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Finger narrowing under local perturbations in the SaKman-Taylor problem
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We present an experimental study and a numerical simulation of the effect of time-independent,
localized perturbations applied to the interface in the Saffman-Taylor fingering problem. When
the perturbation is applied at a specific spot near the tip of the finger, the selection of the steady-
state shape is drastically changed. In particular, one can obtain fingers with a width well below

A perturbation applied far away from the tip has no effect. We observe the same behavior
in the simulation and in the experiment.

INTRODUCTION
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FIG. 1. Finger width A, vs 1/B =12(pV/T)(8'/b) . +,
unperturbed case (from Ref. 4); o, with a tungsten wire 13-pm
thick; ~, with a nylon wire 117-pm thick.

When air is pushed into a viscous fluid in a Hele-Shaw
cell the steady-state shape of the interface is a finger
whose width A. relative to the channel width depends on
the dimensionless parameter B = —,', (b/W) T/p V (b and
W are the cell thickness and width, T is the surface ten-
sion, p the viscosity, and V the velocity of the steady
finger). For zero surface tension (B =0) and for sym-
metric fingers, Saffman and Taylor' found analytically a
one-parameter family of solutions to the problem, with A,

taking any value between 0 and 1. Allowing for asym-
metric fingers, they found a two-parameter family of
solutions, one parameter being the displacement of the
finger from the center of the channel and the other being

A finite surface tension has been shown to introduce
a selection for the shape and restrict the number of solu-
tions (for a given B) to a discrete set, with only one of
these solutions being stable and thus observable. Exper-
imentally obtained values of k (from Ref. 4) are plotted
in the upper curve of Fig. 1.

It has been shown that experimentally it is possible to
change the observed solutions by perturbing the inter-
face. Grace and Harrison, in 1967, found narrowed
solutions for rising bubbles in two and three dimensions
when the bubble surrounded a rod that was placed in the
channel. Recently, Couder et al. placed a small bubble
at the tip of the finger and observed steady states with
much smaller A, 's than in the unperturbed case. Hong
and Langer have modeled these experiments by intro-
ducing a finite opening angle at the tip, and they find
narrowed fingers. Another way of obtaining narrow
fingers is by introducing an anisotropy in the surface-
tension parameter, that is by letting the surface tension
vary along the interface. Under these circumstances,
Kessler and Levine have found finger narrowing numeri-
cally and theoretically. ' Dorsey and Martin have also
obtained similar results. ' In these studies, the length
scale of the perturbation was of the order of the finger
width.

Tabeling and Libchaber have observed asymptotic X
below —,

' in experiments on "unperturbed" fingers. By in-

troducing extra terms in the pressure drop at the inter-
face to take into account three-dimensional film effects,
Schwartz and DeGregoria, " and Sarkar and Jastrow'
have numerically obtained similar results. By modifying
the boundary conditions to allow for variable film thick-
ness, Reinelt' has obtained good agreement with the ex-
perimental results.

Here we present an experimental study and a numeri-
cal simulation of the effects of local perturbations of the
interface, i.e., perturbations whose length scale is much
smaller than the finger width. In the experiment, a thin
wire is suspended inside the channel parallel to the low
direction so that it intersects the interface, thereby creat-
ing a local deformation. In the numerical simulation, a
local perturbation of the surface tension is introduced in
the equations of motion. Despite the fact that the per-
turbation applied to the interface is quite different in the
two cases, both the experiment and the simulation show
the same qualitative and quantitative features of the re-
sulting steady-state fingers: the selection of the solution
is drastically changed (towards smaller values of A,),
when the perturbation is applied near the tip. The finger
adjusts to put the perturbation in a specific place off cen-
tered from the tip. For a range of values of 8, the dis-
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tance of this particular spot from the tip scales as a
power of the velocity, and we obtain, within the errors,
the same scaling exponent from the experiment and the
simulation. For this range of B, the tip curvature also
scales as a power of the velocity, and again we find the
same exponent in the simulation and in the experiment.
However, at smaller values of B experimentally the
finger width A. seems to approach an asymptotic value
different from zero (due to numerical instabilities, we
were not able to explore this region of B in the simula-
tion). In the experiment we also find these thin fingers
to be stable down to much smaller values of B than the
unperturbed ones.

