on analytical
expressions for the transition amplitudes. An indepen-
dent calculation' for the 1s~3s, 3d cases is in full agree-

ment with the results reported in Refs. 1 1 and 12. It is
based on a simple analytic expression for the Kramers-
Heisenberg matrix element.

Recently, in connection with the treatment of the14

linear response of the hydrogen atom to an external
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roma netic field, compact analytic expres-od 1 to g

rived. This method of calculationtransitions were derived. T is me o "bu«heas mention earlier y u
~ ~

was 1' b L ban and co-workers, ut e
h d Th formulas obtained in

F h h d
never ublis e . e

this way contain Appell functions
&

w ic
s. It a ears that t esehnite number of Gauss functions. ppfinite num e

d with those given by Arnouseqquations can be connecte wi
et al. for 1s two-photon ionization. WeWe mention a so a
recent ana ynal tic work orien ena

' ' '
t d toward the simplification
f two- hoton transition am-o ef the analytic expression of two-p o on

plitudes, based on a technique of red
'

gucin the number o

of the hydrogen-Besides its intrinsic interest, the study o t e y r
1k served in the past to lead o qto ualitative under-i e case

in man -electronstandin of two-photon transitions in y-
atom F d ' Double-photon decay hasatoms as shown by Freun

ith a K-shell vacancy, molybde-been observed in atoms wit a -s e
F nd"atoms in the experiment of Bannett and Freun,

workers. e wo-Th t o-photon spectrum was analyze in e
d and 4sof transitions from 2s, 3s, 3d, alast paper in terms o

The ex eriments reveal a more comp ex si ua i
than in the hydrogenic mode1. The resu s

bound-bound transitions for xenon have been pu is e
tl 2overy recent y.

a er we resent the resu s olt of a systematicIn this paper w p
1s-ns and 1s-nd transitionsstudy of the amplitudes for the 1s-ns an s-n

'
h &3, based on analytic formu as in terms of F~

functions. n ec. wI S II we present the analytic formulas we
h ith articular simple expressions va i ause toget er wi p

the end of the spectrum. The analytic resu s va
'

S . III. The conclusions of the nu-
IV as ra hs. Aerical calculations are reported in Sec. IV as grap s.

table with the energies of the transparencrencies is also given.
Some relations use in e ad

'
the analytical or numerical work

are given in Appendixes.

II. ANALYTIC EXPRESSIONS
FOR THE INVARIANT AMPLITUDES

Our stud of two-photon 1s-ns and 1s-1s-nd transitions in
hydrogenlike atoms is based on an ana y

'
ursu y

anal tic technique,
developed in Re . , or ep f 14 f r the evaluation of the Kramers-

1 t. This matrix element for arbi-Heisenberg matrix e emen . i
trary initial and final states is

IR; g = —[II,k ;g (0).)+ IIkj ~
' f(QQ)]s~ksq,

u re the Cartesian components of the po-where s~k an
spaz

are
larization vectors o e pf the hotons in the absorption case,
their complex conjugate in the emission case, an

n„,~(n)=— (y~~, ~w, , (n)),1

me

with

~ u, .;(0))=G(Q)P)
~

i ) .
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matrix elements w e are interest-the Kramers-Heisenberg m
ed in become

A1, 1, „,= —(a1+ a 2 )s1 s2,

s n = (bl +b2)Cmjk51j 52k1s,nd—

now the expressions of t e
'

e invariant am-
k dd i d ih hlitudes a and b used

'
in this wor an

R f 14. With the notationmethod in Re .

