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An uncertainty-type lower bound [I. Bialynicki-Birula and J. Mycielski, Commun. Math. Phys.
44, 129 (1975)] to the information-entropy sum in complementary spaces has recently been reformu-
lated by Gadre et al. [Phys. Rev. A 32, 2602 (1985)] in terms of the respective one-particle probabili-
ty densities. This bound has been exploited to derive rigorous upper as well as lower bounds to the
information entropies and their sum in terms of the corresponding second moments of their distribu-
tions. Thus the present work establishes a direct connection, as suggested by Sears, Parr, and Dinur
[Israel J. Chem. 19, 165 (1980)], between the quantum-mechanical kinetic energy and information en-
tropy in position space. It has also been demonstrated that given at least one arbitrary moment-type
constraint in each space, it is possible to derive an upper bound to the information entropy sum in

complementary spaces.

I. INTRODUCTION

During the last decade there has been increasing in-
terest' “® in the application of information theory to a
variety of quantum-mechanical problems. An infor-
mation-theoretical approach has been employed for the
elucidation of fundamental concepts’*® as well as for a
more practical purpose such as synthesis*’ of electron
densities in position and momentum spaces. In the form-
er category, the inequality due to Bialynicki-Birula and
Mycielski' provides an interesting uncertainty-type rela-
tion in terms of the information entropies in complemen-
tary spaces,

—(In|¢|H—=(n|F|* >n(1+In7), (1)

where ¥ and ¢ are the wave functions in n-dimensional
coordinate and momentum spaces, respectively. As point-
ed out by Bialynicki-Birula and Mycielski' in their work,
the inequality (1) is an expression of quantum-mechanical
uncertainty, since a narrow distribution in a space must
necessarily engender a diffuse one in the conjugate space.
It has also been proved that the entropy sum in (1) is in-
variant to uniform scaling of coordinates.? The inequality
(1) can readily be transcribed in terms of the correspond-
ing one-particle probability densities, viz., p(r) and y(p).
Here,

pO=N [v*(r,05, ..., eN(E, .. 1y)dTy - dry
2)
and
Y(P)=N [¥*(p,p2 . . ., px)
XY(p,p2, - .., Pn)pP2 - - - dpn - (3)
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The bound (1), after some simplification and use of the
definitions in (2) and (3), assumes the form, shown in Ref.
2,

S,+S,>3N(1+In7)-2NInN , (4)

where the entropy S,= — fp(r) Inp(r)dr is now defined
with reference to three-dimensional electron density dis-
tribution. The Shannon entropy S, is defined analo-
gously. In a recent work, several novel characteristics of
atomic information entropies have been observed. The
main observations reported in this work are that the in-
formation entropy sum S, +S, (1) enhances with excita-
tion of a quantum-mechanical system and (2) seems to be
an indicator of the wave function quality for fully opti-
mized variational wave functions. Due to complete vari-
ation of all the parameters involved, these wave func-
tions satisfy the quantum-mechanical Coulombic virial
theorem, viz., T= —E. The studies carried out so far’
investigating the atomic information entropies fully cor-
roborate these findings. The wave functions employed in
these studies include single-zeta, double-zeta, near
Hartree-Fock, and some CI-type ones for atoms and
ions.

A study portraying the quantum-mechanical kinetic
energy as a measure of information in a probability dis-
tribution was earlier reported by Sears, Parr and Dinur.?
In this interesting study they discussed the implications
of information theory for density-functional theory of
electronic structure. Several exact relationships were
found,® the one of special interest being
T,,,:Tw+(N/8)(If>, where the quantity on the left-
hand side is the quantum-mechanical kinetic energy, T,
is the celebrated Weizsacker term and the second term
on the right-hand side denotes the average of the
Fisher’s information entropy associated with the N-
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dimensional conditional density |¢(1,2,...N)|%/p(1),
the averaging being done over the one-particle density
p(1). They thus noted that the Weizsacker term is not
so much of a ““correction” term as thought of in the ear-
lier literature, but provides a solid first approximation to
the kinetic energy functional. The purpose of the
present work is to establish a direct link between the
quantum-mechanical kinetic energy and the Shannon en-
tropy S, associated with the position-space electron den-
sity, p(r), via a rigorous inequality. Several bounds to
S, and S, as well as their sum and difference in terms of
the second moments of the probability densities p(r) and
y(p), viz., the {(r?) and {(p2) values, will also be
presented and discussed.

