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Dynamics of transient pattern formation in nematic liquid crystals
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We analyze the dynamics of a transient pattern formation in the Freedericksz transition corre-
sponding to a twist geometry. We present a calculation of the time-dependent structure factor
based on a dynamical model which incorporates consistently the coupling of the director field with
the velocity flow and also the effect of fluctuations. The appearance and development of a charac-
teristic periodicity is described in terms of the time dependence of the maximum of the structure
factor. We find a well-defined time for the appearance of the pattern and a subsequent stage of
pattern development in which the characteristic periodicity tends to an asymptotic value.

I. INTRODUCTION

Pattern formation is an important problem which ap-
pears in a variety of nonequilibrium systems. An intrigu-
ing question regarding this problem is to determine the
selected wave number which characterizes a periodicity in
the pattern, and also the dynamics of the selection pro-
cess. Different processes and selection mechanisms have
been studied. ' Most of these studies refer to the forma-
tion of a nonequilibrium but stationary pattern. A
different problem concerns the formation of transient pat-
terns which appear in the decay of unstable states. An in-
teresting case in this context is the occurrence of transient
spatial structures in the Freedericksz transition in nematic
liquid crystals. There is now broad experimental evidence
of this phenomenon which occurs when applying a
magnetic field larger than a critical one to an initially
homogeneous nematic sample. In this situation the direc-
tor field is dynamically coupled to a velocity flow. Such
coupling gives rise, during the transient process, to spatial
domains with a well-defined periodicity. In these
domains the director field reorientates in different but
equivalent directions. The selection of a wave number is
then associated with the dynamics of a symmetry break-
ing. This phenomenon has been observed both in thermo-
tropics ' ' and lyotropics and in different geometries
(twist, ' splay, ' and hotneotropic to planar ). In the
simplest cases the pattern consists in a collection of stripes
perpendicular to the initial director. Oblique and
two-dimensional structures have also been observed.

The characteristic periodicity of a transient pattern has
been described in terms of a most unstable mode: A
linear analysis of the equations of nematodynamics '

around the initial configuration identifies one mode of
fastest growth. It is assumed that this mode dominates
the transient dynamics. Its characteristic wavelength is
associated with the observed periodicity. The dependence
of this wavelength with respect to the applied magnetic
field seems to be in agreement with experimental observa-
tions. No theoretical description of the time scales associ-

ated with this process has been presented so far.
The analogy of this description with the Cahn-Hilliard

theory of spinodal decomposition has been noted: '

During the early stages of a phase separation process, a
transient interconnected spatial structure appears. A
characteristic length of such structure is also associated,
in the Cahn-Hilliard theory, with a most unstable mode.
In the context of spinodal decomposition the fact that the
most unstable mode is not the homogeneous one is due to
the existence of a conservation law. In the Freedericksz
transition this is due to the coupling of the nonconserved
director field with the velocity flow. The Cahn-Hilliard
theory has several well-known shortcomings. Two relat-
ed issues regarding this theory are the range of validity of
such a linear theory, ' ' and the need for including the
effect of thermal fluctuations. In addition, the Cahn-
Hilliard theory gives a time-independent characteristic
wavelength. Therefore, it does not inform on the time
dependence of the pattern formation process. These is-
sues deserve attention also in the context of pattern for-
mation in the Freedericksz transition. A first step in this
direction was the study in the twist geometry of transient
orientational fluctuations for low magnetic field such that
hydrodynamic effects can be neglected. ' '

The decay of an unstable state is triggered by initial
fluctuations which are subsequently amplified. When this
essential effect of fluctuations is taken into account, the
range of validity of a linear theory can be estimated by an
onset time which is mathematically defined as a mean
first-passage time to leave the vicinity of an unstable state.
Its magnitude is determined by the strength of fluctua-
tions. This time is known to be too short to be accessible
to experimentation in the case of spinodal decomposition
of systems with short-range forces. ' However, our pre-
vious calculation in the absence of hydrodynamic
effects' ' indicates that this is not the case for the
Freedericksz transition. In addition, the calculation' of a
time-dependent structure factor based on a dynamical
model including fluctuations indicates the existence of
well-separated stages of evolution. In this paper we use
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these ideas in the case of pattern formation due to hydro-
dynamic coupling. Our aim is to describe the dynamical
process of pattern formation identifying the different
stages of evolution and, in particular, the time dependence
of the characteristic periodicity starting from the homo-
geneous sample at the initial time.

