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Second-harmonic generation by a partially coherent beam
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The eftect of degradation of the coherence of the pump beam by a random phase screen on the
conversion efficiency in the second-harmonic generation process is considered. It is shown that, un-
der suitable conditions, the conversion efficiency can be increased significantly.

I. INTRODUCTION

It is well known that the nonlinear optical processes are
significantly influenced by the coherence properties of the
source. ' Consequently, there has been a great deal of in-
terest in the study of the effect of fluctuations in the
second-harmonic generation. These include the quantum
fluctuations as well as the classical fluctuations of the
pump field.

Many studies have also been made to consider the spa-
tial coherence properties of the beams generated by a ran-
dom phase screen. " In this paper we consider the
effect of degrading the spatial coherence of the pump
beam on the conversion efficiency in the second-
harmonic-generation process. In particular, we consider
the situation where a coherent Gaussian laser beam
scatters from a random phase screen, such as a rotating
ground glass plate, and then interacts with the nonlinear
medium to generate a second-harmonic beam. Our re-
sults indicate that by an appropriate choice of the parame-
ters it should be possible to enhance the conversion
eSciency by this method. We restrict ourselves to the sit-
uation where the conversion is not very large so that the
parametric approximation is valid. For the description of
the random phase screen we consider a model due to
Berry' and which was later studied extensively by Jake-
man and Pusey. ' '

II. CONVERSION EFFICIENCY
OF SECOND-HARMONIC BEAM

satisfy the following set of coupled differential equations
in the paraxial approximation:
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where E"(r) and E "(r) are the slowly varying amplitudes
of the pump and the second-harmonic waves, respectively;
k& and kz are the corresponding wave numbers such that
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where p =(x,y) is the transverse two-dimensional vector,
Eo(p) is the pump field amplitude in the plane z =0, and
the Green's functions 6i and Az are

co is the frequency of the pump wave and d is the non-
linearity coefficient for second-harmonic generation.

In the parametric approximation, the pump depletion is
neglected by making the right-hand side (RHS) of Eq. (la)
to be zero. This approximation is valid for small conver-
sion efficiency. The solution of Eqs. (la) and (lb) is there-
fore

We consider a lossless nonlinear crystal of length l be-
tween the planes z=O and z=l. A spatially partially
coherent pump beam of frequency cu is incident at plane
z=O which gives rise to a second-harmonic beam of fre-
quency 2' after interaction with nonlinear crystal. In the
nonlinear medium the pump and second-harmonic waves
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It then follows, in a straightforward manner, that
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where

I (p ,p ,p, ,p )= ([Eo"(p )]*[E"(p )]*Eo(p,)Eo(p ))

is the fourth-order correlation function of the pump field. In Eq. (5) r& and rz integrations can be done. The resulting
expression for the mean intensity at the point r=(p, l) is'

I (p, l)= f d pl f d pz f d p3 f d p4E)
41 (4m. )
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Next we determine the correlation function I "(p, ,pz, p3,p4). If a Gaussian laser beam scatters from a random screen
at z =0, the field is given by

eo(p)=eooe ' ' 'e'4"&',

where wo is the rms radius of the Gaussian beam and P(p) is the random phase. We assume that P(p) is described by a
Gaussian process with zero mean. The correlation function is then
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with (P ) being the mean-square phase fluctuations and
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In Eq. (13), the subscript pc represents partial coherence.
It can be shown (see Appendix) that, when a » 1,

An interesting model for the normalized second-order
phase correlation function C(p) is given by a Gaussian,
i.e., 128
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C(p)=exp( —p /g ),
where g is the phase correlation length. This choice of
C(p) is, however, rather inconvenient in the calculation of
I "(p, i) according to Eq. (7a). However, when (P ) »1,
we can use the approximation' ' '
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The intensity of the second-harmonic beam in the output
plane z=l is then obtained by substituting for I from
Eqs. (9)—(12) in Eq. (7).

A quantity of interest is the conversion efficiency
which is the ratio of the power of the second-harmonic
beam in the plane z=l to the power of the fundamental
beam in the plane z =0, i.e.,
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For the coherent light, the conversion efficiency is given
by
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APPENDIX. DERIVATION OF EQ.. (I4)

%'e de ne ne a new set of variables
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in Eq. (7). Since
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it follows from Eq. (7) that
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where /3; (i=1,2) is given by Eq. (15). In deriving Eq. (A3), we have used the explicit forms of Ei and I from Eqs. (7a)
and (9), respectively.

The terms associated with the phase fiuctuations in Eq. (3) can be simplified considerably in the limit ((() ) » l. On
substituting for exp[(((} )C(r)] from Eq. (12), this term becomes, in the limit (tt ) »1,

D=exp —(P ) 2+C(r, )+C(r2) —2C
rj+rz—2C

2

[1+( ' ' —1) '][1+( ' —1)

2(y~) ( —(6 )/"" )(l I +J
e e

(1+e e )(1+e e )
(y~) ( —($ )/+ ]r

l ((t~) ( —(0 ) /g

—
& O'} t~g'ii. , + r, I']~l)e

—(0 )/g )J.
Z

(A4)

so that, after carrying out the angular integrations in Eq. (A3), we obtain
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The major contribution to the integration in Eq. (A6) comes from the region x =0 to x =g when (P ) » l. In this sit-
uation we can change the limits of integration from 0 to g and ignore 1 in the denominator so that
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the resulting expression for the conversion efficiency for the second-harmonic field [cf. Eq. (13)] is given by Eq. (14).
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