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Effects of structure on the liquid-glass transition
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We investigate the effects of liquid structure on the transport properties of dense fluids, using non-
linear fluctuating hydrodynamics. The longitudinal and shear viscosities for a Lennard-Jones system
at different temperatures and pressures are computed. We find a rounded version of the transition to
a glassy phase. Agreement of our results with computer simulation data is good. We also find quali-
tative agreement between our results and real experiments.

I. INTRODUCTION

When a liquid is rapidly cooled below its freezing point
it falls out of equilibrium and is arrested in a metastable
state. The system is then said to be in a glassy phase,
characterized by very long relaxation times and large
viscosities. Recent studies' suggest that relaxation in
glassy phases shows different types of temperature depen-
dence ranging from Arrhenius-type behavior to much
weaker power-law behavior. The latter is observed to be
the case in a wide number of laboratory systems and also
in computer simulations of simple systems. ' In a recent
set of papers ' nonlinear fluctuating hydrodynamics
(NFH) was used to investigate the nature of this transi-
tion. The main new result obtained was the prediction of
a rounded version of the transition due to a mechanism
that keeps the system ergodic at all values of the density.
In these works attention was mainly focussed on the dy-
namic aspects of the problem. A11 static correlations in
the system were totally ignored and the wave-number
dependence in the theory was treated in a very simple
way. Approaching higher densities, the structural relaxa-
tions in the supercooled state are increasingly retarded.
The liquid structure, which is reflected in the wave-
number dependence of the static structure factor, plays an
important role here. In this paper we investigate how the
dynamic mechanism, described in Refs. 4 and 5, that
drives the system to a more viscous state is affected by the
various contributions of the different length scales in the
liquid structure. We consider a liquid that has a structure
factor with a well-defined peak at the wave number qo&0,
consistent with other studies on similar systems, and take
into account the large wave-number contributions to the
the viscosity. It should be pointed out here that we as-
sume the static properties of the fluid are little affected by
the transition and it is still the dynamic slowing down of
the density fluctuations that is mainly responsible for the
increase of the viscosity. As we will see here, we can
make more detailed predictions about the "transition"
than in Ref. 5.

The basic mechanism that increases the viscosity was
first identified by Leutheusser from work on kinetic
theory of dense fluids. It involves a nonlinear feedback to
the viscosity from the correlation of density fluctuations.
A similar model was also introduced by Bengtzelius,

Gotze, and Sjolander. In Ref. 5 the same model was de-
rived using the equations of NFH for a compressible iso-
tropic liquid with thermal noise. The main question ad-
dressed there was: What is the dynamical behavior of a
liquid if it is cooled in such a way that it always remains
in a stationary state and if crystallization is avoided? The
analysis focused on how the long-distance, long-time
properties of the fluid will be affected by the feedback
mechanism mentioned above. A careful analysis showed
that for time scales that are much longer than the usual
hydrodynamic regimes, the system remains ergodic for all
values of the density. However, the feedback mechanism
remains active over an intermediate-time scale and
enhances the viscosity until nonhydrodynamic effects cut
it off. As the density of the fluid increases, the hydro-
dynamic regime is shifted to even longer times and the
system becomes more sluggish. The viscosity of the liquid
increases with the increase in density but it never actually
diverges. Thus, there is never a sharp transition to an
ideal nonergodic glassy phase. While these works provid-
ed an insight into the basic dynamic mechanism by which
the enhancement of the mode-coupling contributions to
the viscosity takes place and the role of the nonlinearities
in cutting off the sharp nature of the transition, no com-
parison of the results were made with those of real or
computer experiments on similar systems. The reason for
this was that all the results were stated in terms of a cou-
pling parameter A, where temperature and density depen-
dence is ill defined unless we take into account the static
correlations in the system.

In this work we take the static correlation of density
fluctuations in the system to be wave-vector dependent.
This probes the possible effects the structure of the liquid
might have on its dynamical behavior at high densities.
We can then state our results in terms of physical parame-
ters like temperature or density. We have considered here
the case where the structure of the liquid is coarse grained
to a length scale where only the first peak of the structure
factor is relevant. This dictates our choice of the free-
energy functional for the system which has an important
role in determining its dynamics. The main reason for
this coarse graining is that we can then work with a
Gaussian free energy with gradient terms, keeping the
mathematical analysis simple. As a result of having these
gradient terms, we now generate a coupling between the
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shear viscosity and the density fluctuations.
We will include only the hydrodynamic variables in our

analysis and ignore any further complications. We believe
that inclusion of energy fluctuations or some new slow
variables (e.g. , the layer field displacement in a smectic-3
liquid crystal' ) in the problem might give further insight
into the dynamical behavior of the liquid. We intend to
investigate this in future work.