II. ATOMIC INFORMATION ENTROPIES
AND KINETIC ENERGY

Consider all spherically symmetric distributions y(p),
leading to a given value of the kinetic energy
T= f y(p)p3dp /2. Out of all these distributions, the one
of the form ¥ma.(p)= A exp(—ap?) has the maximum
value of the information entropy S,. Here A4 is the nor-
malization constant and a is an appropriate Lagrange
multiplier. It turns out that A=c**N/7*? and
a=3N /4T where N is the number of electrons and T is
the kinetic energy. Thus the maximum value of the
momentum space entropy (for all distributions having a

prescribed kinetic  energy T) is given by
- f?’max(p)lﬂymax(p)dp, leading to

Sy < — f?/max(p)lnymax(p)dp , (5)
which on simplification yields
Sy <3N(1+In7m)/2—NInN —3N In(3N /4T)/2 , (6)

wherein the equality is attained by a Gaussian momentum
density. From relations (4) and (6) one obtains a lower
bound to S,

S, >3N(1+In7)/24+(NInN)/2—3N In(4T /3)/2 , (7

which is a rigorous relationship between the exact
quantum-mechanical kinetic energy and the information
entropy in position space S,. Addition of (6) and (7) leads
to a lower bound to the excess information entropy in the
position space over that in the momentum space,

S,—Sy >3NInN—-3NIn(4T /3) . (8)

The physical meaning of bound (8) is quite transparent: a
large value of the kinetic energy is reflected in a lower
bound to the excess information entropy in position space
over that in the conjugate one. Similar upper as well as
lower bounds can be worked out in terms of (r?), the
second moment of the position-space electron density,

p(r). These bounds are given by
S, <3N(1+Inm)/2+3N In(2(r*) /3)/2—5(N InN)/2
)
S, >3N(1+In7)/2+(NInN)/2—3N In(2{r?) /3)/2
(10)
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leading to

S, —S,>3NIn[3N /(2{r*))] . (1
Addition of (8) and (10) leads to

0<2N In(3N)—1n(4{r?){p?)),
or, equivalently,

(r2){p?)>9N?/4 . (12)

Note that this is a bound’ obtained by Gadre and Chakra-
vorty employing an inequality due to Redheffer. This
bound was also derived earlier by Yue and Janmin’ via
the use of commutator relations. It is indeed gratifying to
note that the same result could also be obtained by the ad-
dition of inequalities (6) and (9) and may be represented
by

Sp+Sy <3N(1+Inm)+3N In(4(r*)(p?) /9)/2
—5NInN . (13)

This means that an upper bound to the information-
entropy sum can be prescribed in terms of the second mo-
ments in position and momentum space. It may be noted
here that for an atomic or molecular system, the (p?) ex-
pectation value, which is numerically twice the electronic
energy via the virial theorem for Coulombic interactions,
is measurable from thermochemical as well as spectro-
scopic experiments. It can also be obtained by integrating
out suitably weighted Compton profiles measured from
x-ray or y-ray scattering as well as (e,2e) experiments.
The second moment of the coordinate space-charge densi-
ty, viz., the (r?) expectation value, can, however, be ex-
tracted from the experimental diamagnetic susceptibility
data. However, it can be directly seen that the use of any
moment-type constraint in either position or momentum
space leads to an upper bound to the information entropy
therein. Thus, the present results can be generalized to
the case of an arbitrary number of known moment con-
straints; at least one in each space must be prescribed in
order to obtain an upper bound to the information-
entropy sum as expressed by inequality (12).

