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Free-electron-laser linewidth obtained from a master Fokker-Planck equation
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The problem of the intrinsic linewidth of a free-electron laser is analyzed. As opposed to the tradi-

tional Schawlow-Townes linewidth in atomic lasers, which is a quantum-mechanical result, the free-

electron-laser linewidth is classical, that is, independent of A. The theory of the ultimate linewidth of
a free-electron laser is developed here, using the master Fokker-Planck approach with the advantage,
over previous work, that it does not make use of any ansatz.

I. INTRODUCTION

One of the most important characteristics of a laser os-
cillator is its narrow spectral linewidth. In an ordinary
atomic laser, the Schawlow- Townes linewidth is given
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where P is the total power in the oscillator. Of course, in
most lasers, this limit is very dificult to achieve because
of various inhomogeneous broadening mechanisms that
would make the linewidth several orders of magnitude
bigger. However, the ultimate linewidth of an atomic
laser is a quantum-mechanical result (depends on A'), the
reason for it being, of course, that the spontaneous emis-
sion in an atomic system is a purely quantum effect, and
it is precisely the spontaneous emission noise source that
originates this linewidth.

In sharp contrast with the atomic case, in the free-
electron laser (FEL), the resulting linewidth does not de-
pend on A, therefore it is a classical effect, and it is related
to the classical randomness at which the electrons are be-
ing injected in the laser. This is normally referred to as
shot noise.

Although in many FEL's the frequency spectrum is
determined by the finite duration of the laser pulse, typi-
cally picoseconds, the idea of the ultimate linewidth of a
FEL could be interesting if one thinks in the eventual cw
FEL's.

Recently Becker et al. studied the intrinsic linewidth
of a cw free-electron laser and compared it with the ordi-
nary laser. In their treatment, the ansatz

is used to derive a master and Fokker-Planck equation, in
the interaction picture, without assuming any ansatz. The
present calculations agree with Refs. 3 and 4, provided
one neglects the laser intensity fluctuations. The assump-
tion under which the results are obtained is the Born-
Markov approximation. Since we have a cavity, one
should assume a finite cavity Q in the master equation.
However, although this term is important in the light-
statistics and -photon distribution, it does not contribute
to the linewidth and can be dropped in the present calcu-
lation.

II. THE MODEL

with OL =kLz —~I. t.
The Hamiltonian of the problem is

H=[(p —eA) c +moc ]' (4)

where A is the sum of both the laser and wiggler fields.
If one now performs a Lorentz transformation, consid-

ering that (a) in FEL's a small fraction of the electron's
energy is converted to light, (b) the transverse canonical
momentum of the electrons is a constant of motion, then
the Hamiltonian becomes nonrelativistic and can be ex-
panded (the prime denotes with respect to the moving
frame)

Let's consider a helical wiggler and a circularly polar-
ized laser field, namely,
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was used. In their approach the evolution operator is cal-
culated to first order in the recoil. Then making use of
the ansatz (2) and Liouville's equation in the "course-
grained" time-average approximation, they were able to
calculate the intrinsic linewidth of a FEL.

Very recently Gover et al. also attacked this problem,
using purely classical methods. Since, as we mentioned
before, the linewidth in a FEL is a classical phenomena,
these calculations agree with Ref. 3.

En the present work, a fully quantum-mechanical model

where
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In Eq. (5), m is the renormalized mass given by
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m =mo( I+X,)'",
with
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III. THE INTRINSIC LINEWIDTH QF A FEL

Under the coarse-graining time approximation, one can
write

The fact that one consider's the longitudinal motion pro-
duces an apparent larger mass due to the transverse wig-
gling of the electron. For the present purposes, it is con-
venient to go to the interaction picture.

The interaction Hamiltonian can be written in the inter-
section picture as [in the Bambini-Revieri (BR) frame]

Hi(t) =Ag+N~(ae' ""e"~+H.c. ), (10)

where k is the laser-field wave number (in the BR frame,
we drop the primes from now on), g the coupling con-
stant, QNii, the wiggler field amplitude, assumed classi-
cal and much stronger than the laser field, a is the annihi-
lation operator for the laser field, and P is defined as

i'(2k) +4kp 2kp
2m m

p~h= r Tr, [p(t + T) —p(t)]+ joss, (12)

dt
= ——[Hi (t),p],

and iterating twice, one obtains

where T is the interaction time between the electrons and
the wiggler field, p, p~h are the electron-photon and photon
density operator, respectively, r the electron injection rate,
and Tr, is the trace over the electron operators. As men-
tioned above, the losses can be dropped.

From Liouville's equation,

p(t+T)=p(t) —f dr—'[H, (t'),p(t)] — f dt' f dt"[H, (t'), [H, (t"),p(t)]J .
fi

(14)

In Eq. (14) we have made use of the Born-Markov ap-
proximation by replacing in the last term p(t") by p(t).

Next we have to trace over the electrons. The second
term on the right-hand side of Eq. (14) does not contrib-
ute since Hi(t) has no diagonal terms and one can always
assume that initially the density matrix can be written as
a product of the electron and the photon part and that the
electron part is diagonal.

Thus, replacing Eq. (14) into (12), one gets

dp]h If '+ dt' f ' dt"Tr, [Hi(t'), [Hi(t"),p(t)]] .
dt
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Next, we use the following properties:

(19)

(15) If we combine Eq. (16), (18), and (19), we easily obtain

A straightforward calculation leads to the following mas-
ter equation: (p=—p„„)

dP 2= —rg Nii [I(aa p —apa +pa a ) + H. c.], (16)
dt

where

BP(a,a*,t) 2 8 P(a, a*,t)
(20)

For the purpose of determining the FEL's linewidth, it is
convenient to express Eq. (20) in polar coordinates.

If we write
ReI = Re dt' dt "e'~"

t

2
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2 P/2

a=re'

it is simple to prove that

(21)

Now we proceed in the standard way to derive the
Fokker-Planck equation from the master equation.

First, we write the density matrix in the P representa-
tion

82
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p= f d aP(a, a*,r)~a&&a~ (18) so that Eq. (20) in polar coordinates reads
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IV. COMMENTS AND DISCUSSIONS

(23)

where r,~ is the rate of spontaneous emission. By spon-
taneous emission in the FEL is meant, magnetic scattering
into the vacuum, with no prior laser photons present. It
is of interest to note that the FEL linewidth given by Eq.
(25) is classical. This linewidth is wider than the atomic
one when one is in the classical regime.

If one defines the recoil energy by

fm=(A'k) /2m,

BP DdP
Bt 2 A@2

where

(24)

Equation (23) is the central result of this paper. If we
assume an extremely stabilized free-electron laser, that is,
if we neglect the intensity Auctuations and make

~
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then one can speak of a classical or quantum regime de-
pending on whether co T && 1 or coT & 1, respectively.
Defining coT=e, it has been shown that the ratio of the
atomic and FEL linewidth is (4e). So for e « I, that is in
the classical regime, the FEL linewidth is much larger
than the atomic one. However, it still can be as narrow as
10 to 10 Hz in long-pulse or cw future FEL's.
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is the ultimate linewidth of the free-electron laser. This
result agrees with previous calculations. '
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