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Accurate calculation of spin-orbit coupling constants for Bd atoms
and ions with effective core potentials and reduced basis sets
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We present an approximate method for obtaining spin-orbit coupling constants of 3d atoms and
ions from an effective one-body Hamiltonian. The method, suggested by numerical results of the
analytical theory of Blume and Watson [Proc. R. Soc. London, Sect. A 270, 127 (1962); 271, 565
(1963)], incorporates the model potential approach of Bonifacic and Huzinaga [J. Chem. Phys. 60,
167 (1974)] for representing the core-valence interactions. In combination with reduced valence
basis set, the new procedure gives accurate spin-orbit constants for the 3d atoms, and slightly less
accurate values for di- and tripositive 3d ions. These results suggest that this method can be an
accurate economic route to crystal calculations of the spin-orbit constants within any cluster-
model approach involving the Hamiltonian of Misetich and Buch [J. Chem. Phys. 41, 2524 (1964)].

INTRODUCTION

The theoretical calculation of the optical spectrum of
transition-metal ions in crystals generally requires ade-
quate consideration of the spin-orbit coupling. This in-
teraction is the main contributor to the splitting of the
crystal multiplets and can mix electronic states of different
spin multiplicity. This mixing may be an important fac-
tor in the study of the intensity pattern of the spectrum.

Misetich and Buch' have shown that the crystal spin-
orbit Hamiltonian can be approximated, within the cluster
model, by a sum of effective one-body interactions run-
ning over the transition-metal ion and the neighbor atoms.
This useful approximation transforms the cluster calcula-
tion of the spin-orbit constant into a series of atomic-type
calculations. Clearly, the cluster electron density is need-
ed for obtaining these atomic-type spin-orbit constants
since the electron relocalization due to the metal-ligand
bonding modifies their free-ion values.

We will not discuss here this type of modification.
Rather, we will consider the current theory of the atomic
spin-orbit constants and will present and discuss an ap-
proxirnate procedure for obtaining these quantities. This
procedure makes use of three approximations often incor-
porated in crystal calculations: a one-body spin-orbit
Hamiltonian, effective core potentials for dealing with the
core-valence interactions, and small-size valence basis sets.
The aim of this paper is to show that the atomic-type
spin-orbit constants of the 3d atoms and ions computed
within these approximations are very close to the analyti-
cal values deduced from the exact theory and large basis
sets. The interest of this result in the calculation of the
spin-orbit constant of 3d ions in crystals is apparent.

The theory of the atomic spin-orbit coupling in many-
electron atoms has been discussed many times in the
literature. The simplest description of this interaction has
been done by extension of the one-electron operator de-
duced from the reduction of the Dirac equation to nonre-
lativistic form. The usually called "complete" spin-orbit

interaction comes from the derivation by Bethe and Sal-
peter, and by Slater, of a spin-orbit Hamiltonian which
includes one- and two-body interactions. Starting from
this Hamiltonian and following the work of Elliot and
Horie, Blume and Watson developed a theory of the
spin-orbit constants, and performed calculations for 2p,
3p, 3d, and 4p atoms and ions using Hartree-Fock func-
tions. Froese-Fischer' and Malli" reported complete
spin-orbit calculations for a number of cases, but the most
extensive calculations have been carried out by Fraga and
co-workers. '

These calculations have been done with high-quality
Hartree-Fock-Roothaan functions or numerical Hartree-
Fock functions. ' This level of quality is hardly transfer-
able to crystal calculations, where some approximations
are generally mandatory. See, for example, the recent
complete neglect of differential overlap calculation of the
spin-orbit constant of Cu + in ZnS and CdS by Setyono
and Scherz. '

In this work we present an approximate method for
computing accurately the atomic spin-orbit constant
without using large basis sets. The method is aimed to be
a useful scheme for crystal calculations within the cluster
model, in the context of Misetich and Buch's approxima-
tion. '

The idea of the method is simple: the study of the nu-
merical results of analytical calculations performed with
large basis sets suggests that an effective one-body spin-
orbit Hamiltonian could give sufficiently accurate values
for the complete spin-orbit constants. The effective cen-
tral potential required for such a calculation can be ap-
proximated, for instance, by following Huzinaga's model
potential approach. ' In line with this scheme, the
valence basis set could be noticeably reduced. This reduc-
tion would make the method particularly adequate for
those cluster calculations involving small valence bases
and active self-consistent-field spaces limited to the
valence shell.