(a) (bj (c)

EXPERIMENTAL OBSERVATIONS

The Hele-Shaw cell and the fluids used in the experi-
ment (air against oil) were the same as in Ref. 4. The
cell had dimensions 8'=5 cm, b =-0.8 mm, and the pa-
rameters of the oil were @=5,T=23 in cgs units. The
perturbation applied to the interface consisted in
suspending a thin wire inside the cell. The wire was
parallel to the How direction and extended along the
complete length of the cell. It was kept in place (at
midheight of the channel gap) by supports at both ends
of the cell, and it was put under tension by attaching
weights to its ends. Different types of wire were used in
the experiments: a 117-pm thick nylon wire, and 100-
pm and 13-pm-thick tungsten wires.

If the wire does not touch the interface, the perturba-
tion of the fiow it causes seems irrelevant to the interface
dynamics, that is, one obtains a "normal" finger [Fig.
2(a)]. If the wire does intersect the interface then the
constraint of the contact angle at the wire-oil-air inter-
face produces a local deformation of the latter. Two
different states are possible, depending on whether the
wire intersects the finger near the tip or far away from
it. In Fig. 2(b) the wire has been shifted a little towards
the center of the channel, as compared to Fig. 2(a), so
that it intersects the interface far away from the tip. %'e
see that apart from a local deformation the overall shape
is the same as in Fig. 2(a); in particular the width k is
the same (in the two figures the velocity of the finger is
nearly the same). In Fig. 2(c) the wire has been shifted
still more towards the center, and now we see that the
whole finger adjusts itself laterally in the channel to put
the wire in a specific position near the tip. In this "per-
turbed" state the value of k is drastically different from
the unperturbed case; for example, the finger in Fig. 2(c)
is considerably thinner than in the two previous pictures,
even though the velocity is actually smaller in Fig. 2(c).
For small values of B the shapes of these thin fingers is,
apart from the small bump caused by the wire, indistin-
guishable from the Saffman-Taylor (zero surface tension)
solution with the same width k.

Figure 2(d) shows that even when the wire is displaced
away from the center of the channel, with proper initial
conditions one can still obtain a thin finger which is
"guided" by the wire [in this figure the wire is in the
same position in the channel as in Fig. 2(b)]. The shape
is here asymmetric because the finger is not moving in
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FIG. 2. Steady-state fingers of air penetrating into oil.
(a) —(d) A nylon wire with a diameter of 117-pm is suspended
inside the cell; {e) a 13-pm thick tungsten wire is used. (The
wires have been retouched on the figure. ) (a) I /B =3160,
1=0.482; the wire does not intersect the interface, and there is
no effect on the shape. (b) 1/B =3000, X=0.481; the wire in-
tersects the interface far away from the tip, and still there is no
effect on the overall shape. (c) 1/B =2510, A, =0.402; the wire
intersects the interface near the tip, and the finger width is
dramatically changed. (d) 1/B =17200, A, =0.296. The shape
is asymmetric because the finger is not moving in the middle of
the channel. (e) 1/B =28 300, X=0.300.

the middle of the channel. For small B this shape is
again indistinguishable from the zero surface-tension
solution for a finger propagating asymmetrically in the
channel.

Thus we observe that if a localized perturbation (in
this case the deformation of the interface caused by the
wire) is applied far away from the tip, then it has no
effect on the finger width, while if it is applied at a
specific spot near the tip, then it changes the finger
width dramatically: for a given B one obtains a much
thinner finger than the corresponding unperturbed one;
in particular, one obtains finger widths well below A. = —,

'

(Fig. I). This qualitative behavior does not seem to de-
pend on the details of the perturbation applied to the in-
terface. Figure 1 shows that two wires with radii
differing by an order of magnitude produce qualitatively
the same effect.

In these perturbed states the wire is in a specific posi-
tion with respect to the tip, and this position depends on
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FIG. 3. Log-log plot of 6, the distance from the tip to the
wire, vs B; 6 is in units of 8'/2m, ' the straight line has a slope
of 0.4. The top curve is the experimental data, obtained using
a 117-pm nylon wire. The three lower curves are the results
from the simulation for three different values of the perturba-
tion amplitude A. (Here 2 measures the amplitude of the per-
turbation, with the surface tension increasing by a factor of
1+3 at the center of the disturbance. ) The curves for the
simulation are denoted by the following: 0, 3 =0.5; o, 3 =2;

, 3=4.