27 5 5/2 (n ~)n —3

3(1+7.}6 (n +7-)"+'

3 SX [ (1+7 ) [37 —27.(n +2) + 3n S1

—6(1—7. )(n —7 )S2

+ 1 — ) [3 +27.(n +2)+3n ]Sq], (14)

S:— Fi (1—+j 3+n, 3 —n, 2 —7.+j;x,y
1 —~+j

(12)

b(7)=—
1l —39 6 5/2

(
(

2 4)1/2( 2 1)
(n +7.)15(1+7-)

2X[(1+~)2S,—(1 —~) S, ] . (15)

x =(1—7)( n—7)/(1+7. )(n +7),
y=(1 7.)(n —+7.)/(1+7)(n 7), —

we have

(13)

where Fi is t e ph Appell function (see ppA endix A) of the
variables 22 .

ef 13mention the agreement wit e .
A llf to F

th expansion (A2)
r roblem the t ir parame

n ositive integer, so efunctions is a nonp
and can be used evencontains a nifi te number of terms an can
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for ~y & l.
The explicit expressions of ~~ and ~2 corresponding to

Q ~ and Q2 in (5) are

r)=(1—k)
1

, +k
n

—1/2

(16)

where k is the energy of one of the photons, measured in
Z )& Rydberg units,

k—:fico)/
~
E)

~

(17)

As k goes from 0 to 1 —1/n, ~& increases from 1 to n,
while r2 decreases from n to 1.

The expressions of a and b given here are analytically
close to those published by Arnous et a/. for the ampli-
tudes of two-photon ground-state ionization. In particu-
lar, our equation (15) for the amplitude b appears to
resemble Eq. (4.7) of Arnous et al. for an amplitude
denoted by T~2. This last amplitude, defined in Eq. (2.6)
of Ref. 9, is a partial amplitude referring to 1s d
continuum-state transition. It corresponds to the quantity
T~o „2 defined in our equation (C5) and used in the calcu-
lations performed in the length gauge. Some care has to
be taken in the comparison of our results with those in
Ref. 9, based on the general rules of passage from bound
to continuum states, because the results of Arnous et aI.
work for photons of the same energy. The formula con-
necting b and T~o „2 is equation (C4). For co~=coq=co it

reduces to

where the unique value of 0 is (E&+E„)/2 and r is given
by (8). Our expressions (14) and (15) and those published
in Ref. 9 can be compared only for co~ ——cu2, one finds
agreement if the energy conservation, Eq. (4), with
co~ ——coq, is explicitly used.

The Kramers-Heisenberg matrix element [Eqs. (10) and
(11)] is symmetric with respect to the middle of the spec-
trum k= —,'(1 —1/n ). The variable x in (13) is negative
and subunitary, while y goes monotonically from 0 to
—oo when ~ goes from 1 to n.

For ~=1 and ~=n the expressions of the amplitudes a
and b drastically simplify. For ~=1 one has x =y =0
and, consequently, one obtains directly from (14) and (15)

5 //2 n —2a (1)= n / (n —1)" /(n + 1)"+
3

25
b (1) & 5/2(n 2 4)1/2(n 1)n —5/2/(n + 1)n+5/2

15

For ~=n the situation is apparently complicated because
in this case the variable x goes to zero, while y goes to
—op. This limit is described in Appendix B. The results,
based on (Bl)—(B3), are

1. 0
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O
+ 00
O

C4
C3

0.0 i

C3

I

-0.5 -0.5

-'l 0
0.960 0.96 5 0.970 35/3 6

-1.0,
0.960 0.965 0.970 35/36

k k

FICz. 5. (a) Same as 1(a), but for 0.96&k &0.972. For n =6 (dashed curve) the function represented is —, (al+aq). (b) Same as
1(b), but for 0.96 & k & 0.972.
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a (n)= —,'(3n —5)a (1),
b (n) = ——,'(3n +1)b (1) .