This theory requires the static structure factor for the
system as a function of density and temperature as input.
This is determined by the interaction potential. One
could choose many different potentials and investigate
how they affect the transport properties of the fluid.
However, our main purpose here is to see the effects com-
ing from different wave-number regimes. So, to keep
things simple, we have considered a system interacting
through a Lennard-Jones (LJ) potential. This type of sys-
tem was chosen since the standard literature contains
sufhcient information about the statics of such a system.
Glass formation is not observed in laboratory experiments
in this kind of system. However, in computer experi-
ments, one can achieve much faster cooling rates (10"
K/s) and a simple LJ fluid or even a hard-sphere system
can be brought into a glass phase. A number of works
have suggested a glass-transition region in the molecular
dynamics and Monte Carlo simulations of such systems.
These provide a good source of comparison with the pre-
dictions of our theory.

We have explicitly calculated the mode-coupling contri-
butions to the longitudinal and shear viscosities. Our re-
sults show that the decay of the correlation of the density
fluctuations, as a function of wave number, slows down
considerably near the peak of the static structure factor,
as was pointed out by Kirkpatrick. " We have obtained
reasonable quantitative agreement between our result for
the shear viscosity and that obtained from computer simu-
lations on similar systems at constant temperatures.
Also, molecular-dynamics simulations of simple LJ
liquids along the zero-pressure isobar by Clarke' show
that a glass transition in such systems occurs at
T =0.29. [T is given in a dimensionless unit defined by
Eq. (4.2).] When cooled along a zero-pressure isobar we
find that at higher temperatures our data for both the
shear and longitudinal viscosities fit very well to a power
law form (T*—T~*) with a=0.9 and Ts*=0.29. How-
ever, at lower temperatures the sharp nature of the transi-
tion is cut off and the viscosity never actually diverges al-

though it keeps increasing with the fall of temperature.
This power-law behavior over an intermediate tempera-
ture regime also agrees qualitatively with the experimental
observations by Taborek, Kleiman, and Bishop in a num-
ber of laboratory systems.

The wave-vector dependence in the model deduced
from kinetic theory was considered by other authors. ' ''
These works predict a sharp transition to an ideal glassy
phase. In Sec. V we will refer to results obtained from
such calculations.

It should be emphasized that our main goal is to get an
idea about how the transition is affected by the associated
structure of the liquid. For this reason we have not at-
tempted a highly accurate description of the static struc-

ture factor. The numerical values of different quantities
stated here should be considered only as reasonable ap-
proximations. Detailed descriptions of any formal devel-
opment will also be avoided, since this was carried out in
earlier work on this subject.

In Secs. II and III we will describe very briefly the for-
mal developments needed for the discussions of our re-
sults. Thus, in Sec. II we describe the equations of NFH
studied and in Sec. III the field-theoretic formulation of
the problem and the effect of the nonlinearities are
presented. In Sec. IV we present the method we have
used to calculate the static structure factor of the liquid.
The main implications concerning the glass transition are
described in Sec. V. In Sec. VI we summarize the main
conclusions.

II. EQUATIONS OF NONLINEAR FLUCTUATING
HYDRODYNAMICS FOR COMPRESSIBLE FLUIDS

A. Langevin equation

We start with the simplest set of hydrodynamic vari-
ables for a compressible liquid. This consists of the mass
density p, the velocity V and the momentum current den-
sity g. They are constrained by the nonlinear relation

g=pV . (2. 1)

The dynamics of the hydrodynamic variables are
governed by a generalized Langevin equation. ' ' ' The
explicit form of these equations was deduced in Ref. 5.
The analysis' remains the same here and we just state the
results. The equation for p is the continuity equation

(2.2)

(2.3)

Here F„[p(x)] is the potential energy part of the effective
Hamiltonian F governing the equilibrium behavior of the
hydrodynamic variables. Thus we have

F —F (2.4)

where the kinetic energy term Fz is given by

F~ = —,
' f dxg (x)/p(x) .

The damping matrix I.;~ is given by

L, (x)= —go( , V V, +&, V ) —goV V, —

(2.5)

(2.6)

where i)o is the bare shear viscosity and go the bare bulk
viscosity. We define the bare longitudinal viscosity
l o=go+4i)o/3. The noise OJ is Gaussian and satisfies

(e, (x, t)e, (x', t') ) =2k TL; (x)6(x—x')Alt —t') .

(2.7)

The equation for g; is the generalized Navier-Stokes'
equation

Bg; 6F„
V

= —pV, —g V, (g;g, /p) Q I-;, (g, /—p)+B, .
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The first term on the right-hand side (RHS) of Eq. (2.3)
gives the force term in the Navier-Stokes equation while
the second term is the usual convective term as it appears
normally in the equation for g;. The set of equations (2.2)
and (2.3) together with the nonlinear constraint (2. 1)
governs the dynamics of the hydrodynamic variables in
our model. However, the first term on the RHS of Eq.
(2.3) will be determined by the form of F„ in the free-
energy functional. We consider this next.

