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The entropy maximization and the divergence minimization, two related optimization techniques
corning from standard statistical mechanics and often applied nowadays to probabilistic modeling,
are used here together in order to organize the space of wave functions as a probability space when
the only available information on the quantum system at the initial moment is the density matrix,
which describes the mean behavior of a quantum ensemble. The Schrodinger equation determines a
nonconservative flow in this probability space transforming the independent Gaussian product mea-
sure, at the initial moment, into a dependent Gaussian product measure at an ulterior moment. Such
a transformation can be viewed as a generalization of the Liouville theorem from classical statistical
mechanics.

I. INTRODUCTION

There is no perfect analogy between quantum statistical
mechanics and classical statistical mechanics. In classical
statistical mechanics it is convenient to represent the state
of a system of s degrees of freedom by the position of a
point in a 2s-dimensional Euclidean space of the coordi-
nates and momenta, and then to represent an ensemble of
such systems by a set of phase points distributed with the
probability density p. This probability density is
preserved or transformed by the flow induced by the
equations of motion, and the mean value, at time t, for
the systems in the ensemble, of a function F of the coordi-
nates and momenta is the integral of F with respect to the
probability measure induced by the density p(t) at time t.
It has been shown by von Neumann' that the so-called
density matrix, with components pk~, can be introduced in
quantum mechanics to play a role somewhat similar to
that of the density p in classical statistical mechanics.

In quantum mechanics the state of the system is a wave
function P, represented as a weighted sum or integral of
the eigenfunctions IP&,k ED I of a given observable U
whose corresponding eigenvalues are Iuk, k&D). It is

agreed that the Schrodinger equation determines the mean
behavior of the wave function. The state of a quantum
system is undergoing random fluctuations about an aver-
age that satisfies the Schrodinger equation. It is agreed
that this regular mean behavior can be predicted to a high
degree of approximation, but there is no way of predicting
how the individual measurements will fluctuate from one
case to the next. According to Born "we describe the in-
stantaneous state of the system by a complex quantity it
which satisfies a differential equation and therefore

changes with time in a way which is completely deter-
mined by its form at time to, so that its behavior is
rigorously causal. Since, however, physical significance is
confined to the quantity

~ g ~

and to other similar quad-
ratic expressions (matrix elements), which only partially
define P, it follows that, even when the physically deter-
minable quantities are completely known at time to, the
initial state g is necessarily not completely definable and
therefore the affair of statistics. "

The objective of this paper is to follow the same strategy
used in classical statistical mechanics and to construct a
probability measure on the space of wave functions (the
state space) using as the only available data the density
matrix, which describes the mean behavior of the quan-
turn system. The tool for performing such a construction
is provided by the entropy maximization and the diver-
gence minimization, two optimization techniques coming
from standard statistical mechanics, extensively used now
in probabilistic modeling. Section II of the paper presents
some details about the techniques needed here. The entro-
py maximization technique applied in the complex
domain has some surprising consequences. One of them is
that the nondiagonal elements of the density matrix could
be interpreted as covariances between the random
coefficients of the distinct eigenfunctions in the wave func-
tion. The minimization of the divergence from indepen-
dence, allowing us to construct the most unbiased product
probability measure subject to the given density matrix,
induces a Gaussian probability measure on the space of
wave functions. This is shown in Secs. III and V. Even
when the density matrix is diagonal at the initial time to, it
will have nondiagonal elements different from zero at a
later time t, due to the Schrodinger equation. The corre-
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sponding Gaussian probability measure essentially takes
this probabilistic interdependence into account. The
transformation of the independent Gaussian product mea-
sure in the state space, at time to, into an essentially
dependent Gaussian product measure, at time t & to, may
be viewed as a new quantum analog of the Liouville
theorem from classical statistical mechanics. In Sec. IV
some special density matrices are taken into account and
in Sec. V the amount of global dependence between
difFerent eigenvalues of the observable U is analyzed. In
several papers, Wiener and Siegel ' introduced statistical
ensembles in a "differential space, " which is a Hilbert
space containing a measure for which each differential
space coordinate is postulated to have an independent nor-
mal distribution with the mean zero and the variance 1.
The connection with their approach is discussed in Sec.
VI. Section VII contains conclusions.

