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Measurement of amplitude probability distributions for photon-number-operator eigenstates
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A homodyne detector measures a field-amplitude component of the incoming signal. If the in-
coming signal is in an n-photon eigenstate the homodyne detector's output probability distribution
exhibits n fringes. Here the degree to which the visibility of these fringes is degraded by a homo-

dyne detector with less than unit quantum efficiency is evaluated. An experiment employing con-
jugate pairs of photons generated via a parametric down conversion or four-wave mixing is pro-
posed by which these fringes could be observed.

Because of their utility in squeezed-state detection
homodyne detectors have received considerable atten-
tion. ' It is now quite well known that a homodyne
detector measures an amplitude component of the elec-
tromagnetic field. If the input to the homodyne detector
consists of a photon-number eigenstate with n photons
then the probability distribution for the homodyne detec-
tor will have the same form as the probability distributjon
for the x coordinate of a harmonic oscillator in its nth en-
ergy eigenstate. This probability distribution exhibits n

peaks or fringes. If the homodyne detector has less than
unit quantum efficiency these fringes will be blurred due
to the noise associated with the detector losses. Here we
calculate the degree to which the fringe visibility is de-
graded due to detector losses. It is shown that the
homodyne-detector output probability distribution can be
written as a convolution of the field-amplitude component
probability distribution of the incoming signal with the
field-amplitude component probability distribution of the
vacuum field emitted by the loss.

It is known that the signal and idler photons produced
in the parametric-down-conversion process are highly
correlated. It has in fact been experimentally demon-
strated' ' that by measuring the arrival of the idler pho-
tons one can determine the positions of the photons in the
signal beam to within a coherence time. The number of
photons counted by a photodetector in the idler beam dur-
ing a coherence time could thus be used to gate a homo-
dyne detector in the signal beam so that the homodyne
detector's integrated output over a coherence time is only
recorded when a one-photon wave packet enters its input
port. More generally, the homodyne detector could be
gated in such a way that its output, integrated over a
coherence time, is recorded only when rn photons enter the
idler photodetector in a coherence time. In this way an
experiment could be performed to map out the probability
distribution for a field-amplitude component of a
number-operator eigenstate. The experiment described
here is akin to other feed-forward schemes that have been
proposed for generating photon-number eigenstates or an-
tibunched light from frequency down converters. ' '

The analysis performed here is a single-mode analysis
in which the eA'ects of the random deletion noise of photo-
detectors with less than unit quantum efficiency are taken
into account. We show that for one-photon wave packets

a =q' a +(1 —r/)' a (2)

where g is the transmission of the beam splitter, or the
quantum efficiency of the homodyne detector. Let

(3)

then the output delivered by the homodyne detector is
proportional to the operator

' 1/21—
q =x+ (4)

The state vector
~

4') has the form

where the signal state vector
~

W„& is operated on by a,
and the noise state vector

~

4'~) (which will shortly be spe-
cialized to the vacuum state) is operated on by a&. Since
a, and a~ are two independent modes, x and y commute

the fringes are visible even when photodetectors with
quantum efficiencies of 0.5 are used. The successful gen-
eration of squeezed states' ' with four-wave mixers and
parametric down converters shows that signal and idler
beams with a reasonable photon flux and (in the case of
cavity devices' ' ) coherence times long compared to
photodetector response times can be realized. The calcu-
lations presented thus indicate that the proposed experi-
ment should be feasible with state-of-the-art technology.

The response of a homodyne detector to photon-number
eigenstates will now be calculated. The operator ' that a
homodyne detector measures is

x = (e'~a,t+e '~a, ),1

2

where p is the local oscillator phase and a, is an annihila-
tion operator for the signal mode. This is the operator for
one amplitude component of the electromagnetic field
entering the photodetector. The eA'ects of loss' can be
simulated by placing a beam splitter in the signal port of
an ideal homodyne detector. The beam splitter will couple
a vacuum mode a~ into the signal so that the mode a
delivered to the ideal homodyne detector is
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and consequently the nth moment of q has the form

n
("n) g I

kk~P

k/2

The moments of x and y can be expressed as
p OO

(e„lx Ie,&=„x P, (x)dx

and

(7)

OO ~ OO

1 —g(q") = dxJ dy x+
' 1/2 n

y P, (x)P~(y) .