B. Free energy

The static properties of the system are determined by
its free-energy functional. Thus, in general, the equilibri-
um averages of the fields +; at equal times are given by

(4;ql ) = f D(4') e ~ ( )qr;4 /Z, (2.8)

the theory. In this paper we will work with the free ener-

gy

dx 3 6px +a5px P +qo $px

+ g'(x)
p(x)

(2. 10)

where 5p(x)=p(x) —po. A and ~ are functions of density
and temperature. Clearly there is nothing unique about
this choice of the free-energy functional but it is technical-
ly advantageous since it is quadratic in the density fluc-
tuations. To avoid technical complications we will as-
sume that the 1/p factor in the kinetic energy term does
not influence the statics.

Using Eq. (2. 10) in Eq. (2.8), we obtain a static struc-
ture factor

where

(2.9)
Xpp(q) = 1

A +jr(q —qo)
(2.11)

is the partition function, P=(k&T) ' and D(%) indicates
a functional integral over the fields +;. For our purpose
here, we will select a free-energy functional that gives rise
to a static structure factor similar to that observed in real
liquids. As was noted in the Introduction, we take into
consideration only the first peak in the observed structure
factor. This amounts to a coarse graining of the system.
A large wave-number cutoff A thus naturally enters into

where X (q) is the Fourier transform of (6p(x)5p(x') }.
Now using Eqs. (2.5), (2.6), and (2.10), we can write Eq.
(2.3) in terms of a stress tensor a;, ,

Bg; = —QV, cr;, +8; .
at

(2.12)

The stress tensor o.
;~ can be divided into a reversible part

o.; and a dissipative part o; which are given by

R + (Y '(0)(5p) +~I[V (6p)] —2[V(6p)] [V(V +qo)(6p)]))

+~[5pV;V, (V +qo)(5p)+V;VJ(5p)(V +qo)5p] (2.13)

and

crPj i)o[V; V——~+V~ V; ——,'5;~(V.V)]—(O5; (V V) .

It is useful to note here that the symmetry o.
;~

=o.;~+cr,~ =o. ; ensures conservation of angular momentum.

(2.14)

III. FIELD-THEORETICAL FORMULATION

A. The Martin-Siggia-Rose formalism

In order to investigate what effects the nonlinearities in the equations developed in Sec. II have on the transport prop-
erties of the system, we need to develop a formalism convenient for renormalizing the linear theory. %'e will use for this
purpose the Martin-Siggia-Rose (MSR) formalism which is standard in the literature for studying the statistical proper-
ties of a classical system. The formal development needed is identical with the work done in Ref. 5. We have to intro-
duce a set of conjugate fields p, g;, and V; corresponding to the original fields p, g;, and V;, respectively. Here we will
only state the new form of the MSR action expressed as a symmetric function of the hatted and the unhatted variables.
Let qr (1) be a vector where a runs over p, p, g, , g, , V;, and V; and 1 labels space x& and time t, . The action can then
be written in the following form:

A[ql]= —,
' f dl f d2++ (1)[GO '(1,2)] p+p(2)+ —,

' f dl f d2 f d3 g V g (1,2, 3)+„(I)+p(2)W (3)
a,P a, f3, y

+ —,
' f dl f d2 f d3 f d4 g V p „(1,2, 3,4)+ (I)+p(2)qr (3)+„(4), (3.1)

a, g, y, p

where the Go (1,2) corresponds to the Greens functions in the linearized theory. We give the space-time Fourier trans-
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form [Go '(q, co)]„p of this matrix in Table I. The wave-vector-dependent speed of sound, co(q), shown there has an ex-
plicit form

co(q)=po[A +lr(q' qo—)']=poXpp'(q) .

The symmetrized cubic vertices are given by

V pr(1 2 3): [V pr(1 2 3)+ Vp r(2 1 3)+ V~p (3 2 1)+V rp(1 3 2)+ Vpr (2 3 1)+ Vy p(3 1 2)]

where

3

V p~(1, 2, 3)= Q V'pr(1, 2, 3) .

(3.2)

(3.3)

(3.4)

The unsymmetrized vertices V '&z(1,2,3) are given by

V") r(1, 2, 3)=i g 5 - V~("I 5;, [—,'X~~'(q)5(1, 2)5(1,3)—1~7' 5(1,2)V 5(1,3))

+a[5J5(1,2)V —V;5(1,2)V'J + V;V'J5(1, 2)](V' +qo)5(1, 3) ]5p&5& z (3.5)

from the term nonlinear in 6p,

V' p~(1, 2, 3)=ipo g 5 V'~"5p, 5r, 5(1,2)5(1,3)

from the convective term, and

(3.6)

gitudinal components of the fields g,V and their hatted
counterparts separately making the analysis slightly
simpler. We can split the 6's into their longitudinal and
transverse parts

G p (q, co)=q;q, G p(q, cu)+(5;~ q;q, )G p—(q, co) .