Our study is based on the equations of stochastic nema-
todynamics. These are the equations of nematodynarn-
ics '

supplemented consistently with thermal fluctuations
which satisfy the appropriate fluctuation-dissipation rela-
tions. These equations are here presented with whole gen-
erality including the random term in a fully nonlinear sit-
uation. They provide a starting point for dynamical stud-
ies in different configurations and approximations. Our
description of the dynamics of pattern formation is given
in terms of the time-dependent structure factor for the
orientation of the director. The position of the maximum
is associated with the characteristic wavelength and its
growth with pattern development. In this paper we re-
strict ourselves to the analysis of a twist geometry. The
general equations of stochastic nematodynamics are spe-
cialized to this situation in a minimal coupling approxi-
mation. Our final results for the structure factor are ob-
tained in a linear approximation which is seen to be reli-
able during the stages in which the pattern is formed.
Our main result concerns the evolution of the position of
the maximum of the structure factor. Initially the max-
imum is at a wave number Q,„=O. At a well-defined
time it moves rapidly to Q,„&0. This time is associated
with the time of appearance of the pattern. In a subse-
quent stage of evolution, associated with the pattern de-
velopment, Q,„ tends slowly to an asymptotic value
which is the most unstable mode of deterministic
theories. However, this asymptotic value is reached
beyond the limit of validity of the linear theory.

The paper is organized as follows. In Sec. II the equa-
tions of stochastic nematodynamics are presented and dis-
cussed. Details of the construction of the dynamical
model are given in the Appendix. Section III contains the
specialization of these equations to the twist geometry.
The effect of hydrodynamic coupling is seen to be ac-
counted for by an effective wave-number-dependent
viscosity which enters consistently in a fluctuation-
dissipation relation. In Sec. IV we present our calculation
and discussion of results for the structure factor. Con-
cluding remarks and an outlook are given in Sec. V.

(TDGL) model of the sort used to study critical dynam-
ics' and the dynamics of phase transitions. ' These
models feature Langevin dynamical equations which in-
corporate basic reversible and dissipative processes. The
equations are such that the stationary distribution of the
associated Fokker-Planck equation gives the equilibrium
fluctuations in terms of the appropriate coarse-grained
free energy. Given a set of relevant variables P;(r, t) and
the free-energy functional F[P(r)], the Langevin equations
have the following general form

(2.1)

(2.2)

provided that the two following conditions are fulfilled:
(i) Fluctuation-dissipation relations:

(g;(r, t )g(r', t') ) =2k' TL;J o(r —r')fit —t') .

With this relation the Fokker-Planck equation reads'

B,P[P]= —f dr (V;(P)P[$])

(2.3)

$2
+2ktiT f dr (X;~P[P]) .

I J
(2.4)

(ii) Nondissipative character of V, (P):

f dr ( V;(P)e 0 (4)) =06

6$;

Sufficient conditions to fulfill (2.5a) are

6V;fdr '=0,
I

(2.5a)

(2.5b)

V;(P) includes nondissipative dynamical contributions.
The second term on the rhs of (2.1) accounts for dissipa-
tive processes being L;~ a set of generalized Onsager
coefficients. The Gaussian random forces g; (r, t ) ac-
count for thermal noise. The stationary solution of the
Fokker-Planck equation associated with (2.1) for the
probability density P„[P]is

II. STOCHASTIC NEMATODYNAMICS
f d V (y) fiF[4] 0

l

(2.5c)

The equations of nernatodynamics are based on ideas of
nonequilibrium thermodynamics. Its standard formula-
tion ' does not include thermal fluctuations. We have al-
ready mentioned that fluctuations are essential to describe
the initial stages of the decay of an unstable state. A
more recent formulation of linearized nematodynamics in
terms of a Lagrangian density and a Rayleigh dissipation
function also neglects fluctuations. Thermal fluctuations
can be introduced in a linear regime following the ideas of
the fluctuating hydrodynamics of Landau-Lifshitz. '

Fluctuations can be introduced in a nonlinear formulation
through a generalized time-dependent Csinzburg-Landau

Equation (2.5b) can be interpreted as a generalized Liou-
ville theorem in the sense that the velocity V;(P) is diver-
gence free in the phase-space spanned by the $;. Equation
(2.5c) indicates that V;(P) does not contribute to the time
derivative of the free energy F.

For the nematic phase the appropriate free energy is

F= —,
' f drK t3~sBtin Bsnz —

—,
' f dr+, (n H )

+ —,
' f drpv —f drp(r)B u (2.6)

The first term gives the Oseen-Frank distortion free ener-

gy for the director field n (r) with
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Kapys =K„(5as n—an s )(5p, n—pn, )

+K 2 ~Eap& Eysvti p n v+ K33 ( 5 ay yi a n y )n pti s

(2.7)

K&&, K&2, and K33 are the elastic constants associated,
respectively, with splay, twist, and bend deformations,
and e p„ is the totally antisymmetric Levi-Civitta tensor.
The second term gives the magnetic contribution, H
being the magnetic field and 7, the anisotropic part of
the magnetic susceptibility. The third term is the hydro-
dynamic contribution, v(r) being the velocity field and p
the mass density. The last term introduces the pressure
p(r) as a Lagrange multiplier for the incompressibility
condition and the field u (r) stands for the position of
molecules.