In the following section we give the details of the pro-
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posed scheme, with particular reference to the theory of
Blume and Watson. In the last section we report numer-
ical results for the 3d atoms and ions. These results show
that this scheme is an excellent approximation to the stan-
dard achieved when the analytical theory is used in com-
bination with high-quality basis sets. The reasons for this
agreement, related to a compensation of the errors intro-
duced by the effective potential approximation and the use
of reduced basis sets, are clarified and discussed.

THEORETICAL CONSIDERATIONS

The spin-orbit Hamiltonian for the ¹ lectron atoms
can be written, in Hartree units, in the form

N

H, , = —,'aZ+r; 1; s;

—
—,'a g r,, '(r;, Xp, ).(s;+2s, ),

1,J
(ij)

where cz is the fine-structure constant.

Following the work of Elliot, Blume and Watson sim-
plify Eq. (1) by considering atoms with a single open shell
outside a number of closed shells (the core). In the 3d sys-
tems discussed here, the valence 4s atomic orbital (AO)
will be either empty or doubly occupied, the only open
shell being the 3d AO. The core will be made of the 1s, 2s,
2p, 3s, and 3p AO's. Recalling that (a) the sum over closed
shell vanishes for the first term in Eq. (1) and (b) the core-
valence contributions from the second term can be
represented in the form g, 1; s;, Eq. (1) becomes

H, .=g, g'I, .s, —
—,
'a' g' r,, '(r,, Xp—, ).(s, +2s, ),

l l,J
(i~j)

(2)

where the prime on the summations indicates that only
open-shell electrons are to be included.

Furthermore, Horie showed that a part of the open-
shell —open-shell two-body interactions [the second term
in Eq. (2)] behaves like an effective one-body spin-orbit
term. Using this result, Blume and Watson rearrange the
spin-orbit Hamiltonian in the form

—,
'a' g' r;, '(r;, Xp;) (s;+2s, )+(g' —g, ) g'I; s;

l,J
(i~j)

(3)

where g' is chosen so that the term in large parentheses is
not representable, within a given configuration, in the
form g, 1;.s;. This term is usually known as the residual
"spin-other-orbit" interaction.

The spin-own-orbit constant g, in Eq. (2) contains the
effects of the bare nucleus plus the shielding of the nuclear
charge produced by the closed-shell —open-shell interac-
tions. The antisymmetry of the ¹electron wave function
gives rise to direct- and exchange-type terms in the calcu-
lation of g, . Blume and Watson gave expressions for g,
in terms of spin-orbit radial integrals. Here it will be
convenient to distinguish the core-3d contribution, g„and
the 4s-3d contribution, g,*, namely,

(4)

Moreover, the constant g' in Eq. (3) differs from g,
by the two-body open-shell —open-shell contributions
representable as a one-body coupling. Expressions for g'
were also given by Blume and Watson in the form

where the bk's depend on the multiplet and can be deter-
mined from Horie's formulas or from Ref. 3. In Eq. (6),

contains all the valence-valence spin-orbit interactions.
Using Watson's analytical Hartree-Fock wave func-

tions, Blume and Watson computed the spin-orbit con-
stants for many 2p, 3p, 3d, and 4p ions. For the 3d ions
considered here they found the following:

(a) The computed values of g' are in good agreement
with available experimental data.

(b) Both direct- and exchange-type terms in g, are im-
portant, the latter being about 25% of the former. These
terms shield the nuclear charge and then reduce the nu-
clear spin-orbit constant.

(c) The 3d-4s and 3d-3d contributions to the spin-orbit
constant, including the residual spin-other-orbit interac-
tion, are small.