II. ENTROPY MAXIMIZATION AND DIVERGENCE
MINIMIZATION

The principle of entropy maximization (PEM) is an op-
timization technique according to which, when both a
domain and some mean values of some random variables,
having the same (unknown) probability distribution on the

respective domain, are given, we choose and construct the

probability distribution of maximum entropy, on the

given domain, subject to the given constraints. Here en-

tropy means Shannon's entropy, a global measure of the
amount of uncertainty contained by a probability distribu-
tion. Generally, the feasible space, i.e. , the set of all prob-
ability distributions defined on the given domain and com-
patible with the given constraints, is very large. Each
such probability distribution contains some amount of un-

certainty. By maximizing the entropy, we select the most
random, or the most unbiased, probability distribution
defined on the given domain and compatible with given
constraints. It treats uniformly all the alternatives al-

lowed by the given constraints. Let us emphasize the fact
that PEM is not a radical new innovation from informa-
tion theory; it was introduced by Boltzmann and was

used by Gibbs to construct his canonical ensembles, by
Planck to derive the distribution which bears his name,
and by von Neumann' and Born to get the canonical dis-

tribution and the geometric distribution, respectively, in

quantum statistical mechanics. Shannon showed that
Boltzmann's H function is a good measure of the amount
of uncertainty contained by an abstract finite probability
space, and Jaynes formulated PEM as a general principle
for constructing the most uncertain, or the most unbiased,
probability distribution as an extension of the principle of
insufficient reason of Bernoulli' and Laplace" (take the
events as being equally likely if there is no reason for
discriminating them), when there are constraints ex-

pressed by mean values. There are many applications of
PEM in statistical inference, pattern recognition,
classification, and time-series analysis. ' ' We mention,
however, Williams's remark "It has perhaps not been
sufficiently appreciated that this principle (PEM), when

properly understood, affords a rule of inductive inference

of the widest generality. "
Let P be an n-dimensional probability density on

D C 1R". The corresponding entropy is

H(P) = —f P(x)in/(x)dx .

Proposition 1. The one-dimensional probability density

P on R', maximizing H subject to the mean p. and the
variance cr, is the normal distribution X(p, cr , ), whose

density is

P(x) =cr '(2') 'r exp[ —(x p—) /(2cr')),

and the corresponding entropy is

H($) =ln[o. (2n)'~ ]+0.5 .

A simple proof of this known result may be found in

Guiasu. '

The principle of divergence minimization (PDM) is an
optimization technique with basically the same philosophy
behind it as PEM. According to PDM, when both a
reference probability measure on a domain and some
mean values of some random variables, having the same
(but unknown) probability distribution on the given
domain, are given, we choose and construct the probabili-

ty distribution of minimum divergence from the reference
probability distribution, on the given domain, subject to
the given constraints. Here divergence means the
Kullback-Leibler' divergence, a relative entropy, measur-

ing how far a probability distribution is from another
probability distribution. According to PDM, we select
the closest probability distribution to a reference probabili-

ty distribution compatible with the given constraints.
A hybrid form of PDM was also used in statistical

mechanics. After 1959, PDM has been formulated as a
general principle in statistical inference. ' What we
need here is a special form of PDM, called the principle
of interdependence minimization (PIM). Generally,
when some one-dimensional probability distributions are
given, then the direct (or geometric) joint probability dis-

tribution is simply their algebraic product. It corresponds
to the case when the given probability distributions are in-

dependent. When we are dealing with random entities
(random variables or probability distributions) they gen-

erally are dependent and the interdependence between
them is measured in terms of mixed moments. The
mixed moment of first order is the covariance, frequently
used for measuring the amount of linear dependence be-

tween random variables. Again, when one or several
mixed moments are given there are many, an infinity in

fact, joint probability distributions compatible with them.
By applying PIM we construct the closest joint probabili-

ty distribution to the independent product of the given
one-dimensional probability distributions subject to the
known mixed moments. Such a joint probability distribu-
tion is the most random one, the closest one to indepen-
dence between components subject to the given con-
straints. PEM and PIM are in fact used together: PEM
for constructing the most unbiased one-dimensional prob-
ability distributions when some simple moments are
known and PIM for constructing the most random joint
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probability distribution subject to the given mixed mo-
ments.