III. NUMERICAL TESTS AND CONCLUDING
REMARKS

Let us begin by testing out the inequality (7), viz.,
S, >3(1+Inm)/2—31n(4T /3)/2 which supplies a lower
bound to 7, the kinetic energy in terms of Sp for the
case of hydrogen atom (N =1). Use of the value
S,=4.14 leads to a lower bound of approximately 0.41
a.u. (the exact value being 0.5) to the kinetic energy of
the hydrogen atom. Note that (7) furnishes a lower
bound to the kinetic energy, similar to the one used by
Lieb? in his discussion of the stability of matter. Howev-
er, Lieb’s bound is given in terms of the integral of the
cube of the electron density, viz., T>K5(fp3dr)l/3
where the best possible constant K is determined to be
38(m/2)*3/2. Lieb’s inequality leads to a value of 0.43
a.u. for the lower bound to the kinetic energy. This is
only about 5% higher than that offered by our bound
(7). An additional attractive feature of our bound (7) is
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that it provides a connection between an interesting
information-theoretical entity defined in terms of the ex-
perimentally measurable position-space probability den-
sity and the quantum-mechanical kinetic energy. The
application of inequalities (4) and (13) leads to a lower
and upper bound, respectively, viz., S, +S, >3(1+4Inm)
and S,+S, <3(1+In7) +3In( 4<r ><p2>/9 /2 to the
mformatlon -entropy sum S,+S, for the case N=1.
Thus, for the hydrogen atom, assummg (p?)=1 and
(r? )—3 (all values in a.u.) leads to 6.43 <S,+S, <6.87.
Note that the true value of the information-entropy sum
S,+S, is approximately 6.56 (correct to three
significant digits) which is bracketed to within 5% on ei-
ther side by the bounds (4) and (13). The bounds to in-
formation entropy in individual spaces turn out to be
3.83 gSpg4. 26 (actual values being 4.14 bracketed to
within 8%) and 2.18<S, <2.61 (true value being 2.42
which lies within 10% of the bounded values).

Some more tests of the upper and lower bounds to S,
Sy, and S, +S, are presented below in terms of the near
Hartree-Fock expectation values {(r2) and {p?) comput-
ed from the Clementi-Roetti wave functions.® For the
helium atom, the bounds to S, and S, predicted using the
values of (rz)—~2 3697 and <p2)—5 7234 (all values in
a.u.) turn out to be 3.110<S5,<4.340 and
5.756 < S, <6.986. The lower bounds to the entropy sum
are given by 10.096<S,+S, <11.326. These may be
compared to the near Hartree Fock values? S,=4.011,
S, =6.440 and S, + S, =10.451 a.u,, respectlvely

A similar test for the neon atom yields
—23.476 < S, <2.0963, 16.194 < S, <51.766, and 18.290
<S,+8,<53.862 (a.u.), the respective near Hartree-
Fock counterparts being —2.473, 41.345, and 38.872
a.u. From these tests it may be seen that knowledge of
(r?) and {(p?), which is experimentally determinable,
leads to rigorous upper and lower bounds to information
entropies. These bounds are rather loose but could be
made tighter by utilizing additional experimental-
moments data.

To summarize, in the present work a variety of upper
as well as lower bounds to information entropies in conju-
gate spaces have been derived exclusively in terms of the
second moments of the respective one-particle densities.
These inequalities employ the quantum-mechanical entro-
pic uncertainty relation derived by Bialynicki-Birula and
Mycielski.! It is noteworthy that our bounds are ex-
pressed in terms of electron densities. In fact, the ine-
qualities derived in the present study furnish yet another
crucial link between the electron densities in position and
momentum spaces. Many other connections between

these spaces have earlier been established in this laborato-
ry. Some of these connections are based on the semiclas-
sical phase-space treatment whereas some incorporate
more rigorous conditions on the exchange hole.!® The
link between the conjugate-space densities is provided by
the autocorrelation function in the latter approach. Some
other connecting relationships are furnished by rigorous
bounds among the moments of the probability densities in
complementary spaces.” The highlight of the present
work is the demonstration of upper as well as lower
bounds to the information entropies in coordinate as well
as momentum spaces furnished in terms of the second
moment of the respective probability densities. It may be
reemphasized here that a variety of bounds to the infor-
mation entropies can be obtained in terms of other mo-
ments as well. It is also possible to obtain inequality-type
relations among the position and momentum-space mo-
ments [as exemplified by the bound (12) in the present
work] by invoking information-theoretical considerations.

The use of the information-entropy sum in conjugate
spaces as a joint measure of the ‘“uncertainty” of a
quantum-mechanical distribution appears very rewarding.
The existence of an upper bound to $,+S, proven in the
present work indeed fortifies the recently enunciated
maximum-entropy principle!! for quantum-mechanical
systems. Thus the present work points towards the possi-
bility of a maximum entropy construction of electron den-
sities in position and momentum spaces. Here, one can
model the wave function in terms of an orbital basis, com-
pute p(r) and y(p), and maximize subject to certain
prescribed moment-type constraints. This represents a
new approach to electron-density synthesis which is simi-
lar in spirit to recent work of Massa et al.'? in which an
attempt to obtain a “Slater determinant” from the experi-
mentally measured x-ray scattering factors is reported.
That such an attempt is a valid one is vindicated by the
upper bound to the information-entropy sum derived in
the present study.
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