FIG. 4. Fingers in a cell with two parallel 100-pm thick
tungsten wires a distance D =4.72 mm apart. (a) 1/B =6110,
X=0.345; symmetric state. (b) 1/B =21600, X=0.315; asym-
metric state. (The wires have been retouched on the figures. )

state the selection is determined by the wire nearest to
the tip, and the second wire has no effect; this is shown
in Fig. 5, where we plot, for two different wire spacings,
the values of k before and after the transitions from the
symmetric to the asymmetric state. For comparison, the
curve obtained with only one wire (asymmetric state) is
also plotted. We see that all the asymmetric states coin-
cide.

the velocity. For B between 0.0001 and 0.003 we find
the distance 6 between the tip and the wire to scale as
5- V with a=0.40+0.04 (Fig. 3).

The second striking result concerns the stability of
these thin fingers: they are found to be stable in a much
larger range of the control parameter than the unper-
turbed ones. In Fig. 1 the curve corresponding to the
unperturbed (A ——,

'
) fingers is plotted up to a value of

the parameter 1/B of about 7000, which is, for the noise
level characteristic of this experimental setup, the
threshold for the onset of instabilities; the thin fingers
obtained with the wires (in the same cell, and thus with
at least the same level of noise) are instead stable up to
much higher values of 1/B: The first instabilities appear
for 1/B —80000, i.e., more than ten times the threshold
for the unperturbed case. Figure 2(e) shows a thin finger
with 1/8 = 28 300. (This increased stability was also
noted by Grace and Harrison .)

In view of possible future theoretical work, the ques-
tion arose as to the possibility of obtaining thin steady-
state fingers applying a symmetric perturbation to the in-
terface. We thus introduced two parallel wires in the
channel, a distance D apart from each other. The result-
ing behavior is shown in Fig. 4: For a given spacing D,
at low enough velocities one obtains a symmetric steady
state for which the selection is indeed different from the
unperturbed case; as the velocity is increased, a transi-
tion to an asymmetric state occurs [Fig. 4(b)], in which
the tip "chooses" one of the wires. In the asymmetric

SIMULATION OF PERTURBED INTERFACE

In the simulation, we tried to reproduce the phenome-
na seen in the experiments. It was found that by varying
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FIG. 5. Finger width A, vs 1/B for a cell with two parallel
100-pm thick tungsten wires. o, the distance between the
wires is D =6.64 mm; the shape is symmetric for 1/B &2000
and asymmetric thereafter; the transition is marked. +, same
as above with D =4.72 mm, now the transition symrnetric-
asymmetric state occurs for 1/B —8000. ~, data obtained with
one 117-p,m thick nylon wire (asymmetric state).
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FIG. 6. Width of the finger X vs 1/B for three different am-

plitudes of the perturbation, and the experimental data for the
117-pm nylon wire for this range. The experimental curve is
denoted by +, and the curves for the simulation are denoted by
the following: 0, 3 =0.5; 0, 3 =2; ~, 3 =4.

the surface tension parameter in a local region which
could move along the interface, we indeed saw most of
the essential features observed experimentally. The
widths of the fingers were significantly reduced, with k
much below —,

' seen (Fig. 6). A perturbation which in-

creased the surface tension produced difFerent results de-
pending upon where it was initially placed. Placements
far from the tip had essentially no effect. Ones begin-
ning near the tip would move with respect to the finger
until they were a specific distance away from the tip;
then, a new narrower finger width would be chosen. The
above results apply when the region in which the surface
tension varies is very small compared to the fingerwidth.
In this way we mimicked the experiments with a single
wire. When we put in two regions of nonconstant sur-
face tension to mimic the two wires experiment, the
simulation produced a symmetric finger when the re-
gions were close to one another and an asymmetric one
when they were further apart.