The basic idea of the present work emerges from these
conclusions. According to them, the spin-orbit constants
of the 3d systems might be computed with reasonable ac-
curacy by means of an effective one-body spin-orbit opera-
tor, i.e.,

where the M radial integrals were defined by Marvin. '

Both g, and g' are rigorously constant within a given
configuration if the radial functions of the different multi-
plets are the same. However, the complete spin-orbit
constant, which includes the residual spin-other-orbit in-
teraction discussed by Horie, does not have this property.
For 3d systems it can be written in the form

g(d";SL)=g, +g,*+g a&M" + g bI, M"=g, +(*,
k k

H, , =g,tt+1;.s;,

with

g,z———,'a (3d
~

r 'BV,~(r)IBr
~

3d )+g*

where V,ft(r) is an effective central potential containing
the effects of the nucleus and the core electrons. Notice
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V(r)= —Zlr + g (2J, —K, ), (9)

where J, and K, are the Coulomb and exchange core
operators, respectively. Due to the nonlocal character of
K„ the meaning of the radial derivative BK, /Br appearing
in Eq. (8) must be defined. We can avoid this diIIiculty if
the core-valence interactions are approximated by an
effective core potential. We have considered here the
model potential approach of Bonifacic and Huzinaga. '

According to this method, the core-valence interactions
can be very well approximated by means of a (local) radial
operator, the model potential, of the form

that g in the above equation is the 3d-valence spin-orbit
constant introduced in Eq. (6).

Clearly, the effective spin-orbit constant g, tr will not be
constant within a given configuration since it is a simula-
tion of the complete spin-orbit constant g(d";SL) T. he
question is to know how good this simulation could be.

The use of g,z as an approximation to g(d";SL) intro-
duces two types of errors, one due to the effective poten-
tial approach, and another one associated with the use of
a small basis set. Both errors affect the constant Ptr but
only the latter has infiuence on g*. The separate effects of
these two errors are examined numerically below.

The remaining question is to determine V,z(r). In
Hartree-Fock theory the potential energy of a valence
electron in the field of the nucleus, of charge Z, and the
core electrons is

~ 3d
~

V(r)
~

3d ) = (3d
~

V~ (r)
~

3d ) . (12)

In Eq. (11),p, (r) is the core electron density. Now the
model potential parameters are found by minimizing the
deviation

(13)

In this work we have used an effective potential of the
form 001, i.e. , with JV=3 and n (k)=0, 0, and 1. This
choice gives an asymptotic behavior of V, t(rr) for r=0
very close to the correct limit

lim [ —r V,fr(r ) ]=Z .
r~o (14)

For 3d atoms the computed limits differ from Z by 0.03
in the worst case. For 3d ions the agreement is about ten
times better. This behavior is an important requirement
for a correct calculation of Pz, given the inner character
of the r 'r)V, ff(r) ldr operator.

In Huzinaga's approach, the substitution of the analyti-
cal core-valence interactions by a local model potential is
complemented with an adequate reduction of the valence
basis set. Accordingly, we use a reduced basis to compute
the spin-orbit constants g,~ and g* in Eq. (8). This
small-basis calculation simulates the basis conditions of
approximate cluster calculations. As reduced bases, we
choose those in Ref. 23 having maximum overlap with
Clementi and Roetti's multi-g bases.

X 1+ g 2 (k)r"'"'exp[ a(k)r]—
k

(10)

V~ (r) = —Zlr + g 2J, —3a[3p, (r)ISA]'~

by requiring that

where N, is the number of core electrons and JV, n (k),
A (k), and a(k) are parameters to be optimized. Bonifa-
cic and Huzinaga' select the values of these parameters
by minimizing the difference in shape and energy between
the reference all electron orbitals and the approximate
valence orbitals.