Let pi (j =1, . . . , n) be one-dimensional probability
densities on R and P be an n-dimensional probability den-

sity such that P&(x&) . $„(x„)=0on a set of positive
Lebesque measure from R" implies P(x&, . . . , x„)=0 on
this set. The Kullback-Leibler divergence of P from the
independent product P~

. P„ is

P(x, , . . . , x„)I(P:P, P„)= P(x, , . . . , x„)ln dx, . dx„.
Pt(x ( ) P„(x„)

When p&, . . . , p„are just the marginal probability densi-

ties of P, then I(P:P, . P„) becomes Watanabe's global
measure of interdependence between P„.. . , P„,

H(P, ) —H(P) .
j=1

Proposition 2. Let P~ be a probability density X(pJ, o'~ ),
for j= 1, . . . , n. . The n-dimensional probability density P
which minimizes I(p;p, p„) subject to the constraints

J x, P(x)dx =p, , J (x, pJ ) P(x—)dx =o J,
(j=i, . . . , n)

1 (x, p~ )(xk —pk )P(x)d—x =crJk,

(j =1, . . . , n —1;k =2, . . . , n;j &k),

is the n-dimensional normal distribution

P(x)=(2m) "~ C„
l

' exp[(x —p)'C '(x —p)/2],
where x =(x ), . . . , x„), C„ is the covariance symmetric
matrix C„=[crJk], with o'iJ ——o'&,o'

k =o'k&~
l

C~
l

is the
determinant of the matrix C„, C„ is th'e inverse of the
matrix C„, and (x —p)' is the row matrix
(x, —p„.. . , x„—p„), the transpose of the column matrix
(x —p) with p=(p&, . . . , Iu„). The one-dimensional prob-
ability densities p, , . . . , p„are the marginal probability
densities of p and the corresponding global interdepen-
dence between p&, . . . , p„ is equal to

g =g (y;P„. . . , P„)=0.51n(o f o'„I
l
C„

l
) .

Details about PIM and the proof of the above proposition
may be found in Guiasu, Leblanc, and Reischer.

III. THE PROBABILITY MEASURE INDUCED
BY THE DENSITY MATRIX

Let {pk, k HD I be a complete orthonormal set of eigen-
functions corresponding to the eigenvalues {uk, k ED I of
the observable U. Let us suppose that D is a countable
set, but such a supposition is not essential for what fol-
lows, simplifying only the writing. The state of the quan-
tum system is a wave function

'l/J = g Xk Pk —g (Xk 1+IXk 2)fk
k k

= X I
Xk

I
exp(i~k)dk

k

which is identified with the family of complex coefficients

{Xk ', k H D I or the family of pairs of real coefficients

I(Xk, ,Xk 2);k ED), or the family of modules and argu-
ments {( lXk l, Ok);kED]. G-enerally, we do not know
the state 1t of the system. We can only obtain expected or
mean values at the macroscopic scale and attribute aver-

age properties to the system. Throughout this paper we

suppose that Xk is a complex random variable and that
both (Xk &,Xk 2) and (

l Xk, 8k ) are pairs of real random
variables, for any k.

Let C = [pkI ] be the density matrix of the system. As it
is well known, in an ensemble of N similar noninteract-
ing quantum-mechanical systems having the wave func-
tions lt, =gk a, k pk (s = 1, . . . , X ), the components of the

density matrix C are estimated by

N

Pkl y sk SI
s=1

where a ' denotes the conjugate of the complex number a.
Thus, pkI may be interpreted as an estimate of the mixed
moment E(Xk*XI ), where E denotes the expected (or
mean) value of a random variable. Particularly, pkk is an
estimate of the mean value E(XkXk)=E(

l
Xk

l
). But

we need the probability distributions of Xk and of Xk j.
Applying PEM and PIM, we get the following.