(+y Iy I 9y) I x P~(y)dy (s)

where P, (x) is the probability density for the observable x
associated with the operator x and similarly P~(y) is the
probability density for the observable y associated with
the operator y. Substituting Eqs. (7) and (8) into (6), one
has

In a similar manner, it is straightforward to show that the
probability distribution P, (x) when I% ) is an n-photon
eigenstate I n„) is

Pg(x) =,(, H„'(x)e
&1/22 nn ~

(i7)

where H„(x) is the nth Hermite polynomial. This result
follows most readily by recognizing x as the position
operator for a harmonic oscillator and transforming

I n„)
into its x representation. Note that Eq. (17) is indepen-
dent of the local oscillator phase. This is a consequence of
the fact that the phase is completely uncertain for a
number-operator eigenstate and, hence, it is irrelevant
where the homodyne-detector phase is set. Substituting
Eqs. (16) and (17) into Eq. (12) and making a suitable
change of variables, the probability distribution P„(q) for
the homodyne-detector output when the signal is in an n-
photon eigenstate can be expressed as

1/2 —
gq

P„(q) = " „dyH„((1—ti)'~ y+riq)e

Introducing the change of variables
r i 1/21—

q =x+

Eq. (9) can be put into the form
p OO

(q")—=„dq q "P(q)

j dq q "„dyP, q

1/2
1 —

g
P)v (y )

71

(io)
1/2

P„(q) = n n —k

e
—gq2

"(pg —k )!

"
k H2(n -k)(g '"q)

The first three cases are

1/2

The integral can be evaluated to yield

(is)

(i9)

Hence, the probability distribution for the random vari-
able q measured by the homodyne detector is given by the
convolution

i 1/2

P, (q) =

P((q) =

7L'

1/2

—
gq

e "& (1 —
ri +2 ri q )

(2o)

(2i)

y P~(y) . (12)
71

Specializing to the case when
I +y) is the vacuum state

Io, &,

P(q) =J dy P, q—

ajv I oy& =0, (i 3)

and

(()
I

.2g I() )
(2k —1)!!

2k

(0 Iy +'Io )=0

(i4)

(is)
From Eqs. (14) and (15) it is easily established that the
probability distribution Piv (y ) is

it is a straightforward exercise in commutator algebra to
show that

and
r i 1/2

Pz(q) = —+ e "q [3rl —4@+2
2 R

+ (Sq —12ti )q +4' q ].
(22)

The probability distributions Eqs. (21) and (22) are
plotted in Figs. 1 and 2, respectively, the cases (a), (b),
and (c) being respectively @=1, @=0.75, and @=0.5.
For Fig. 1 (n =1) the fringes are still visible when ri =0.5.

More generally, one can take the asymptotic form for
H„(x) to calculate the fringe visibility for large n In par-.
ticular, one has, asymptotically, '

H2„(x) =2 "[(2n —I)t!] e" cos (v 4n+ lx), (23)

P~(y) = e y2 (i6) which, upon substitution into Eq. (18), yields the asymp-
totic form for the probability distribution P2„(q):

' [(2n —I )!!]
P2n(q) = " ' I +exp

xn!
(4c+ ) ) ccs(244c+ ) q)

1
.

71

(24)
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PUMP

NL and P is related to the conversion gain G„(in power) of
incoming signal to outgoing idler via

Gsi =sinh (30)

LOCAL
OSC I LL ATO

GATE

OUTPUT

The probability distribution P„, (q) of the homodyne-
detector output when the homodyne detector is gated by a
photodetector with efficiency gd is, thus,

given by

(1 —y) +'y" for n )m
Pd, m rt

0 for n &m,
where

(28)

y = (1 —
rid )tanh

2
(29)

FIG. 3. A feed-forward scheme for gating the output of a
homodyne detector so that its output is only observed when an
n-photon wave packet enters the input port. The homodyne
detector consists of the local oscillator, the beam splitter BS, and
the photodetector D2. The strong correlations between the sig-
nal and idler photons coming from the parametric medium NL
are exploited to gate the homodyne detector. The gate is opened
only when photodetector Dl in the idler beam reports the arrival
of n photons in the coherence time determined by the inverse
bandwidth of the frequencies of light allowed to pass through
knife edges Sl and S2. For further details see the text.

P„, (q) = g Pd (n)P„(q) .
n m

(31)

For small y, as can be obtained by reducing the paramet-
ric gain, Eq. (28) yields

P, (m)- 1

and Pd (n) is of order y" . Hence, in the low-intensity
limit only the first term of the sum (31) contributes
significantly and P„, (q) reduces to P„(q).

In summary, we have evaluated the eA'ects of loss on a
homodyne detector's ability to observe fringes in the prob-
ability distribution of an amplitude component of the elec-
tromagnetic field when the field is in a number-operator
eigenstate. For the n =1 eigenstate the fringes are still
visible when the homodyne-detector efficiency g =0.5. An
experiment was proposed in which the conjugate pairs of
photons produced in parametric-down conversion are em-
ployed to gate a homodyne detector, so that its output is
recorded only when an n-photon wave packet (where n
has been predetermined) enters the homodyne detector.
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