DESCRIPTION OF THE SIMULATION

David Bensimon' developed a simulation to study the
growth of fingers in Hele-Shaw cells. We have taken his
program and modified it to allow for local changes in the
surface tension parameter. The simulation calculates the
time evolution of a set of points representing the inter-
face between two fluids. The points move with a normal
velocity proportional to the normal gradient of the pres-
sure field, and with a tangential velocity along the inter-
face which is chosen to keep the mapping analytic. (See
Ref. 15 and a review article by Bensimon, et al. ' for a
discussion of the technique used and a derivation of the
equations of motion. ) We perturbed the interface by as-
sociating with each point a fixed specific surface tension;
it is uniform in the case of an unperturbed surface, but

varying in the perturbed one.
Specifically, we choose the surface tension at the sth

point on the interface to have the form T(s)
—(s —sO) /D N= To(1+ Ae ' ). Here 2 is the amplitude of

the perturbation, D its width, N the number of points on
the interface, and so is the center of the disturbance.
The "points" on the interface are, of course, just a
theoretical artifice. In the real experiment the perturba-
tion is not tied to any set of points but instead has a
fixed position in real space. The way the perturbation
enters into the boundary conditions of the interface are
thus quite difFerent. The wire in the experiment deter-
mines the shape of the interface locally through the
fixing of the contact angle, while in the simulation the
shape of the perturbation is found along with the inter-
face by way of a free boundary problem. Further, the
nonphysical velocities with which the points move to
keep the mapping analytic also add additional time
dependence to the perturbation. The connection be-
tween the dynamics of the simulation and the experi-
ment is thus not at all clear. However, once a steady
state is reached the simulation and the experiment may
be directly compared.

We used the point-based perturbation because it was
computationally convenient. For further convenience,
we chose to represent the side walls by using periodic
boundary conditions. These require that the velocity
field be repetitive under a lateral displacement by a cell
width. This corresponds to a geometry of closely spaced
concentric cylinders. A better boundary condition for
the plane rectangular geometry would be to require the
normal component of the velocity to vanish at the cell
walls.

The limitations of the simulation came from numerical
instabilities, which constrained the ranges of B we were
able to explore to roughly a decade from 5 X 10
&B & 5 &(10 . Also, constraints on smoothness limited
the narrowness of our perturbations. The program was
run in vectorized FORTRAN on an Floating Point Sys-
tems FPS364 array processor. Typical runs took 15000
iterations to reach a steady state, with run times of 5000
iterations/h for 512 points.

STEADY STATES OF THE INTERFACE

There were only a few specific places where the per-
turbation would end up in the steady state. For exam-
ple, for amplitudes 3 &0, there was only one stable fixed
point. These local reductions in surface tension drifted
to the tip. Then steady states with A, greatly reduced
would be reached (including A. much below —,'). The
unique steady state for 3 & 0 contrasted with the case of
3 & 0, which had difFerent final states depending on
where the perturbation was initially placed; we saw
several (usually two or three) "basins of attraction" on
each side of the finger. If the initial perturbation was
placed far enough back then it would drift toward the
base of the finger and have no effect. However, a place-
ment near but not at the tip would produce a drift to a
well-defined point, as in Fig. 7. This "fixed point" is the
eventual destination of all perturbations initially in a
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FIG. 7. Basins for increased surface-tension perturbations
along finger interface. The same perturbation starting any-
where within a basin will produce the same steady state, with
the perturbation located at the fixed point (denoted by "0")
for that basin. Perturbations starting far from the tip drift
back. Perturbations starting near the tip move to the forward
fixed point. Depending on the ranges of the parameters, the
middle basin may or may not exist. When it does, the fingers
reach a steady state with the perturbation at the fixed point
shown; when it does not, this basin merges with the one in
front and the forward fixed point becomes the final position for
perturbations beginning in the combined regions.

basin near the tip. For some ranges of the
parameters —larger values of B and small enough ampli-
tudes in the perturbation —an additional basin between
the two just discussed was seen (Fig. 7). The largest
reductions in A. compared with the unperturbed case
arose from the fixed point nearest to the tip (Fig. 8). '