We have recently obtained exponential model potentials
appropriate for the 3d atoms and ion s by using
Huzinaga's techniques. In that calculation we used
Clementi and Roetti's 2g basis sets ' as reference since
these bases are, in general, sufficiently accurate for most
applications. However, here we want to compare the
model potential approach with the exact calculation of
Blume and Watson. Accordingly, we have prepared new
model potentials by using as a reference set the high-
quality, multi-g bases of Clementi and Roetti. ' The pa-
rameters of these new potentials have been obtained by
means of a simple and efficient procedure. First, follow-
ing the ideas of Katsuki and Inokuchi, the analytical po-
tential in Eq. (9), computed with the high-quality basis
set, is used to determine the optimum a of a local Vz po-
tential

RESULTS AND DISCUSSION

We will present results that show the usefulness of the
effective core potential approach in the calculation of the
atomic spin-orbit constants. In particular, we will com-
pare complete spin-orbit constants, Eq. (6), with eff'ective
constants, Eq. (8). The former have been computed with
large, high-quality basis sets. The latter with reduced
bases as proposed in this work.

First, we recall that the 3d-valence constant g* is com-
puted with the large basis in Eq. (6) and with the reduced
basis in Eq. (8). This basis effect is the only difference be-
tween the accurate and the approximate calculation, as far
as g* is concerned, since we deal with a common
definition for this quantity in both approaches. This
difference turns out to be smaller than 2 cm ' in all cases
considered here, being smaller than 0.5 cm ' in most sys-
tems. The reason for this negligible basis effect is double.
First, since g* is generally small (5—50 cm '), even an
appreciable basis effect of about 10% would mean a varia-
tion of a few wave numbers. Furthermore, the Marvin ra-
dial integrals appearing in the definition of g* are very ac-
curately computed with the small basis. As examples, we
present values for M and M for the neutral, dipositive,
and tripositive 3d systems in Table I. The 3d-3d contri-
bution to the spin-orbit constant is a function of these two
direct-type radial integrals. Some extra exchange-type ra-
dial integrals appear in the 3d-4s contribution g,

* (Ref. 8)
but this constant is so small (less than 1 cm ') that any
basis effect in its calculation would be entirely negligible.

In Table I we can see that the reduced bases give values
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TABLE I. Radial integrals M (3d, 3d) and M (3d, 3d) (in cm ') for neutral (M +), dipositive, and tripositive 3d systems. Note:
First and second row entries correspond to the high-quality bases of Ref. 21 and the reduced bases of Ref. 23, respectively. Third row
entries are relative deviations (in %) between these two numbers.

Sc V
Radial integral M (3d, 3d)

Cr Mn Fe Co Ni CU Zn

0.438
0.432

—1.37

0.644
0.637

—1.09

0.859
0.850

—1.05

1.099
1.087

—1.09

1.376
1.361

—1.09

1.640
1.621

—1.16

1.951
1.926

—1.28

2.300
2.269

—1.35

2.686
2.649

—1.38

3.119
3.074

—1.44

M+ 0.513
0.510

—0.58

0.709
0.706

—0.42

0.922
0.917

—0.54

1.160
1.153

—0.60

1.436
1.427

—0.63

1.704
1.691

—0.76

2.030
2.015

—0.74

2.367
2.347

—0.84

2.756
2.728

—1.02

3.190
3.156

—1.07

0.237
0.238
0.42

0.904
0.902

—0.22

0.350
0.352
0.57

1 ~ 151
1.148

—0.26

0.468
0.470
0.43

1.415
1.412

—0.21
Radial

0.598
0.602
0.67

1.707 2.042
1.702 2.035

—0.29 —0.34
integral M'(3d, 3d)

0.750 0.894
0.755 0.898
0.67 0.45

2.367
2.357

—0.42

1.064
1.068
0.38

2.756
2.744

—0.44

1.253
1.258
0.40

3.156
3.139

—0.54

1.464
1.470
0.41

3.612
3.592

—0.55

1.701
1.706
0.29

0.279
0.281
0.72

0.387
0.389
0.52

0.503
0.506
0.60

0.633
0.639
0.95

0.785
0.789
0.51

0.930
0.935
0.54

1.108
1.114
0.54

1.292
1.298
0.46

1.504
1.511
0.47

1.741
1.748
0.40

M'+ 0.498
0.500
0.40

0.634
0.637
0.47

0.780
0.784
0.51

0.940
0.945
0.53

1 ~ 124
1.130
0.53

1.301
1.308
0.54

1.514
1.522
0.53

1.733
1.742
0.52

1.982
1.993
0.55

of M which differ by less than 1.5% from the Hartree-
Fock results. Results for dipositive and tripositive cat-
ions, and for the radial integral M, are still better.