From (18) and (19) one gets the following results valid at
the ends of the spectra (k =0 or k = 1 —1/n ):

a~+aq, =4n / (n —1)" '/(n +1)"+',
k =1—1/n

(20)
b1+b2

k =1—1/n

8 n 5/2(n 2 4)1/2(n 1)n —3/2/(n + 1)n +3/2
5

lim n3/2a = 2' 7 27 2.e
3 (1+~)' I+r

X[4r (3 —2~)T) —12~(1—r)T)

ergies, by extrapolating the numerical results obtained
for large values of n .From our analytic expressions (14)
and (15) we have derived analytic results valid in the limit
n ~ oo. The calculation of this limit is similar to that per-
formed for Compton scattering amplitudes by Gavrila.
Even the results are in a close connection, as is proved by
an adequate analysis. The results are

For r=N (1 &N &n) the amplitudes a and b become
infinite if we do not include the finite widths of the energy
levels. The behavior in the vicinity of a resonance can be
obtained directly from the starting expressions (2) and (3).
Some details are given in Appendix C.

III. THE LIMIT OF LARGE VALUES FOR n

+(1—r) (3+2~)T3],
7-2

3/2~ 32 27-

15 (I+,)~

X[ 4~ T)—+(1 r) T3]—,

e
—27

where we have used the notation

(21)

(22)

For large values of n the invariant amplitudes decrease
smoothly as n . In the ns case Quattropani et al."
have estimated the values of the product of n with the
square of the amplitude for n ~ m, for several photon en-

1T = . P&(1 —~+j, 4 ~+—j,2—~+j;g—,g), (23)
l —~+j

with
g=(r I)/2r, —g=2(r —1) .
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FIG. 6. (a) Same as 1(a), but for 0.972 & k & 0.9796. For n =7 (dashed curve) the function represented is —,'o (a &+a&). (b) Same as

1(b), but for 0.972 & k & 0.9796.
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TABLE I. Two-photon transparency energies for several 1s-ns and ls-nd transitions, in the energy region 0.375 & k & 0.984.

1s-3s
1s-4s
1s-4d
1s-5s
1s-5d
1s-6s
1s-6d
1s-10s
1s-10d
1s-20s
1s-20d
1$-oos
1$-ood

0.375—0.75

0.6936
0.6912

0.6905

0.6901

0.6897

0.6895

0.6894

0.75 —0.8889

0.8714
0.8381
0.8707
0.8307
0.8705
0.8274
0.8704
0.8232
0.8703
0.8216
0.8703
0.8211

0.8889-0.9375

0.9299
0.9215
0.9295
0.9192
0.9294
0.9163
0.9293
0.9160
0.9293
0.9157

0.9375—0.96

0.9560
0.9529
0.9557
0.9510
0.9557
0.9505
0.9557
0.9503

0.96—0.972

0.9697
0.9676
0.9697
0.9672
0.9697
0.9671

0.972-0.9796

0.9780
0.9767
0.9780
0.9766
0.9780
0.9765

100
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FICx. 7. The function 4' in Eq. (26) for n = oo (solid curve)
and for n =20 (dashed curve) vs k, for 0.5 &k &0.75. (b) The
function 2) in Eq. (27) for n = oo (solid curve) and for n =20
(dashed curve) vs k, for 0.5 & k &0.75.

FIG. 8. (a) The function 4 in Eq. (26) for n = oo vs k, for
0.75 & k & O. 8889. (b) The function 2) in Eq. (27) for n = oo vs k,
for 0.75 & k &0.8889.
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eludes a portion from the first part of the spectrum, name-
ly, the region from 0.375 to —,'(1 —1/N'). The other five

regions continue the first one, extending from a resonance
to the next one.

Our results are presented as graphs. Figures 1(a)—6(a)
give the dependence of a~+a3 in Eq. (10), and Figs
1(b)—6(b) that of b~+b2 in Eq. (11), on the variable k for
several values of n. In the first energy region (Fig. 1) the
values of n are 3, 4, 5, 6, 10, and 16. The case of n =20
is included in the other regions, and also n =30 in the
last two energy regions (Figs. 5 and 6). We mention that
our results for 1s-nd transitions with n & 6 are completely
new, and that in the cases investigated previously in the
literature the energy region explored was usually less ex-
tended than in our case.