Using this fixed point, we obtained scaling laws for the
steady-state solutions. For the range of parameters of
the perturbation studied, and for B between 5)& 10 and
5 && 10, the tip curvature varies as ~t p B
(Fig. 9). In the unperturbed case, the scaling is
a.„~-B '' — for this range of B (Fig. 9). Notice that
if the finger width reaches an asymptotic limit different
from zero, as is suggested by the experiments, then these
scalings cannot represent an asymptotic limit, but are to
be taken only as a fit for this range of B. While the tip
curvature was not measured experimentally, if we as-
sume the shape to be close to a Saffman-Taylor solution,
we can get a value for a.„~from k. In this intermediate
range for B, this analysis of the experimental data gives
the scaling Ir„-B — (Fig. 9). A second quantity
we can measure is the displacement 6 of the perturbation
from the tip. For this range in B we find in the simula-
tion that 5 scales as 6-B ' —0 o (Fig. 3); this compares
to the exponent 0.40+0.04 obtained in the experiments.
The quoted errors are numerical uncertainties; systemat-
ic errors are unknown.

Another phenomenon observed experimentally was
also reproduced in the simulation. In the experiments,
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FIG. 9. Log-log plot of the tip curvature a.„pvs B. The
three upper curves are from the simulation with three
strengths of the perturbation. , 3 =4; 0, A =2; E, 3 =0.5.
The experimental curve is marked by +. The unperturbed
simulation, where A =0, is marked by the solid circle ~.

FIG. 8. Three different steady-state fingers obtained with
the same value of 8, the same perturbation, and different initial
locations of the perturbations. The finger for the back basin,
shown by the solid line, is indistinguishable from the unper-
turbed case. For the other two fingers, the circle o marks the
location of the perturbation peak, and the extent of it, defined
by the amplitude falling to less than l%%uo of the peak, is marked
by the + on each side. The perturbation is a local increase of
the ambient B =2.5 & 10 with an amplitude 3 =2. The
dashed line is for the basin in the middle. The dotted finger is
for the basin closest to the tip (these dots are what is actually
seen in the simulation; the lines above are an interpolation be-
tween the points). k for the three fingers shown are 0.44, 0.50,
and 0.55.
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(a) asymmetrical with respect to the tip, with one of the
transition regions between the steps of the perturbation
hanging out in a preferred spot.

The dynamics of the selection of the perturbed solu-
tion was also quite interesting. While the perturbation
was drifting to the preferred position on the interface,
the finger remained relatively unaffected, even for per-
turbations closer to the tip than the preferred spot.
Once the perturbation came close to its final position,
the finger shape changed markedly. A narrower front of
the finger was formed, and this grew out of the old fatter
one (Fig. 10).

CONCLUSION

FIG. 10. Two evolving fingers with increased surface ten-
sion perturbation, showing the transition to the new X once the
perturbation reaches the fixed point. The cross marks the tip,
while the circle shows the location of the peak of the perturba-
tion. The difference between the two fingers is where the per-
turbation is initially placed. In (a) the perturbation starts
closer to the tip than the fixed point, while in (b) it starts
behind the fixed point. In both cases the long-term steady state
will be the same.

there was a transition from a symmetric to an asym-
metric state when the spacing between two wires was in-
creased. To represent a situation in which there were
two separated regions of perturbation, we used a surface
tension which had three Hat regions

To for s &so

T(s)= To(1+3) for so &s &st

To for s ~s&,

We present some new phenomenology on the effects of
perturbing the interface in the Saffman-Taylor problem.
The selection of the shape is modified by a localized,
time-independent perturbation. The perturbation has an
effect only if it is applied near the tip. The change in
selection always results in A, being decreased. We have
been able to reproduce the phenomena seen with a com-
plicated experimental perturbation —involving three-
dimensional effects and nonsmooth kinks in the
interface —in a simulation using smooth local variations
in the surface-tension parameter. This reformulation of
the problem should lend itself to analytical studies. In
the experiment, for very small values of B, an asymptotic
state with a nonzero value of A, appears to be ap-
proached. We also observe a transition from a sym-
metric to an asymmetric solution when the separation
between two disturbances (two wires in the experiment,
two gradients in the surface-tension parameter in the
simulation) is increased above a certain amount. Experi-
mentally, we also find the thin fingers to be stable down
to much smaller values of B than the unperturbed ones.

and then varied smoothly at the junction between these
regions. We studied the evolution of a finger in which
this perturbation was applied initially in a slightly
asymmetrical position. For small widths of the pertur-
bation, it drifted to a symmetric position with respect to
the tip. However, as the width was increased above a
certain amount, the perturbation drifted to a position
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