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The effect of degradation of the coherence of the pump beam by a random phase screen on the
conversion efficiency in the second-harmonic generation process is considered. It is shown that, un-
der suitable conditions, the conversion efficiency can be increased significantly.

I. INTRODUCTION

It is well known that the nonlinear optical processes are
significantly influenced by the coherence properties of the
source.'? Consequently, there has been a great deal of in-
terest in the study of the effect of fluctuations in the
second-harmonic generation. These include the quantum
fluctuations as well as the classical fluctuations of the
pump field.*—¢

Many studies have also been made to consider the spa-
tial coherence properties of the beams generated by a ran-
dom phase screen.””'! In this paper we consider the
effect of degrading the spatial coherence of the pump
beam on the conversion efficiency in the second-
harmonic-generation process. In particular, we consider
the situation where a coherent Gaussian laser beam
scatters from a random phase screen, such as a rotating
ground glass plate, and then interacts with the nonlinear
medium to generate a second-harmonic beam. Our re-
sults indicate that by an appropriate choice of the parame-
ters it should be possible to enhance the conversion
efficiency by this method. We restrict ourselves to the sit-
uation where the conversion is not very large so that the
parametric approximation is valid. For the description of
the random phase screen we consider a model due to
Berry'? and which was later studied extensively by Jake-
man and Pusey.!>!*

II. CONVERSION EFFICIENCY
OF SECOND-HARMONIC BEAM

satisfy the following set of coupled differential equations
in the paraxial approximation:
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where £°(r) and €*“(r) are the slowly varying amplitudes

of the pump and the second-harmonic waves, respectively;
k, and k, are the corresponding wave numbers such that
k,=2k,; and
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o is the frequency of the pump wave and d is the non-
linearity coefficient for second-harmonic generation.

In the parametric approximation, the pump depletion is
neglected by making the right-hand side (RHS) of Eq. (1a)
to be zero. This approximation is valid for small conver-
sion efficiency. The solution of Egs. (1a) and (1b) is there-
fore

er)= [ e§(pai(r—p)d’p; , (3a)
e(r)=—K, [ [e8(r))PAxr—1)d’r; , (3b)

where p=(x,y) is the transverse two-dimensional vector,
€6(p) is the pump field amplitude in the plane z =0, and
the Green’s functions A, and A, are

ky iki(p—p)?
We consider a lossless nonlinear crystal of length [ be- Ayr—py))= iz 27 ’ (4a)
tween the planes z=0 and z=/ A spatially partially
coherent pump beam of frequency w is incident at plane 1 ik, (p—p)?
z=0 which gives rise to a second-harmonic beam of fre- Aylr—ry)=— 4m(z—z,) 2z—z,) (4b)
quency 2w after interaction with nonlinear crystal. In the
nonlinear medium the pump and second-harmonic waves It then follows, in a straightforward manner, that
|
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where

Tpy,p2.p3.p8) = ([e8(p1)]* [€5(p2)]* €5 (3 )eg(p4) )

(6)

is the fourth-order correlation function of the pump field. In Eq. (5) r; and r, integrations can be done. The resulting

expression for the mean intensity at the point r=(p,/) is'”

K2 k3
*(p,l)=— ) f Plfdpzfdp3fdP4E1
41< (4m)
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where
—ik; 2| rirdz iky 2
E, 8l (pr—p2)° | = 0 7 P |5, —(p1—p2)

Next we determine the correlation function I'“(p,,0,,03,04)-

at z =0, the field is given by
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where w is the rms radius of the Gaussian beam and ¢(p)

is the random phase. We assume that ¢(p)

ik,
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If a Gaussian laser beam scatters from a random screen

(8)
is described by a

Gaussian process with zero mean. The correlation function is then

1
T(p1,p2,p3P4) = | €00 | ‘exp -F(P%+P%+P§+Pi) g(p1,P2P3PY) (9a)
0
where
g(p1,p2p3ps)=exp{ — 1{[d(p1)+(p)) —d(p3)—d(ps)]) }
=exp{ (¢ [2+Clp1—p2)+Clp3—ps)—Clp1—p3)—Clp,—py) —Clp,—p3)—Clp,—po)l} (9b)
T
with (¢?) being the mean-square phase fluctuations and f I*(p,1)d*p 13

(¢(p1)d(py))
(6%)
An interesting model for the normalized second-order

phase correlation function C(p) is given by a Gaussian,
ie.,

C(p)=exp(—p?/E?) , ar

where & is the phase correlation length This choice of

C(p) is, however, rather inconvenient in the calculation of
I**(p,1) according to Eq. (7a). However, when (¢?) >>1,
we can use the approximation!1#16

e(dJZ)C(p]~p2) — (2 (py—py)?/€?

~ 1+ —1)e (12)
The intensity of the second-harmonic beam in the output
plane z=/ is then obtained by substituting for I'“ from
Eqgs. (9)-(12) in Eq. (7).