A model of stochastic nematodynamics has to be of
the form (2.1) for the independent variables n(r), v(r),

1 6F 6F
d, np= — —+ I py(n) +gp(r, t),

y) 6np 6vy

6F y 6F 1 6F
d, vp=Lpy(n) —I py(n) —— +B„Q p(r, t),

6vy 6ny p 6up

(2.8)

(2.9)

tup
1 6F

(2.10)
p 6vp

where d, is the total derivative including convective terms.
The operators I py and Lpy are given by

and u(r) with the free energy (2.6). The nonstochastic
part of (2.1) B,P; —g;, has to coincide with the nonlinear
deterministic equations of nematodynamics given by De
Gennes. The construction of such a stochastic model
requires a detailed analysis of the dissipative and nondis-
sipative contributions. This analysis is presented in the
Appendix and it leads to the following equations:

Lp (n)=B M ps (n)Bs, (2. 1 1)

1M pys(n)= 2 [2(v, +v2 —2v3)n npnyns+v2(5ps5ay+5as5py)+(v, —vz)(nany5&p+nan&5yp+npny5sa+npn&5ya)],
P

(2.12)

I py(n)= [(k+1)n 8 5py+(A, —1)n Bp5 y] .
1

2p
(2.13)

X= —y2/y ) and y ), yp, v), vp, and v3 are viscosity
coefticients. The adjoint operator I" is here in the sense
of integration by parts and transposing matrix indexes.
The operator L is self-adjoint L =L . The noise sources
gp and 8 Il p are Gaussian white noise with zero mean
and satisfy the following fluctuation-dissipation relations:

V„p——ri p ——Ip (n)—
y

(2. 17)

amine the fulfillment of condition (2.5) for our Eqs.
(2.8)—(2.10), we introduce the following self-explanatory
notation:

(2.14)

(0 p(r, t)Qsy(r', t') ) = +2k' TM psy5(r —r')5(t —t'),

k&T
(gp(r, t)gy(r', t') ) =2 6(r —r')5(t t')6py, — V„=O p+U p = —I py(n)

6F 1 6F
6ny p 6up

1 6FV„=u p
———

p 6vp

(2.18)

(2.19)

(8 0 p(r, t)[Bsflsy(r', t')] )

= —2kii TLpy5(r r')5(t —t') . —

(2.15)

(2.16)

Equations (2.8)—(2.10) exhibit the general structure of
(2.1) but both dissipative and nondissipative terms (V, )

are given in terms of functional derivatives of the free en-
ergy F. The dissipative contributions —1/y]6F/6np and
Lpy(n)5F/5Uy include self-adjoint operators [—I/yi and
Lpy(n)] which are generalized Onsager coefficients. The
random forces satisfy the appropriate fluctuation-
dissipation relations involving these coeKcients. It is im-
portant to note that Lpy(n) depends on the instantaneous
state of the director field so that 0 p is a multiplicative
noise and the fluctuation-dissipation relation has a non-
linear character.

The nondissipative contributions are also written in
terms of functional derivatives of the free energy ' but, as
we shall see below, instead of Onsager coefficients they in-
volve, as a whole, an antiadjoint operator. In order to ex-

where i) p
———( I/p)5F/5up is the term associated with

the Ericksen tensor (see Appendix). Condition (2.5b)
reads in this case

6n~~ 6v p~ 6vqE 6u pdr + + +
5n p 5vp 5up 5up

(2.20)

~ ~ ~ ~. g 6F . g 6F . p6F . 6Fdr ri p +vp +vp +up6np 6vp 6vp 6up
=0.

(2.21)

Substituting the explicit form of the first two terms it is
easy to see by a partial integration that they cancel ex-

Each term in the bracket of (2.20) vanishes separately:

~ ~

~

~

~

dr6ri p/6np vanishes because of the incompressibility
condition Bpvp ——0 and the other terms vanish trivially be-
cause v p, v p do not depend on vz and up is independent
of up. On the other hand, condition (2.5c) becomes for
(2.8)—(2.10)



1886 M. SAN MIGUEL AND F. SAGUES 36

Z
Y

= X

FIG. 1. Schematic representation of the geometry of the nematic sample. Flows generated by oppositely rotating zones which
explain the appearance of transient structures are also schematically displayed.

actly. The last two terms in (2.21) also cancel indentical-
ly. It is clear at this point the need for taking into ac-
count Eq. (2.10) for the variable u to get a consistent set
of closed equations. Otherwise (2.21) would not be
satisfied because the term in (2.9) associated with the Er-
icksen tensor would be unbalanced.