These numbers show that the relevant differences be-
tween the accurate and the approximate approach come
from the value of the spin-own-orbit constant g, . As not-
ed above, the approximation to this quantity, Pa. is
affected by errors due to the use of effective core poten-
tials and small bases. In Table II we present values of g,
and Ptr for neutral, dipositive, and tripositive 3d systems.
In this table we observe that the differences between these
calculations are smaller than 10 cm ' for the neutral
atoms, giving relative differences smaller than 5%%uo of the
spin-orbit constant. The agreement is particularly good
on the right part of the period. Somewhat worse results

appear for the cations, especially on the left of the period.
We recall that this approximate calculation deviates from
the analytical one by amounts comparable to the
differences between the latter and the available experimen-
tal data. As the proposed approach has been developed to
simulate a theoretical scheme, a direct comparison be-
tween the approximate method and these data is not par-
ticularly relevant here. However, we will see below that
such a comparison is quite satisfactory.

It is interesting to analyze the very good agreement be-
tween Ptr and g, . In order to see the separate effects of
the effective potential approximation and the use of re-
duced basis sets, we made two more hybrid calculations
as described below. The combined results of all this nu-
merical investigation are collected in Fig. 1, where line 3

TABLE II. Values of P (first row entries) and Ps (second row entries) (in cm ) for neutral, dipositive, and tripositive 3d sys-

tems. Note: Numbers in the third row are relative deviations (in %) between first and second rows entries.

M'+

Sc

77
80
3.9

123
129

4.9

179
187

4.5

Cr

248
258

4.0

Mn

334
346

3.6

Fe

431
441

2.3

Co

550
556

1.1

Ni

691
694

0.4

Cu

857
856
—0.1

Zn

1051
1043
—0.8

86
96
11.6

131
145

10.7

187
205

9.6

256
277

8.2

343
367

7.0

441
466

5.7

563
591

5.0

703
729

3.7

869
891

2.5

1063
1083

1.9

M + 158
181

14.6

220
250

13.6

296
332

12.2

388
429

10.6

499
547

9.6

625
676

8.2

777
839

8.0

950
1008

6.1

1154
1216

5.4
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FIG. 1. Spin-orbit parameters (cm ') for the 3d atoms. Note:
A, observed values, Refs. 3, 24, and 25; B, g(d";SL) with large
bases; C, g,s with reduced basis; D, g(d";SL) with reduced bases;
F., g, s- with large bases.

data. Then we notice the more important result of this
work, namely, the very good agreement between the ap-
proximate calculation and the analytical one. Compar-
ison of lines B and E reveals that the model potential
shields the nucleus less than the analytical interactions do,
giving a more attractive central potential and larger spin-
orbit constants. On the contrary, use of smaller valence
basis sets in the calculation reduces the spin-orbit con-
stants. This result confirms that very good overlap be-
tween the large and reduced bases does not secure simu-
lations of equivalent quality for the inner-core-3d spin-
orbit radial integrals, although, as seen above, the 3d-3d
radial integrals are obtained with great accuracy in the re-
duced bases. The figure clearly shows that the method
presented here is accurate because it contains a near can-
cellation of opposite errors. This circumstance makes it
able to give reasonable values of spin-orbit constants in
crystal calculations. In this context, it is interesting to
notice that the model potentials of Ref. 20 give spin-orbit
constants Ps. deviating at most a 4.5% from the corre-
sponding values presented here.

The results of this work support the idea of computing
nonempirically the spin-orbit constant of 3d ions in crys-
tals in terms of atomic-type effective potentials and re-
duced basis sets. The splitting of the crystal multiplets
could be obtained nonempirically in this way with a
reasonable degree of confidence.

represents the observed spin-orbit constants and lines B
and C, g(d";SL) and g,s; respectively. Line D corre-
sponds to a calculation of g(d";SL) with reduced bases,
and line E to a calculation of g,s. with the high-quality
bases.

From the figure we observe, first, the well-known agree-
ment between the analytical calculation and the observed
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