Our graphs show some general features of the sum of
the invariant amplitudes (a I +a 2 in the ns case, b ~ +b 2 in
the nd case): (i) a monotonous behavior from one reso-
nance to another, with a change of sign at each resonance;
(ii) the existence of a transparency in each region with the
following exceptions: nd transitions in the first energy re-
gion [see Fig. 1(b)], all transitions in the energy region be-
tween the last resonance and the end of the spectrum; (iii)
a not too strong dependence of n, especially in the first re-
gions; and (iv) in the last energy region for a given transi-
tion, its amplitude differs much more from the others
than in the previous regions (compare the situation of
n =5 in Figs. 4(a) and 4(b) to its situation in Figs. 1 —3, or
notice the situation of n =7 in Fig. 6).

We have determined numerically the position of the
transparencies in the six photon-energy regions studied.
The results are contained in Table I. For n ~ 10 the posi-
tion of the transparency is practically n independent. The
last two lines, corresponding to the limit n = ~, were ob-
tained from a calculation based on Eqs. (21)—(23). As
remarked by Tung et al. ' for small values of n, the posi-
tion of the transparency is different for ns and nd transi-
tions in the first energy region.

Our results concerning the limit case n = ao are con-
tained in Figs. 7—12. We have considered the same di-
mensionless functions as Quattropani et al. ,

" namely,

tion of the functions 4 and 2) for n = oo would allow use-
ful conclusions about the functions 4 and Xl for n & 20.
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APPENDIX A: EXPANSIONS
FOR THE APPELL FUNCTION Fi

AND THE HUMBERT FUNCTION $

For lx
l

&1 and ly l
&1 the function F& is given by

the double series
I

I')(a, ,p, p', y;x,y)= g g x y",
m=P n=Q Pm+n m n

(A 1)

A relation useful for the limit n ~~ presented in Sec. III
1S25

F~(a,p, p', y;x,y)

X F2(ia +m, p+p' +m, y +m; x) . (A3)

For
l

x
l

& 1 the Humbert confluent hypergeometric
function is represented by the double series

P~(a, b, c;x,y)= g g x y" .
m=Q n=Q m+n m nc

(A4)

It can be written also as

where a = I (a+ m )/I (a). For
l y l

& 1 one has the ex-
pansion

a p'
F&(~,pp', );x,y)= g y zFi(~+ni, p, y+ni;x).

m —Q Pm m

»n i~i+~219 2

klk2
(26)

an yP~(a, b, c„x,y)= g 2Fi(a +n, b, c +n;x) .
p cn 1„

(A5)

9
, , n'l bI+b2

k Ik2
(27)

The last expansion is valid in the whole complex plane of
the variable x except the region (1, oo ) of the real axis.

APPENDIX B: DETAILS ON THE LIMIT r~n
where k

&

——k and k2 ——1 —1/n —k
&

are the photon ener-
gies measured as indicated in Eq. (17). In Figs. 7(a)—12(a)
we have represented the function 4, and in Figs.
7(b) —12(b) the function 2), in the limit n = oo. They were
evaluated with Eqs. (21)—(23). In Figs. 7 and 9—12 we
present also the values of the function 4 or 2) for n =20
(dashed curves). We can see that the relative differences
between 4 and X for n =20 and for n = ap are usually
smaller than 10%. In the first two energy regions the
differences are much smaller than in the other cases; the
case n =20 is not shown in Fig. 8. With increasing pho-
ton energy, the relative differences between the compared
quantities increase. Nevertheless, we think that a tabula-

II —3
1

S) ——

, 1 —r+j+p
(3 n)~—

p

1q

X2F&(1— r+j +p, 3 +n, 2 r+j +p—;x) .