Proposition 3. The maximum entropy probability distri-
bution on the possible values of lXk

l
compatible with

pkk is the exponential distribution with the density
f (yk) =pkk'exp( —y lpkk ) (y & 0). Consequently, the
values taken on by

l
Xk

l

are distributed according to the
Weibull distribution, having the probability density
gk (z) =2pkk'z exp( —z Ipkk ) (z & 0). The maximum entro-
py probability distribution on the possible values of the ar-
gument Ok is the uniform distribution with the density
hk(u)=(2') (0& u &2n). The joint probability distri-
bution of minimum interdependence on the values of

gk(z, u) =gk(z)hk(u)

=(mpkk) 'z exp( z Ipkk ) (z & 0,0—& u (2m).

Consequently, the pair (Xk &,Xk 2) is distributed according
to the two-dimensional probability distribution

kk(xk, l xk, 2) (~Pkk ) P[ (xk2, 1+xk,2)~Pkk ]

which shows that Xk &
and Xk 2 are two independent nor-

mal random variables N(0, pkk/2), as a kind of random
fluctuation.
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Qal (x)= (2m) "~2 C„~ ' exp( —x'C„'x /2),

where, for a, =(k, ,j, ), . . . , a„=(k„,j„),C„ is the covari-
ance matrix

C„=[C(X,X )]=[p~ k 5, ) /2] . (2)

Based on these results we see that the mean value of X&
is E(Xk)=E(X~ &+iX~2)=E(Xk i)+iE(Xk z)=0, and
the covariance between Xq and X~ is C(XI, ,X~)
=E([X& E(X—z )]*[XI E—(XI )]) =E(X*IX I) =pi.I. Par-
ticularly, the variance of X& is V(Xq ) = C (Xq, Xq )

=E(X~XI,. ) =E( Xi, ) =pqq. Thus we have just proved
the following.

Proposition 4. If the diagonal entries p~~ of the density
matrix C = [pi,.l ] are taken as estimates of the mean values
of the random variables XI,. and the probability distri-
butions of X~, OI, , X~ &, X~ 2, and Xj,. are determined
according to PEM and PIM, then pI,.&

is an estimate of the
covariance between the complex random coefficients X&
and X~ of the wave function.

From proposition 3 we know that the components X~ ]

and Xq z of XI, are independent and identically distribut-
ed. This allows us to take C (Xq j,X&, ) =p&&6, /2
(j,s = 1,2), where 5~, is the Kronecker symbol, equal to 1

when j =s and to 0 when j&s. Now we can apply PIM
for constructing a probability measure on the space of the
wave functions f= I (X&,,X& z);k ED I. Let us introduce
the set 3 = [(k, 1),(k, 2);k HD] and the collection lR" of
all real-valued functions co(a) (a& 3), defined on A. Let

p . . . be the projection of IR onto R" defined by
1 n

p . . . „(cg)= [co(a, ), . . . , cg(cr„)]H IR" and let us intro-

duce the o. field of all Borel cylinders in IR with index
(a, , . . . , a, ), i.e. , the collection of sets
I . . . = Ip '. . . (B), B EX"], where X" is the o. field

of Borel sets in IR'. On the field I= UI . . . , where the
1 n

union is taken over all finite sequences a], . . . , a, of ele-
ments of 3, we define the set function
rl(E)= f tl . . . (x)dx for any set EHI . . . having

the form E=p '. . . (B), BHX", where, according to

propositions 2 and 3, the probability density g . . . has

the expression

The set function g is well defined on I and, according
to the Kolmogorov extension theorem, g can be extend-
ed uniquely to be a probability measure on the o. field
cr(I) generated by I On. the probability space (R",0 (I),il)
we define the system of random variables it = [X;aE A ]
by X„(co)=co(a), for co&R". We see that tt is a Gaussian
system of random variables because

il([co;coEIR",[X (co), . . . , X (co)] KB] )

=il( [~;coElR", [co(a, ), . . . , ~(a„)]KBI )

=i)(p '. . . (B))=f i), (x)dx,

where g . . . is the Gaussian probability density given

by (1). Thus we have proved the following.
Proposition 5. If the only information about a quantum

system is given by the density matrix C=[pl, ~] then, ac-
cording to PEM and PIM, the state space becomes a
Gaussian system of random variables with the mean func-
tion equal to zero and with [pk~,'k, l&D] as the covari-
ance function.