A quantity of interest is the conversion efficiency 7
which is the ratio of the power of the second-harmonic
beam in the plane z=/ to the power of the fundamental
beam in the plane z =0, i.e.,

pc= f Iw(p’o)dzp .

In Eq. (13), the subscript pc represents partial coherence.
It can be shown (see Appendix) that, when a >>1,
K% | €00 l 2 4 4il 2
= In |1+ ——
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where
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For the coherent light, the conversion efficiency is given
by
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FIG. 1. npc/Neon vs B for a=0.1, 0.5, and 1.0.

If follows from Egs. (14) and (16), after some rearrange-
ment, that the ratio of the conversion efficiencies due to
beams generated by a partially coherent source and by a
coherent source of identical intensity is

%IP—ZI1+{%[ln(l—t—az)]z—i-(tan*‘a)z}_1
X [Fa,B)+ F3(a,B)—In(1+a®)F(a,B)
. —2(tan"'a)F5(a,B)] , (17)
where
a2 (18a)
kle(z)
§2
— , (18b)
o 2w}
dx

(18¢)

g ! dx
Blap=e ], (x> +1/a?)
X |x sin —B—l—lcos B
ax a ax
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In Fig. 1 we have plotted 71,/ versus S for different
values of a. It is clear that, under suitable conditions, it
should be possible to increase the conversion efficiency by
50% or more by degrading the coherence of the laser
beam.

II1. DISCUSSION

The enhanced conversion efficiency for a partially
coherent pump field has been predicted before (Ref. 17).
The difference between the present paper and Ref. 17 is
the model for the pump field. Whereas in the present pa-
per we assume that the random phase of the scattered
laser beam is described by a Gaussian random process, in
Ref. 17 we describe the random amplitude of the scattered
beam by a Gaussian random process. With a Gaussian
random amplitude, the fourth-order correlation function
I(p,p2pi1,p4) of the pump beam is then given in terms
of the second-order correlation I'“(p,,p,) as follows:

T(p1,p2,p3,p4)=T“(p1,p3)L°(p2,p4)
FT%p1,p) Tpryp3) 5 (19)

where T“(p;,p,)={[e8(p)]*ei(p,)). This is a result of
the moment theorem of the Gaussian random processes.
The enhancement of the second-harmonic generation con-
version due to amplitude fluctuations arises simply due to
the decomposition (19) of I'“(py,p,,p3,p4). In the present
case, it is the phase noise which leads to an enhanced con-
version efficiency.

The predicted conversion efficiency shown in Fig. 1 has
several interesting features. The most obvious is the
dependence of the ratio on both a, the normalized crystal
length, and 3, the normalized spatial coherence length.
This strong coupling disappears in the two limits where
the beam is fully coherent (83— o) or fully incoherent
(B—0). The ratio n,./Ncon goes to 1 and O, respectively,
in these limits, as it should. The peak conversion
efficiency depends strongly on both parameters.
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APPENDIX: DERIVATION OF EQ. (14)
We define a new set of variables,
I =p1—pP2 I=P3—P4 >
R,=3(pi+p2), Ry=3(p3+ps) ,

in Eq. (7). Since
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ik,
[ doexp |5 lp—RY (p—Rzﬂl: SRRy, (a2)

it follows from Eq. (7) that
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where 3; (i=1,2) is given by Eq. (15). In deriving Eq. (A3), we have used the explicit forms of E, and I'” from Egs. (7a)
and (9), respectively.

The terms associated with the phase fluctuations in Eq. (3) can be simplified considerably in the limit (¢?) >>1. On
substituting for exp[(#?)C(r)] from Eq. (12), this term becomes, in the limit {$?) >>1,

n=n. ,c
2

(— (%) /811 —15)? —(d>2>/4§2)(r1+r2)2]2

r+r,
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(1+€<¢2>€(7<d’2>/§2)rl‘)(1+e(¢2>e(h((b2>/§2)r%)
so that, after carrying out the angular integrations in Eq. (A3), we obtain
S dprp,h= :rozﬂsool ofldzl IIETBI B3, (AS5)
where
s f 1B, + (P /EDx . (A6)
0 ($)21—x/E%) =

1+e

The major contribution to the integration in Eq. (A6) comes from the region x =0 to x =& when {(¢?) >>1. In this sit-
uation we can change the limits of integration from O to £ and ignore 1 in the denominator so that

2 —B.x g2
:foé dxe " =—B1—_(1_e Pty (A7)
We therefore obtain
7K3 e |*wg 1 dzy o dzy —B, &2 —B5 ¢
d2 IZw )= M- —_ (11— ! 1— 2 .
[ d?pr*p,1) o fo o do a1 e ) (A8)
Since
202
T w
fdzpl“)(p,()):% . (Ag)

the resulting expression for the conversion efficiency for the second-harmonic field [cf. Eq. (13)] is given by Eq. (14).
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