V ' )~(1,2, 3)= i g 5—; 5p p5r, . (3.7)

x V', "(5(1,2)5( 1,3 )5( 1,4)) . (3.8)

from the nonlinear constraint g=pV. The symmetrized
quartic vertex is one-sixth the sum of all pairwise permu-
tations of the set of variables (a, l), (P,2), (y, 3), and (p,4)
labeling the unsymmetrized vertex V pr„(1,2,3,4) where

V pr„(1,2, 3,4) = —g 5 6p p5~, 5„,
Ij

(3.10)

Similarly the X's can also be split into X and X . These
self-energies were analyzed in considerable detail in Ref. 5

and several relations among them were established. In
the small q and co limit, the correlation functions G++
were expressed in terms of the corresponding response
functions 6++. In the following we will state some of
those results in a more generalized form that will be use-
ful for our later analysis.

(i) The transverse velocity correlation function G„can
be computed as

B. EÃect of the nonlinearities

The Green function in the full nonlinear theory is given

by the following Dyson-type equation:

G '(1,2)=GO '(1,2) —X(1,2) . (3.9)

Thus the correction due to the nonlinearities is obtained
through the self-energy X. As there are a large number of
fields, the matrix of the Greens functions gets quite in-
volved. However, we can treat the transverse and the lon-

G„(q,co) = —2/3
' ImG, -,

where the response function 6, is given by

G,-(q, co) =
pTco+iq rj(q, co)

with

pT ——po —iX-„(q,~),
q rI(q, co)=q qo+iX, (q, cu) .

(3.1 1)

(3.12)

(3.13)

(3.14)

p gj Uj p Vj

TABLE I. Entries of the inverse (Gp ) p of the zeroth-order
matrix Gp.

Equation (3.14) gives the renormalization for the bare
shear viscosity qo.

(ii) The correlation function G~~ can be computed as

Gpp(q, co) = —2P 'Xpq(q)lmG (q, cu), (3.15)

p
gt
U;

p
gt
U;

0 0
0 0
0 0
Cc) —qj—q;c p(q) co6;,
0 i6;,

0
0
0
0

I,I ij

po~ij

q;
0
0
0
0

qjcp(q)
—CO6,j
iI.;~

0
2P 'l. ,J

0

0
i5;,

—Ipp6, ~

0
0
0

where the response function G (q, co) is given by
PP

pLcu+il (q, cu)
G (q, co)=

z 2 z
p(cLo qc )+i 1 (q—,cu)f~+iqX, (q, co)]

(3.16)
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and

1(q,cp)=q I p+iX, (q, co),

qc (q, cp)=qcp+X- (q, cp),

pt (q, co) =pp i—X,„(q,cp) .

(3.17)

(3.18)

(3.19)

We use the diagrammatic expansion discussed in Ref. 5 to
obtain the contributions to the self-energies to one-loop
order, the nonlinear vertices involved in the calculation
are listed in Eqs. (3.5) —(3.8). We are using a static struc-
ture factor given by

Equations (3.17) and (3.18) give the renormalized longitu-
dinal viscosity and the sound speed, respectively. We be-
lieve the q and ~ dependence of pl and pT are not very
important here. We will replace these quantities by their
zeroth-order values, pL(0,0) and pT(0,0) and for practical
purposes take both of them equal to the physical density.

(iii) Next we consider the quantity X-, (q, cp). Note that

this self-energy arises from the nonlinear constraint (2.1).
Its role in cutting off' the sharp nature of the transition
was discussed in Ref. 5. A relation between X and X

V P V.
V~

was established there and it is given by Eq. (6.65). This
result was proved for small q and co to all orders of per-
turbation theory. Here we will assume that the corre-
sponding result for finite q and co also holds true. This
can be written as

1

z z
for q(A

X«(q) = A +lc(q' —qp)

0 forq~A,

(3.2 la)

(3.2 lb)

1 (q, cp)=1 p 1+A. f dt e'"'I™(q,t)
0

(3.22)

and

where A serves as a large wave-number cutoff.
The renormalized shear and longitudinal viscosities can

be written in the form

c;qz
q;X, (q, co)= ', c (q)X, „(q,cp)=q [y(q, cp)] .

2 p I J

rt(q, cp)=1 p +X f dt e' 'q' I(q, t)
0 0

(3.23)

(3.20)

We believe that at this level of sophistication this is a
reasonable assumption in estimating the large-wave-
number effects in the theory. The task of testing correc-
tions to these assumptions for finite q and co remains a
matter of further research.

C. One-loop contributions

We have listed above in Eqs. (3.14) and (3.17) the re-
normalization of the shear and the longitudinal viscosities.

k is a dimensionless parameter related to the temperature
and density of the liquid in the following way:

k~ TA'

pc
(3.24)

where c =c (q =0). I I I(q, t) and g' '(q, t) are the contri-
butions to the respective transport coefficients due to the
coupling of the density fluctuation modes. We obtain the
following expressions for I ' '(q, t) and g™(q,t) at the
one-loop order:

I' '(q, t)= f dk k f du[7 '(q —k)+tc(2ku —q)[q(q —k) —2ku(qp —k )]I G (k, t)G (
~ q —k ~, t) (3.25)

and

~'-'(q, t)

= f dk k f +
du [tc(2ku q)(qp —k )k] (1——u )