The general structure of dissipative and nondissipative
terms involved in (2.8) —(2.10) becomes more explicit
when these equations are written in the following com-
pact form for a field P(r) =[n(r), v(r), u(r)]:

(2.22)

where

q=(g, a.n., 0) . (2.23)

The operator A has a dissipative A and a nondissipa-
tive part A":

A
V V

1——I 0 0

0 L 0, (A,~)) =A;i
0 0

(2.24)

o r o

R
IJ 0 — I, (A;)=——A; (2.25)

1—I
P

0

In (2.24) and (2.25) we use a block notation in which
each matrix element represents a 3& 3 matrix and I is
the identity matrix. Dissipative dynamics is associated
with a self-adjoint operator A and the nondissipative
dynamics with an antiadjoint operator A". The noise
sources g; satisfy fluctuation-dissipation relations with
the dissipative part

(7I;(r, t)g~(r', t') ) = —2k~ TA ~5(r —r')5(t —t') . (2.26)

The nondissipative part V; of (2.1) is here

tt 5F 5F
"5p, 5$;

(2.28)

which is an immediate consequence of the antiadjoint
character of A;~.

In summary, Eqs. (2.8)—(2.10) form a closed set of
nonlinear equations in which thermal fluctuations are
contained consistently and will reproduce the desired
stationary distribution. These equations provide us with
a starting point to study dynamical questions in diFerent
geometries and approximations.

III. MINIMAL COUPLING EQUATIONS
IN TWIST GEGMETRY. EFFECTIVE VISCGSITY

In this paper we consider the twist geometry described
in Fig. 1. The sample is contained between two plates
perpendicular to the z axis. The director is initially
aligned along the x axis [n =(1,0,0)] and the magnetic
field is aligned along the y axis. We want to study the
transient behavior of the system when the magnetic field
is switched at t =0 from an initial value H; &H, to a
final value H &H, . The physical picture of the forma-
tion of a transient pattern is also indicated in Fig. 1.
For g, g0 the director tends to become parallel to the
magnetic field. For strong fields the director reorientates
locally in opposite but equivalent directions. This local
symmetry breaking gives rise to macroscopic Aows so
that defect walls with a we11-defined periodicity along
the x axis are developed. Walls separate regions of
diA'erent but equivalent orientations. The pattern ap-
pears then as a consequence of the dynamical coupling
between the director and velocity fields.

With the above picture in mind we assume that there
only exists macroscopic flow in the y direction so that
U =U, =0. We also assume homogeneity in the y direc-
tion so that n and U~ are independent of the y coordi-
nate. We finally assume that the director reorientates in
the x-y plane:

n„(x,z)= cosP(x, z),

6F
I IJ

I

(2.27)
n~(x, z)= sing(x, z),
n, =0 .

(3.1)

and condition (2.5c) becomes This assumption seems well suited to study transient be-



36 DYNAMICS OF TRANSIENT PATTERN FORMATION IN. . . 1887

1 (1+A, )a„
2p

1 2

2
(1+~)a. , (v al+v a!)

2p p

5I'

5p

5Uy

havior since the small initial equilibrium fluctuations of
n, remain stable, while fluctuations of n and n„become
unstable and they are macroscopically amplified in the
transient process. Under the assumption of homogeneity
in the y direction and velocity flows only in the same
direction, the term associated with the Ericksen tensor
in (2.9) vanishes. Even with these simplifications Eqs.
(2.8) and (2.9) remain rather complicated. We use here a
minimal coupling approximation in which the n depen-
dence of I and L in (2.8) and (2.9) is approximated sub-
stituting n by n . This procedure retains the initial cou-
pling between n and v which is essential in the initial
stages of evolution. On the other hand, the important
nonlinearity associated with the director dynamics is
kept through the dissipative term in (2.8). With all these
approximations (2.8)—(2.10) convert into the following
set of closed equations for P and u»:

= —p(a„n,.+a,n„), (3.6)

where we have introduced Leslie and Meiscowitz
coefficients according to their usual definition

a2= ——,'y)(1+A. ), (3.7)

'gg =V2

g, =v3+ —,
'
y )( 1+k)

(3.8)

(3.9)

The closed equation for P is obtained solving (3.6) for u»

and substituting in the equation for P in (3.2). This elim-
ination is more easily done introducing a Fourier trans-
form. Assuming strong anchoring boundary conditions
at z=+d/2, we take

P(x,z;t)= g +8 q (t) cos(2m +1) e
m q

(3.10)

slow variable and the velocity field is assumed to follow
the director instantaneously. This approximation en-
ables us to obtain a closed equation for the deformation
angle P. Setting pd, u» =0, the equation for u» in (3.2)
can be written as

rj, a, u +a [azd, (l) aqua—(r, t)+ri, a„u ]

+ a„n,.+a,n„ (3.2) g(x, z;t)= g gg q (t) cos(2m +1) e
m q

d
(3.1 1)

0» (x,z;t)= g gA q (t) cos(2m +1) e
m q„

d

(3.12)CK =X,Z

The fluctuation-dissipation relations become
2k~ T

(g q (t)g, (t')) =2 5 „5 .5(t —t'), (3.13)
1

2k~ T
(fl q (t)Q, (t')) =2 v 5 „5,5(t t'), —

(3.14)a=x,z,
where V is the volume of the sample: V =L d.