In the above construction, D may be an uncountable set
as well, which means that from this point of view, basical-
ly, it does not matter whether the observable U has a
discrete or continuous system of eigenvalues.

As it is well known, von Neumann has introduced the
density matrix in order to play a role somewhat similar to
that of the probability density p from the classical statisti-
cal mechanics. We can see, however, that in fact the
Gaussian measure g induced by the density matrix on the
space of wave functions may be considered as being the
analog of the classical probability density p. We should
take notice here that while the diagonal elements p&& of
the density matrix are generally considered as being
relevant, representing the probability of the value uk of
the observable U, the nondiagonal elements p&I prove to
be equally significant, giving the covariance between the
components X~ and X~ of the wave function.

IV. THE PROBABILITY MEASURE
AT THE INITIAL TIME

At the initial time t =0, the density matrix is taken to
be a diagonal matrix, i.e. , pki(0)=pqI, (0)5q ~ As a conse.-

quence, the probability density (1) becomes

(x, , . . . , x„)=(2~) "~'[pk g (0) pg i. (0)] ' exp —g [x,'/[2pk k (0)]]
j=]

(x) ) il (x„)

and, consequently, it = I(X&,, X&. 2);k HD I is an indepen-
dent Gaussian system of random variables. There is no
correlation between the components of g. In such a case
the joint probability measure g is completely determined
by the probabilities (or the probability density if D is un-
countable) pl, l,. (0) on the set of eigenvalues of the observ-

able U. Practically, [pkz(0);k &D] may be determined in
one of the following ways.

(a) We examine simultaneously several identical sys-
tems and estimate either the probability distribution
Ipk', k &D] of the possible values of U, if D is finite or
countable, and put pkI,.(0) =pq, or the probability density
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[f(k);k CD ] on the set D of possible values of U, if D is
uncountable, and put pkk(0)=f(k). Often such an ap-
proach cannot be practically implemented.

(b) We know only the mean value ( U ) of the observable
U. Then, applying PEM, we determine the most random,
or the most unbiased, probability distribution on the set of
possible values of U, which, as it
is well known, ' is the canonical distribution pk
=[&(P)] 'exp( —Pu„), (k HD), in the discrete case,
where @(P)=gk exp( —@uk ), and P is the unique solution
of the differential equation d In&&(P)/dP= —(U). We
take pkk (0)=pk, k HD. In the continuous case, when the
set of possible values of U is D =(0, + oo ) and we know
only ( U), PEM gives f (k)=(( U) ) 'exp( —k/( U) )

(0 & k & + oo ). Also, if the set of all possible values of U is
D =( —oo, + oo ), and we know both the mean ( U) and
the variance o. z, then, according to PEM,

f (k)=cro'(2m) ' exp[ (k —(—U) )~/(2o2o)],

(kER ) .

In such cases we take pj,q(0)=f(k) (k&D). Let us no-
tice that here PEM is applied at the level of the possible
values of the observable U, and the probability distribu-
tion obtained is the available information when we apply
again PEM, together with PIM, for obtaining the most
random, or the most unbiased, probability distribution on

the space of possible wave functions. There are two dis-

tinct degrees of randomization in such an approach.
(c) Two other cases are also special consequences of

PEM.
(i) D is a finite set, containing n elements, and

p kk(0)=1/n for k &D T. he uniform distribution max-

imizes the entropy when our partial information as to the
value of the observable U is equally well satisfied by any
one of a group of n., generally neighboring, possible
values.

(ii) By analogy with the normal distribution, which is a
solution of PEM, we can take, even when D is finite or
countable,

pkq(0) =poexp[ —(ug —uo) /(2o. )] (k &D)

where po and cr are constants. It corresponds to the case
when our approximate measurement of U is telling us that
the value of U was almost certainly in the immediate
neighborhood of a particular eigenvalue uo, with a de-

creasing chance for values more and more removed there
from. The last two probability distributions just given are
mentioned by Tolman.

Each of the expressions given in this section for pqq(0)
may be introduced in (3) and the joint probability density
thus obtained may be used for computing the probability
of some events of interest at time t =0, like the probabili-
ty

n b,
,, (0)&b, & =i, , tt)= g [2 pk k (o)] '"f e p[ —,'/[2p (0)]]d, ,

s=] S

for locating some components of the wave function in

some arbitrary intervals.