X G«(k, t)G«(
~ q —k ~, t), (3.26)

where u, =q. (q —k)/
~ q —k

~

and u =q k. Note that in
writing down (3.25) and (3.26) we have transformed the
time into a dimensionless form by letting

(3.27)

Also, we have absorbed the contributions to the corre-
sponding self-energies corning from the convective vertex

(3.6) as renormalizations of the bare viscosities gp and I p,

respectively. This is done since we want to focus our at-
tention on the contributions coming only from the cou-
pling of density fluctuation modes. It is known from the
study of incompressible fluids that in three dimensions
the convective vertex has finite contributions to the trans-
port coefficients while for two or less dimensions it gives
rise to divergences and conventional hydrodynamics
breaks down. Thus in low-dimensional systems such con-
tributions must be treated carefully and will compete with
the feedback mechanism coming from the nonlinearities
which are solely due to density fluctuations. So our
analysis here applies to three-dimensional systems only.

Finally, we obtain the following expression for
X -, (q, cp) from Eq. (3.20) by computing X„-„(q,co) to one-

loop order,
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2 2( )qX', (q,co)=, I(1—u )[G„(k,Q)+G„(k,A, )]G (
~ q —k ~,cu —0)+uu, G~, (

~ q —k ~, e7 —Q)G, (k, Q) I .
2P

—'p

(3.28)

This completes the formal development we needed for
the realization of our model. At this stage we have
reached a coupled set of equations (3.11), (3.16), and
(3.20) consisting of G and G,„. We will solve these
equations numerically in the time domain to obtain the
behavior of the density-correlation function. The latter
can then be used to compute the mode-coupling contribu-
tions to the transport coefficients given by Eqs. (3.22) and
(3.23). Before discussing this, we need to know the values
of the phenomenological parameters A, ~,qo for the fluid
as functions of temperature and density. This is con-
sidered next.

IV. STATIC STRUCTURE FACTOR

To make any quantitative statement in our theory we
need to know the values of the parameters 3, ~, and qo in
the free energy introduced in Eq. (2.10). In other words,
we need the X (q) for the liquid as a function of density
and temperature. For this purpose we will consider a
simple monoatomie liquid interacting through a
Lennard-Jones (LJ) potential which is given by

'12 6

w (r) =4e
r

(4. 1)

w (r)+e, r (2'"o
Qp= c

0, r &2'"o-
(4.3a)

(4.3b)

and

—E, r(2 o
u (r)=

u (r), r )2'"~ .

(4.4a)

(4.4b)

Now we replace the system by a trial system in which the
pair potential is given by

w7. (r) = ud (r)+ u7. (r), (4.5)

Here o has the dimensions of length and e has dimen-
sions of energy. Henceforth, we will use the following di-
mensionless representations for the number density n, the
pressure P, and the temperature T of the liquid:

P 3

p =na. , P*=, and T*=
E Pe

Here we will briefly sketch the procedure we have used
for calculating the static structure factor. This was first
described by Weak, Chandler, and Anderson. In this
approach the LJ potential is split into a harshly repulsive
part uo(r) and an attractive part u (r) defined by

where

u7-(r) =u (r) for r )d, (4.6a)

oo for r (d
ud

0 for r)d,
(4.6b)

(4.6c)

(4.7)

where g (q) is the structure factor in the trial system and

g7 (r) is the pair-distribution function for it. Equation
(4.7) implies that we can calculate the structure factor for
the original system in terms of the properties of the trial
system. Note that in the trial system the repulsive poten-
tial was replaced by a hard-sphere potential. The main
reason for going over to this trial system lies in the fact
that a great deal of information is available for hard-
sphere systems. Thus as the simplest approximation we
neglect the attractive potential uT entirely and consider a
hard-sphere system as the trial system. However, the
hard-sphere diameter d is an open parameter here. Its
value is chosen such that the compressibility Xe~(q =0)
for the original and the trial systems are equal. Under
that condition the Helmholtz free energy for the two sys-
tems agrees to fourth order in a perturbation theory. It
should be noted that we are interested in the structure of
the liquid at high density and hence the major contribu-
tion to it comes from the repulsive part of the pair poten-
tial. Thus we will take the structure factor for our system
to be that of a hard-sphere whose diameter is equal to the
value of d given above. For the hard-sphere system we
have used the Wertheim-Thiele solution of the Percus-
Yevick equation with the corrections proposed by deerlet
and Weiss. ' Indeed, for a highly accurate value of
Xez(q), especially at high temperature and low density,
one needs to take into account the perturbative correc-
tions coming from the attractive part of the pair potential
and follow the procedures outlined in Ref. 23. However,
as was noted in the Introduction, we have not worked
here for such accuracy. The compressibility factor PPlp
and hence the pressure P is evaluated up to first order in
the perturbation theory. We have used the Carnahan-
Starling equation for the compressibility factor of the
reference hard-sphere system.

Now we choose the values of 3, ~, and qo such that the
functional form (2.11) for the structure factor of the liquid

and d (2' 0.. It is quite straightforward to show that
the structure factor in the actual system is approximately
given by

(q)=X (q}+p I drgr(r)e

—p~(. j&&(e ~ '"I —e )exp( i q r), —
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10 TABLE II. The best-fi
th

es -fit values of parameters 3 ~ an q
urve a ong the P*=0 isobar.