The resulting equation for the amplitude 0
q (t) can

be written in the linear approximation for 5F/5$ as

a,@=Ix,z)
(3.5)

with v—:v3, v, =v2, and L is the y linear dimension of
the sample. [Summation over repeated indexes is not
implied in (3.5).]

Equation (3.2) represents a particular and very clear
example of utilization of the general scheme of Eqs.
(2.22) —(2.25): Diagonal terms in (3.2) are the dissipative
contributions given by a self-adjoint operator. Nondiag-
onal terms in (3.2) are the nondissipative contributions
given by an antiadjoint operator. The variables P and u»

are decoupled in the dissipative dynamics. The dissipa-
tive part of the equation for P is the one studied in Ref.
13 describing transient dynamics of orientational fluctua-
tions in the absence of hydrodynamic coupling. The dis-
sipative part of the equation for U~ is just the Navier-
Stokes equation for this particular geometry. The nondi-
agonal terms in (3.2) give the coupling between P and u»
needed to obtain a transient pattern. This coupling has
a nondissipative character.

To proceed further we make the approximation of
negligible inertia which is common in the literature.
In this approximation the director field is considered the

1 2 7T
2

X,H —K2~(2m + 1) —K33q„2a,e, (t)=

X&,q (t)+g q (t), (3.15)

where

(3.16)71 31
n. +rI. Q

(3.17)7

(2m +1)—
d

, (t)=g, q (t)

+ a2P
, [Q", (t)

ri(n. +n. &

ig Q'
q

(t—)] .
(3.18)

where

= —[&g2a, p+&33a„/+X, H ((5 —3p')], (3.3)

and the Gaussian random forces satisfy the following
fluctuation-dissipation relations:

k~T
(g(r, t)g(r', t') ) =2 5(x —x')5(z —z')5(t —t'), (3.4)

(Q» (r, t)Q»tt(r', t') )
k~T=2 v 5 p5(x —x')5(z —z')5(t t'), —

2L
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y& is an effective viscosity which depends on the wave
number Q. The coupling of the director and velocity
fields produces a reduction of the viscosity for all modes
q„&0. This permits modes q, &0 to grow faster than
the homogeneous mode, giving rise to pattern formation.
The complex random force p q (t) is a linear combina-

tion of g ~ (t) and II„~ (t) T.herefore it is still Gauss-

ian, of zero mean, and completely characterized by its
correlation (g (t)r), (t') ). It is easy to see from

t n, q

(3.13),(3.14), and (3.18) that this correlation function es-
tablishes a fluctuation-dissipation relation with the
effective viscosity y]

2k, T(g, (r)t)*,(r')) =2 5,„„5,6(r r') . —
1

(3.19)

We describe the formation of transient periodic struc-
tures through the study of the dynamical evolution
of the time-dependent structure factor C~,„(t)
= ( 0 ~ ( t)0,„~ ( t) ) . Starting with Eq. (3.15) for the

amplitude 0„~ (t), and using the fluctuation-dissipation

relations (3.19), standard methods lead to the evolution
equation for Cq, n ( t ):

2

Q, C, (t) = g.H —K»=2 2 (2m + 1)~r

d
—K33q

2

2k' T
~ Cq „(t)+

Equation (4.1) is analogous to the Cahn-Hilliard-Cook
equation for studying spinodal decomposition. '' The
second term on the rhs of (4. 1) accounts for thermal fluc-
tuations disregarded in the Cahn-Hilliard theory. The
stable and unstable modes are easily identified from (4. 1).
Unstable modes are those for which

(4.1)

2

(q m) g H2 (2m +1)i
d

—K33q &0 .

This relation makes clear the consistency of a descrip-
tion in terms of an effective viscosity. It would not be
obtained if noise terms were forgotten in the equation
for the velocity field. Actually (3.15) is the same than in
the absence of hydrodynamic coupling but with an
effective viscosity. The whole effect of the coupling be-
tween the director and velocity fields is then, under this
approximation, the change of y ] by y ]. This
modification occurs both in the deterministic dynamics
and also in the fluctuation-dissipation relations which
characterizes thermal fluctuations [compare (3.13) and
(3.19)]. The inclusion of nonlinear terms in (3.15) does
not change the conclusion of a consistent description in
terms of y]. Here we restrict ourselves to the initial
stages of pattern formation which, as discussed below,
are well described by (3.15).