For ~~n the Gauss functions are finite, even for

When r~n the products (n —r)" S~, with j =1 and

j =3, and (n r)" S2,—where S~ is defined by Eq. (12),
are finite. They can be evaluated using the expression
(A2) for the Appell functions, which reduces to a sum of
(n —2) Gauss functions
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p =n —2 —j, because the variable x defined by (13) goes to
zero. The variable y goes to infinity, but its increase is
compensated by an adequate power of (n —r). In the case
of j=1 and 2 only the last term in the series contributes,
while in the case of j =3 the last two terms have to be re-
tained. We get in this way:

can transform a and b as

1 mea(r)=— +E
S10,no

—(E i
—II )(E„—II ) T i p p (0 ) (C3)

n —7
11m

n n+7

n —3 n —3—3n —4n +3 n —1

2n ( I +n) n + 1 b(r)= E1+E0— S10,n2

n —~
lim
~~n n +7

n —2
1 n —1

S2 ——
2n n+1

n —3 —(Ei —A)(E„—Q)Tip „p(Q)

n —7
lim

n n+w

n —3 —3n +4n +3 n —1
S3 ——

2n (1 n) —n +1

n —3 where

~nl, n'I'= I r RnlRn'I'd»
0

(B3) and

With Eqs. (Bl)—(B3) replaced in Eqs. (14) and (15), one
obtains the expressions (19) for the invariant amplitudes at

g 10 nl

Tip „i(fl)=—g E„-—A
(C5)

APPENDIX C: THE VICINITY OF RESONANCES

m, (E„E„)(Ei E„)— —a(r)=- R„"O'R n10',
3A'

2) n'
(C 1)

(n'~n )

2m, (E„E„)(Ei
—E„)—b(r)=- R„"2'R ip' . (C2)

15 „. i) E„—CL

(n'~n)

The sum is extended over the energy spectrum of the hy-
drogenlike atom (discrete and continuum). R„"I' denotes
the matrix element of r in the notations of Ref. 26. One
of the methods used in the study of 1s~ns transitions
(see Ref. 11) was the numerical evaluation of an expres-
sion identical (up to a factor) to Eq. (Cl).

We mention also that by standard manipulations one

As mentioned in Sec. II, if we do not include the finite
widths of the energy levels, the invariant amplitudes a and
b [Eqs. (14) and (15)] become infinite for 0 equal to an
energy eigenvalue situated between E1 and the final ener-
gy E„. The behavior of the amplitudes in the vicinity of a
resonance can be obtained from Eqs. (14) and (15), or
directly from the starting expression (2) of the Kramers-
Heisenberg matrix element, in which the Green function
is expressed by its expansion in terms of energy eigenfunc-
tions. After simple transformations (the replacement of
the matrix elements of the operator P by those of r, and
the performance of the angular integrals), Eq. (2) leads to

(n N)(N 1)— —
12(r—N)Nn

b(r) = —,'a(r)R„q' /R„p'

(C6)

(C7)

In the above equations we made explicit the dependence
on the variable r, connected with 0 by Eq. (8). To
Q =E~ corresponds r =

¹ According to Eq. (16) this
corresponds to the photon energies k = 1/N —1/n
(when ri N) and k =1—1——/N (when r~=N). The first
set of energies is located in the first half of the spectrum
and the other set in the second half.

The matrix element R,p' in Eq. (C6) has a simple ex-
pression. The other matrix elements can be evaluated
from the general formula given in Ref. 26. We write here
only the expressions of the amplitudes near the first reso-
nance, corresponding to 0 in the vicinity of E~ (r =2):

2" n'&n n —2
3~ (iii —4)~ n +2

'n
1

2 —7
(C8)

8b=—
5

1/2
n —1

a .
n —4

(C9)

When work is performed in the length gauge, the main
quantities to be evaluated are the amplitudes T10 „I.

In the vicinity of O=E~ only the contribution of the
term with E„=E~ is important in (Cl) and (C2) and,
consequently,
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