0.20
0.24
0.28
0.32
0.36
0.40
0.44
0.48
0.52
0.56

1.055
1.037
1.020
1.003
0.990
0.970
0.953
0.937
0.920
0.904

0.1054
0.1233
0.1415
0.1604
0.1800
0.1995
0.2208
0.2404
0.2611
0.2811

0127
0111
0099
0088
0079
0072
0065
0060
0055
0050

qo

7.62
7.55
7.49
7.43
7.38
7.33
7.28
7.23
7.19
7.15

V. IMPLICATIONS FOROR THE GLASS TRANSITION

FIG. 1. Structure factor at T*=0.20 and P*=
E

th lt obt i d ith th
given y Eq. (2.11). The soli

the dashed line show th b

'ne wit the method outlined inin Sec. IV while
ows t e best-fit curve.

is a best fit to the values of X ( ) calcuq

rameters as a functio
n a e II we give a set of values fs or those pa-

interesting to note that while the wi

the peak changes very s i tlg tly. This indicates that the

cooled regions or to
muc ower than that correspondining to super-

r o crysta ization. In Fi . 1

the structure factor of h
T=

ac or o the liquid at *= 1.05

choice of 3
es t to this curv

, qo, and K. We take the v
es t t h' curve with a proper

e value for the upper
e wave-vector inte rationg ions close to the first

in t e structure-factor eak
mation for S( )

peak since the approxi-

gion.
r q givenb E . 2y q. ( .11) is best up to that re-

G (q, t)

Xpp(q)

G„(q,t)
q, t)=

X„(q)

(5.1)

(5.2)

where 7 is thee equal-time transverse velo
and is equal to P '/

e ve ocity correlation

transform of E (3.
p. Now we take the

'

qs. . 12) and (3.16) to o
he inverse Laplace

two inte ral diffe
) o obtam the following

gra i erential equations for 4 d
ly:

ra i e an, respective-

ur main goal in this section is to corn ute t

viscosities coming f
ions to t e longitudinal and shear

Expressions for th
ing rom t e densit -Auy- uctuation modes.

or t ese contributions u to on-
b E . (322)

IV we describ d
'

d
qs. . and (3.23) res

e in etail how we determ
pectively. In Sec.

p

o fi
, ~, an qo necessary for this

pis o n out the time-de endent
unc ion ~~ q, t). For this ur

two functions 'P and
is purpose we define

s an related to the densit an
turn correlations in th f 11'n e o owing way:

ensi y and momen-

~ ~

%(q, t)+q 9., q (q, t)+Afd 4,I r %(q, t —~)I' '(q, r)

q &
dr y(q, t —r) +(q, r)+X d 'd, —,r r' I™(q, r —r')g(q, r') =0, (5.3)

(5(q, t)+A, iq P(q, t)+ k (q, t —r)P(q, r)dr =0, (5.4)

where

(5.5)
r,'w'

1

p C

and A, is the dimdimensionless parameter define
ribdi Rf. 5. I h'

p
q i erent from the one d-e e-

q. . ) the quantity y(q, t) is obtai d f
sing Eq. (3.28) we get the following expression for

o aine rom the inversee Laplace transform of ( co)
~ ers o

ression or y(q, t) to one-loop order:
y q, co



218 SHANKAR P. DAS 36

pp( ~q —
I ~ (1 „')e( ~q —&I t)&(k"z(q, t)=-,' I dk k' J, "" z„(0)

X„(k) q(
~ q —1 l. t) +(k t)+ y (o)pp

(S.6)

ere defined with Eq. (3.26).

differential equauations given by (5.3), 5.4, an . w
1 tion functions 4(q, t)he deca of the corre a ion
hh time. We solve t ese eq

1 dto P( =0)'
ct to the initia con i

'

=0)=0 for all values q up to=0)=1 and qr (q, t= = or

sko forms29 for a hard-sphere system wit iame

b to
te O(, t bac in o e

tain the mode-coup ing con r'

Fi 2 11o1 and the shear viscosity. iguthe longitudinal an
f the wave vectorthe time decay of + for different values o e

q at p* = 1.055 and P =0.
own of the decay o ef density fluctuationsThe slowing dow

k
'

well known in thenear the static-struccture-factor pea is we
need here by there and this is further en ance e

-op'g
the mode-coupling integrals in-

es of indicates how t e mi
of the liquid contributes to the mo e-cou

ns ort coefficients.volved in the tran p
ill refer to a dimension-

* 1-d h. .h-. .--,'n our results we wi re er o
less form for the longitudinal an e
given, respectively, by

e 2 T —1/21 *=1[tr (m k T) '
] and i)*=rI[tr (mkti ] .