IV. DYNAMICS OF PATTERN FORMATION:
TIME-DEPENDENT STRUCTURE FACTOR

room temperatures (az/), il, =0.74, il, /rI, =0.40) it is
easy to see that y] is always positive, with a maximum
value y&

——y] when q =0 and a minimum y, =0.26@]
for q ~ oo. This implies that the stability range of the
difFerent modes (q, m) remains unmodified with respect
to the case without hydrodynamic coupling: For
H &H, =(K2zrr /X, d )' we can have unstable modes
in the z direction, more m modes becoming unstable the
larger H is (For H, &H & 3H, only the m =0 mode be-
comes unstable). In addition linear instability of the q„
modes is predicted whenever

+aH' H2 K33
, —(2m+1)'

H,' K22
(4.3)

Let us note from (4.2) that co(q„,m) decreases monoto-
nously with m, and as a consequence m =0 is the most
unstable z mode. However, due to the dependence of y]
on q„, co(q„,m) is no longer a monotonously decreasing
function of q . This is the crucial hydrodynamic effect
here considered. As a direct consequence we will see
that the maximum of the transient structure factor is not
always associated with the homogeneous mode q, =0.
To show this in more detail we rewrite the arnplification
factor co(q„,m) as

1 (2m + 1) 77-

)' if (Q)

x h (m) —1 — Q
K22

(4 4)

where h ( m ) is the reduced magnetic field:
h (m)=H'/[(2m +1) H, ] and the lowering factor for
the effective viscosity is

with

1+kg
(4.5)

(4.6)

The mode of fastest response is obtained as a solution of
des/dg =0. Physically acceptable solutions Q&0 exist
if

h (m))1+2 K33
(4.7)

K22 O.
'

with the chosen material parameters (K,3/Kzz —2. 5) it
results in h (m) ~ 2. 35.

Accepting that the fastest mode slaves other modes
during the transient response one predicts the appear-
ance of a periodic pattern for magnetic fields satisfying
(4.7). This occurs for fields not much larger than the
critical one h =1, although there still exists a range of
fields for which the homogeneous response dominates.

Studying the time-dependent structure factor we can
follow the emergence of those transient patterns starting
with initial conditions corresponding to undistorted sam-
ples (H; &H, ). With the previous identifications and in-
troducing a dimensionless time s = t /ro(m),

(4.2)

Using (3.16) and the literature values ' for MBBA at
d 1 1'&

~o(m ) =
(2m + 1) I,H, (2m + 1)

(4.8)
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Eq. (4.1) becomes

C (s)= h (m) —1 — Q' Cq (s)
ds ~"' (Q Kzz

2

f (Q)
(4.9)

where

k~T 1
e(m) =2

V X,H, (2m +1)
Solving for C (s) we obtain

(4.10)

2/f(gl[h (m ) —i —K && /K&& g ]s

(h (m) —1 — Q )
K22

X(e " " —1),2/f (Q)[h (m) —1 —K&&/K2&Q ]s
(4. 1 1)

where the initial conditions for H; &H, are consistently
obtained as a stationary solution of (4.1),

(0)=
K33 H;1+ Q

(2m +1) H,

(4.12)

Equation (4.11) describes the growth of the unstable
modes responsible for the Freedericksz transition. A
consistent treatment of fluctuations is essential in the
study of the initial growth right after the time the sys-
tem begins to feel the instability. Fluctuations appear in
(4.11) through the consistent initial conditions and also
through the effects of thermal noise during the evolu-
tion. These are taken into account by the last term on
the rhs of (4.9). At s =0 initial conditions dominate and
the homogeneous mode q =0 is preponderant. During
an initial stage, initial conditions and the constant noise
term in (4.11) are important, but, as time goes on, the
growth of the structure factor will be largely dominated
by the exponential factor. In this way the structure fac-
tor will be eventually dominated by the mode of fastest
growth. The analysis of (4. 11) enables us to elucidate
the way this is accomplished and also to calculate the
time scales associated with pattern formation. This is
seen in Figs. 2 —5 where we have plotted Cq versus