V. THE PROBABILITY MEASURE
AS A FUNCTION OF TIME

C„(t)=[C(X (t),X (t))]

=[pq q (t)5, J /2]

g Sg*„(t)Sg „(t)p„„(0)5~ ~ /2 (4)

Let us take into account the time interval [Q,t]. Let H
be the Hamiltonian and Skt(t) be the matrix elements
corresponding to the transformation operator S(t)
=exp( —2miHt/h), where h is the Planck constant. If
pkt(0)=pkk(0)5k t, then the Schrodinger equation,
describing the time evolution of the wave functions, tells
us that pkt(t) = Q„St*„(t)Sk„(t)p„„(0).Thus, even wheth-
er pk~(0)=0, for k&1, in general pkt(t) would not reduce
to zero for k&1. Hence, with the interpretation of the ele-
ments of a density matrix discussed in Sec. III, we must
conclude that the initial independence between the com-
ponents of the random wave function would in general be
lost as time proceeds. In the time interval [O,t], due to the
evolution of the system, the initial independent Gaussian
probability measure generated by the family of densities
(3) is replaced by the dependent Gaussian probability mea-
sure generated by the family of densities (1), where the co-
variance matrix (2) is

This transformation, from (3) to (1) with the covariance
matrix (4), may be considered as being the generalization
to our context of the Liouville theorem from the classical
statistical mechanics. But here, generally, the joint proba-
bility in the state space is not conserved, as in the classical
case, but changes in time. The Aow generated by the
Schrodinger equation in the space of wave functions does
not generally preserve the probability distribution
which evolves in time: Its mean function continues to be
identically equal to zero, but the covariance function
changes in time according to (4). As a consequence,
the set of independent random components
[Xk ~ (0), . . . , Xk ~

(0) [ of the random wave function

11(0), at the initial time t =0, becomes a system of depen-
dent random components [X~ ~

(t), . . . , Xq, (t)[ of the

random wave function P(t), at time t. According to (3),
(1), and (4), we see that while, at the initial time, the com-
ponents of P(0) are not correlated, which means
W'(0)=0, later, at time t, the amount of global inter-
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dependence between the normal random components
[Xk, (t), . . . , Xk 1 (t)I of/(t) is equal to

W(t)=0. 51n[pk k (t) pk k (t)/~ C„(t)
~ I

=0.51n[[pk k (t) pk k (t)]/[Xk, (t) . kk (r)]I,

(5)

where
~

C„(t)
~

is the determinant of the matrix (4) and
A, k (t), . . . , Xk (t) are its eigenvalues. It is worth noticing

1 n

that, generally, the Schrodinger equation is used for pre-
dicting the probability pkk(t) that the value uk could be
obtained in an observation of the observable U at time t.
As we can see, the nondiagonal elements pkl(t), (k~1), of
the density matrix at time t are not less important, essen-
tially contributing to the form of the probability measure

q in the space of wave functions and to the measure of the
interdependence created, due to the time evolution of the
system, among the components of the random wave func-
tion. As we can see from (5), if during the time interval

[O,t] the density matrix C„(t) remains a diagonal matrix,
then W(t) =0. But, generally, such a thing does not hap-
pen and the components of P(t) do become interdepen-
dent.

Because the random variables [Xk ~ (t), . . . , Xk ~
(t) I

are normal, this system is independent if and only if its
components are not correlated, i.e. , pk k (t) =0 for j,.&j„.
Also, we can calculate, using a standard technique for
Gaussian systems, the expectation of any polynomial in

the above random variables.
Let us take the coefficients [X,(t), . . . , X„&~(t)I (n

even), of the random wave it, where X (tk) =X ik(t)

+ iXk 2(t). Let C„(t)=[C(Xk J(t),XI,(t))] be the corre-
sponding covariance matrix. Then the probability density
(1) with this covariance matrix may be used for calculating
the probability of some events of interest. Particularly, if
E, 5, ak, and b (ak & b), are positive numbers, then

n/2

n([ I IXk(r) +k
I «X IX.(r) ' —& &&) )

s =1

gives an approximation, to within an error of a+6, of the
probability that the probability that the observable U will

take on the value uk, at time t, is equal to ak/b, relatively
to the eigenvalues u&, . . . , u„/2 of the observable U. We
can see here the double intervention of randomness: We
make a prediction on the probability of a probability of an
event.