lot our result fo«(q ~=0) at T*=0.4gIn Fig. 3 w po
For large wave numbersand I' =0, as
hich is hysica11y sensi-

as a function of qo
Qrt coefficient is small w ic pthe transpor c

t sport coefficients go tover small lengths t e transpoble. For very sm
h t.-t'me properties of thetheir values calculated

d transport
ed from s ort- Ime

i uid. The molecules g PP
ed to be less

et tra ed in cages aniqui
all-len th scales is expected to eover such sma - eng

oolin . At some in erm
'

termediate-lengtheffected by supercoo
'

g.
b some kind ofco ic, there appears to e soscale, still microscopic,

the h drodynamic'g 'gp
ural effects in t e transpo

Since experimental measuremen s c
h fl 'd t macroscopic 1 th

llf
erties of the ui a m

the rest of this section we wi ocus
W h calculated the quan-lts at =0. We ave c

) 1 1

lt f-=0 co=0) and rj(q =0, co= a
1-of density and temperature. ur main

lows.
constant temperature. First we cal-

viscosity as a function o t e en
'

rature constant atkeeping the temperature
lt with the sheari . 4. We compare this resu t wited in Fig.

1 cular-dynamics simula-viscosities oobtained from mo ecu ar-
r intermediate values of

ent is goo . At very low densities,
similar systems. or in erm

however, the agreement looks poor, possi y e

0.99 40

0.94

30

0.89

20

0.79

10

0.74

10 15 20 25 30 4 6 10

the density correlation functio q,
'

n 4(,t) in
time for i erend'ff t values of q near the first pea in e s

factor at p =1.055 and P*=O.

contribution to t e g'ion itudinalFIG. 3. Mode-coupling con
t T*=0.48 andof the wave number atviscosity as a function o

P*=0.



36 EFFECTS OF STRUCTURE ON THE LIQUID-GLASS TRANSITION 219

60 3.5

50 Theory 3.25

Computer Simulation data

40

y(0,0)

30 2.75

20 2.5

10 2.25

0.25 0.5 0.75 1.25 0.29 0.39 0.49 0.59

P

FIG. 4. Shear viscosity of the liquid compressed at a constant
temperature T*=1.5 as a function of the density. The results
obtained from computer simulations up to intermediate values of
the density are also shown.

starting point in our analysis was the approximation (2.11)
for the structure factor of the liquid, which is not good at
such low densities. As the density is increased (for
p* & 1.0) we do see a substantial enhancement in the
shear viscosity due to mode-coupling contributions.

(ii) Calculation at constant pressure. Most laboratory
glasses are produced by cooling at a constant pressure, so
we consider a Lennard-Jones system cooled at a constant
pressure 8*=0. The calculated values of the shear and
longitudinal viscosities as a function of temperature are
listed in Table III. We find that for T* &0.35 the data
for both the shear and longitudinal viscosities agree very
well with the power-law form (T*—0.29) with a=0.9.
As one approaches lower temperatures (hence higher den-
sities) the sharp nature of the transition is cut oft; i.e., the
viscosity keeps increasing but always remains finite. In
Fig. 5 we show the behavior of the quantity y(0, 0) in Eq.
(3.20) with temperature. As the temperature is lowered
this quantity becomes smaller, showing that the diffusive

FIG. 5. y(0, 0) vs temperature along the zero-pressure isobar.

mode discovered in Ref. 5 is getting slower. In order to
demonstrate the cutoff nature of the transition we plot the
inverse of the viscosities and also their power-law fits for
the high-temperature regions are shown in Figs. 6 and 7.
The nature of these curves is qualitatively rather similar
to the behavior of several laboratory systems described in
Ref. 3. There it was claimed that for an intermediate-
temperature regime higher than the usual glass-transition
region, the viscosity has a power-law behavior with a
nonuniversal exponent, and that the value of this ex-
ponent ranges from 1.5 to 2.3 for different systems.

0.125

0.1

0.075

TABLE III. The longitudinal and shear viscosities calculated
along the zero-pressure isobar.

0.05

0.20
0.24
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0.52
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1.0550
1.0370
1.0200
1.0030
0.9859
0.9697
0.9520
0.9366
0.9203
0.9041

241.7138
185.S153
159.0556
117.8771
81.5944
57.6154
41.9876
33.8791
27.9785
23.4660

82.6857
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52.6447
41 ~ 1245
30.1606
20.7921
15.5925
12.8525
10.8410
9.2758
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FIG. 6. Inverse of the shear viscosity g*. The solid line cor-
responds to a power-law fit (T*—Tg*) with Tg*=0.29 and
a=0.9, for T* ~0.35.
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FIG. 7. Inverse of the longitudinal viscosity g*. The solid
line corresponds to a power-law fit (T*—Tg*) with Tg*=0.29
and +=0.9, for T ~0.35.