Q =[q /(2m + I)trld] at different times for the most
unstable z mode m =0. We observe an initial condition
peaked at Q =0 which grows. At a well-defined time a
maximum at a Q,„&0 appears. This maximum grows
and moves to the right tending to the asymptotic value
which maximizes ru(q, 0). The value Q,„of the max-
imum characterizes the spatial periodicity. The dis-
placement of Q,„describes the dynamical emergence of
the pattern from the initially homogeneous sample. The
growth of the peak describes the development of the pat-
tern. The effect of varying initial and final magnetic
fields is seen in Figs. 4 and 5. When decreasing the ini-
tial magnetic field, the growth of the peak of the struc-

ture factor is faster but less intense. On the other hand,
when the final field increases, the development of a max-
imum at a Q&0 occurs earlier, in our case by an order
of magnitude. In addition the peak is much more pro-
nounced when comparing same values of Cq ~ and it

also affects a larger range of values of Q.
The dynamical emergence of the pattern is better de-

picted plotting Q,„versus time as we do in Figs. 6 and
7. Different and well-separated time scales can be dis-
tinguished in these figures. A first well-defined time cor-
responds to the sharp increase of Q,„when the system
takes off from the initial conditions and Cq starts to

grow exponentially. This time is associated with the
characteristic time at which the periodic pattern ap-
pears. It is seen in Fig. 7 that pattern appearance occurs
earlier when increasing h by an order of magnitude for
the chosen parameters. A second time scale can be
identified in Figs. 6 and 7 corresponding to the slow
growth of Q,. „. In this stage of evolution, after the ini-
tial sharp growth, Q,„ tends asymptotically to the
value which maximizes co(q„, m =0). It seems reason-
able to associate this time scale with the formation and
development of the spatial pattern after its nearly instan-
taneous appearance. From our analysis we conclude
that this time scale elapses for one order of magnitude
after the emergence of the pattern. It is important to
note that the asymptotic value of Q,, „ is the one charac-
terizing the periodic structure in a deterministic

x, m=0Cq

C 052

150

100

50

I

0.5
Q, y

1.0 2.0

FIG. 2. Structure factor C~ o vs Q at diff'ereut times.

Parameter values correspond to 4-methoxybenzyledene-
4 —(n —butyl)aniline (MBBA) at room temperatures (see text)
with hl' ——0 5 and h =5. Times are measured in units of
rp —10 sec. The asymptotic value of Q which maximizes
~(q, m =0) is depicted.
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qx, m=0 qx, m=0

0.75
150—

0.52

10 100
50

0

5x1 0 50

0.35

0.25

t O5 1.5
2

I

1.0 1.5

asym.

FIG. 3. Same as Fig. 2. FIG. 4. Structure factor Cq, m=o vs Q at different times for

dift'erent initial conditions (h; =0) than in Figs. 2 and 3.

analysis. In our approach the periodicity is charac-
terized by the maximum of the structure factor which is
time dependent in a nontrivial manner. This time
dependence has been obtained through a consistent
dynamical analysis of the role of fluctuations. The
periodicity predicted in a deterministic analysis is only

reached after very long times which are, as we will dis-
cuss below, beyond the range of validity of the linear ap-
proximation. Indeed, during the last part of the second
time scale referred above, nonlinear contributions may
become important. In our stochastic analysis we can use
the mean first-passage time (MFPT) T to estimate the or-

qx, m=p

0.030

25

asym.

FIG. 5. Structure factor C~, -0 vs Q at different times under a stronger magnetic field lb =40) than in Figs. 2 and 3.
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2

! max

0.30—

0.20—

0.1 0—

Q4
I

1.Q
I

2.0
I

3.0
I

4.0

FIG. 6. Wavenumber corresponding to the maximum of the structure factor corresponding to Figs. 2 and 3 vs time. The value
of the MFPT (see text) T is also marked.

der of magnitude of the limit of validity of a linear ap-
proximation. This criterion was analyzed in some detail
in Refs. 13 and 14. Physically T measures the time tak-
en by the system to leave the vicinity of the unstable
state. In the dimensionless time scale of s we have for
m =0

2

f (Q) &zz
—1—

(4.13)

For a typical sample (S = 1 cm, d = 10 cm),

2

! max

h =40

0.02 0.04 0.06 0.08 0.10
I I

0.12 T 0.14 0.16

FIG. 7 Maximum of the structure factor corresponding to Fig. 5 vs time.
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~o-10„„so that in the laboratory time units we find
T =25 sec. for h =5. According to Fig. 6 one can see
that a periodic pattern appears at time t =4 sec. , and de-
velops continuously being well structured at time T =25
sec. From then on, linear theory is not reliable but ac-
cording to our analysis the linear approximation should
give a good description of practically the whole process
of formation of the structure. However, and we would
like to stress this point, the asymptotic Q,„, this is the
deterministic predicted value, is not reached within this
time domain. For t & T more complicated eA'ects re-
sponsible for the mobility and recombination of defect
walls should eventually be considered to account for the
final destruction of these transient patterns. A theory
based on defect dynamics seems better suited to study
this final stage of evolution.

We conclude by noting that the existence of well-
separated stages of evolution corresponding to appear-
ance, formation, and decay of transient patterns, which
we have found, is in agreement with experimental obser-
vation. Our estimates for the time scales involved are
also consistent with experimental values but detailed
data on these time scales do not seem to be available yet
in the literature.