VI. WIENER-SIEGEL PROBABILITY MEASURE

Long ago, Einstein pleaded in favor of associating a
kind of Brownian motion to elementary particles. Later,
Wiener and Siegel ' postulated a Gaussian type of proba-
bility measure in the space of the generic coefficients of the
wave function representing the state of a quantum system.
In their approach a kind of postulated Brownian motion
was taken as a basic description not explained as a result
of impacts of finer particles. According to Bohm such
an idea would in effect bring in a new kind of order and
measure, "Ifit were pursued seriously, this would imply a

change of possible structures that would perhaps be as
great as that implied by the change from Ptolemaic epicy-
cles to Newtonian equation of motion. Actually, this line
was not seriously pursued in classical physics. " Without
assigning such an exaggerated significance to it, we have
to admit, however, that the Wiener-Siegel approach has
not heretofore received the attention it deserves. There
are similarities and basic differences between the Wiener-
Siegel approach and the content of this paper. The com-
mon point is that both deal with a probability measure on
the space of normed or unnormed possible wave functions.
But in the Wiener-Siegel approach the Gaussian measure
is postulated in a rather abrupt way, which perhaps par-
tially explains its little impact, while here the Gaussian
probability measure is a consequence of the application of
the principle of maximum entropy, and of the classical
viewpoint from statistical mechanics according to which
we are looking for the most random, or most unbiased,
probabilistic model compatible with the given data and
constraints. Also, the Wiener-Siegel approach does not
make use of the usual kind of available information, while
here the density matrix is taken as starting point.

With the above notations, the Wiener-Siegel probability
measure postulated in the space of wave functions
g= [(Xk, ,Xk z);k ED t is generated by the independent
Gaussian probability density

xi, . . . , x„)=(2~) " exp —g x, /2
j=1

having the mean vector equal to zero and the unit matrix
as the covariance matrix. It induces an exponential distri-
bution with the parameter equal to 1 on the set of possible
values of

~
Xk

~

VII. CONCLUSIONS

When the density matrix is known, we construct the
most random, or the most unbiased, probability measure
on the space of wave functions by applying the principle of
maximum entropy and the principle of minimum inter-
dependence. Such an attempt extends, at a second level of
randomization (i.e., on the space of wave functions which
are already used for making probabilistic predictions
about the possible values of an observable), the way of
constructing a probability measure on the state space in
the classical statistical mechanics. The Gaussian product
probability measure on the infinite dimensional space of
the coefficients of possible wave functions is the analog of
the probability density function from the classical statisti-
cal mechanics. Its covariance function is just the density
matrix and it implies an exponential distribution on the
possible values of the squared absolute values of the
coefficients of the wave function. In this model a diagonal
density matrix at the initial time t =0 induces an indepen-
dent Gaussian product probability measure on the space
of wave functions. Due to the time evolution of the sys-
tem, described by the Schrodinger equation, this initial
probability measure is transformed, in the time interval

[O, t], into a Gaussian product probability measure with
interdependence between components. The amount of in-
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terdependence between the random coefficients of the
wave function may be calculated using a simple formula,
essentially depending on the nondiagonal elements of the
density matrix at time t ~0. This transformation of an
independent gaussian product probability measure on the
space of wave functions, at the initial time t =0, into a
dependent Cxaussian product probability measure, at time
t & 0, may be viewed as a generalization to the quantum
case of the Liouville theorem from the classical statistical
mechanics. The model given in this paper does not make
any suppositions about the eventual causes of the random
fluctuations characterizing a quantum system, whether
they are the basic, objective feature at the quantum level

or they are produced by a sort of deterministic interac-
tions at a subquantic level. It gives only a subjective
probabilistic model for the space of the wave functions,
determining the most random, or the most unbiased, pro-
babilistic description compatible with the available data by
using the maximum entropy technique which has proved
so useful in the classical statistical mechanics.
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