We can make a better comparison of our results with
data from computer experiments done on LJ systems. In
Ref. 13 a LJ fluid was cooled along the zero-pressure iso-
bar and their calculated diffusion coefficient fits a power-
law form (T*—0.29) with a=2. The vanishing of the
extrapolated diffusion coefficient at T*=0.29 reflects the
transition to a glassy phase. The power-law fit of our
data in Figs. 6 and 7 (shown by solid lines) demonstrates
similar behavior for high temperatures until the sharp
transition is cut off in the low-temperature regime. Thus,
apart from the poor matching between the exponents, our
findings can be regarded as being in good agreement with
results obtained from studies on computer liquids as well
as having qualitative agreement with results for real
liquids.

VI. CONCLUSION

We have considered here a simple model for an isotro-
pic compressible liquid and computed the contributions to
the transport coefficients due to coupling of the density-
fluctuation modes. In Ref. 5 a similar analysis was car-
ried out in a much simpler but unphysical situation where
the structure factor for the liquid had no wave-number
dependence. In this work the wave-number dependence
of the structure factor for the liquid is similar to that ob-
served in real systems. As a direct consequence of this we
were able to make contact between our results and those
obtained from other studies on similar systems. In the
flat-spectrum case there was no coupling between the
shear viscosity and the density fluctuations, since such a
coupling is generated by gradients of the density in the
effective Hamiltonian F„[p]. So in the present case we
also obtain the mode-coupling contribution to the shear
viscosity.

Recent work' by Bengtzelius treats the wave-vector
dependence in the mode-coupling theory of the glass tran-
sition. This model was deduced from the kinetic theory
of dense fluids. At high density it shows a sharp transi-
tion from an ergodic phase to a nonergodic phase. In this
nonergodic phase the Laplace transform of the density
correlation function has a 1/w pole, which means that it
decays to a nonzero value in the long-time limit. This is
classified as an ideal glass. On the other hand, the model
we have discussed here was obtained from the equations
of the nonlinear fluctuating hydrodynamics and is more
general than any microscopic approach. In both the mod-
els the dominant mode-coupling contributions to the
transport coefficients come from the density-fluctuation
modes. However, in the later theory there is a mechanism
that cuts off the sharp transition. At first the density fluc-
tuations tend to drive the viscosity to large value. But for
large viscosities the correlation function is proportional to
1/(w+iyq ), instead of 1/w. Thus one obtains a
diffusive mode, and there is no transition to an ideal
glassy phase. The correlation function decays to zero
with a lifetime inversely proportional to yq . This
diffusive mode comes from a careful analysis of the equa-
tions of NFH with the nonlinear constraint (2. 1). This
approach not only takes into account the coupling of the
density-fluctuation modes but also incorporates the cou-
pling between the currents and the density fluctuations in
a compressible fluid. This can be seen more clearly from
the expression (3.28), which involves both the current
correlation function and the density correlation function.
In the present work this model is extended to finite values
of the wave vector in order to investigate the effect of the
structure of the liquid on its dynamical behavior. We
have considered here a simple LJ system and calculated
how much its transport coefficients are enhanced due to
the mode-coupling contributions. It should be pointed
out here that we have extended the equations of the NFH
to finite values of the wave vector in a simple way by
choosing the form (2. 10) for the free-energy functional;
while this is a reasonable first step to take it is by no
means a unique choice.

In Ref. 15 it is stated that when a simple LJ system is
cooled along the zero-pressure isobar, it undergoes a glass
transition at T=0.477. Computer simulations on the
same system along the P'=0 isobar predict that a glass
transition should occur at Tg =0.29. The extrapolated
self-diffusion coefficient goes to zero at this temperature.
The data for the diffusion coefficient is found to agree
quite well with a power-law fit (T*—0.29) with a=2.
In comparison with this, for T* ~0.35 our data for both
the shear and the longitudinal viscosities also fit a power-
law form very well around the "transition point"
Tg*=0.29 with an exponent +=0.9. As the temperature
is further lowered, the sharp nature of the transition is cut
off and the viscosity continues to increase at a slower rate.
Thus, our results show a good agreement with the
molecular-dynamics simulations.

The behavior described above is also qualitatively simi-
lar to that observed by Taborek, Kleiman, and Bishop in
a number of different laboratory systems which were re-
ferred to as fragile glasses in Ref. 1. However, in real
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liquids one observes a much sharper enhancement of the
viscosity over the same temperature region than we have
seen here.

As a next step, it will be interesting to investigate how
much the viscosity gets enhanced with the fall of tempera-
ture when other types of interaction potentials are con-
sidered. One can also compute the frequency-dependent
transport coefticients to make comparisons with experi-
ments ' done by Nagel and coworkers.

We conclude this section with the following two points.
(i) In our work, the coupling constants in the mode-

coupling terms given by Eqs. (3.25) and (3.26) are ob-
tained from the equations of the nonlinear fluctuating hy-
drodynamics. These are quite different from the one
given by Eq. (2.4) of Ref. 15. The latter was obtained by
making approximations in the kinetic theory of dense
fluids.

(ii) We have calculated the structure factor for the
liquid in the supercooled region with methods that are
usually used for much higher temperatures. Whether this
gives an accurate enough description of the structure of
the supercooled liquid is an open question. A more care-

ful investigation of this point might provide further insight
into the problem.
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