V. CONCLUSIONS AND OUTLOOK

We have seen how the consistent introduction of fluc-
tuations permits us to describe dynamical aspects of the
process of pattern formation. In particular we have
found the time scale associated with the emergence of
the pattern and a subsequent stage of pattern develop-
ment. These time scales are of experimental relevance
and seem to be well described within a linearized theory
which in other related situations have a range of validity
not accessible to experimentation. We hope that our re-
sults will encourage more precise measurements of the
time development of those transient patterns. It is clear
that the same methods used here can be applied to other
experimental situations with more complicated patterns
than those considered here. ' A difterent question is the
description of the decay of these structures which prob-
ably requires a modeling based on defect dynamics.
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APPENDIX

h
6F

6n
(A2)

cr p is the total stress tensor and o.
p is the Ericksen

stress tensor associated with variations of the free energy
caused by displacements of rnolecules in which the direc-
tor field is kept fixed (see Ref. 7, Sec. 3.5). One obtains

BFd
oap=

~(~ )
c)pni pOap

nz
(A3)

where Fd is the free-energy density in (2.6) associated
with distortions. Also

6F
~aO ap

6up
(A4)

where o'p is the symmetric part of o. 'p and 3 p is the
symmetric part of the shear flow tensor 0 vp. The an-
tisymmetric part of o. '

p is given by an axial vector
I =n && h, and the antisymmetric part of 0 v p is associat-
ed with the vorticity co. These antisymmetric parts com-
bine with n in (Al) to give N

N =d, n —(cu X n) (A6)

We will now invoke the interpretation of (A5) in terms
of a product of fluxes and forces. The basic idea behind
the modeling of the dissipative terms in the TDGL mod-
els (2. 1) is to extend Onsager's procedure beyond the
linear domain. Fluxes are still written as a combination
of forces, but forces are functional derivatives of a free
energy which now, in general, is not quadratic, and the
coefficients of the combinations are not constant. Since
0'p is a flux in the equation for the velocity and N is
related to ri, we interpret o''p and N as fluxes. We
write the fluxes as combinations of the forces 3 p and
h which are given by functional derivatives of the free
energy (2.6)

cr'p Rp~s(n——) A, ,s+Q p,, (n)h~,

N =Q'p~( )Anpz+P p(n)hp .

(A7)

(A8)

The form of the coefficients R, Q, Q', and P is obtained
in the usual way imposing symmetry conditions and the
requirements for incompressible flows. With these
coefficients (A8) gives the evolution equation for the
director. The equation for the velocity is obtained from
(A7) taking into account the antisymmetric part of o 'p
and cr p. We have

Identifying the symmetric and antisymmetric parts of
cr'

p cr p cr ———
p and c) up, (Al) is rewritten as

TdtS= dr 3 po'p+h X (A5)

In this appendix we give some details of the construc-
tion of the dynamical model (2.8)—(2.10). Following the
presentation by De Gennes and starting from the free
energy (2.6), the dissipation for an isothermal process is
written as

1
d, np —— hp+An 3 p+(coXn)p

1 A, —1 A+1hp+ n Bpv + n 3 vp,
71 2 2

(A9)

Td, S=—I dr[(o' p
—cr p)B up+h n ],

where the molecular field h is

(A 1) pd, up c) (cr'p+cr'p+o p——),
where

(A 10)
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o'
p
——2vqA p+2(v&+ vz —2v3)n n pnzn& A

&

+2(v3 —v~)(n n„d„p+npn„A„)

2
——(n hp+nph ),

o'p= —,'(n ph n—h p ),
F.~aP P ~eP +yap6 ~An p ~Pn y

(A 1 1)

(A12)

(A13)

The first term on the rhs of (A9) gives the director dy-
namics in the absence of hydrodynamic effects. The last
two terms arise from coupling of the director and veloci-
ty fields. Likewise, the term proportional to vz in (Al 1)
and the pressure term in (A13) give the Navier-Stokes
equation in (A10). Other terms in (A10) are coupling
terms. In order to write our equations in the general
form (2.1) it is necessary to identify which of these cou-
pling terms are dissipative and which are not ~ Ran-
dom forces will then be included as Gaussian white noise
of zero mean satisfying a fluctuation-dissipation relation
with the dissipative terms. This identification is more
easily done when the rhs of (A9) and (A10) are written in
terms of 6F/on p, oF/oUp, and 5F/5u p as in (2.8)—(2.10)
Equations (A9) and (A10) are rewritten as the deter-
ministic part of (2.8) and (2.9) using (A2) —(A4) and not-

ing that

k —1 k+1 6F
n tlpU + n t) up

——I pr(n) (A14)

6F
t) cr' p+ —(n h p+nph ) =pL pz(n)2 6Uy

(A15)

6F
t) o'p ——(n hp+nph ) = —pI r2 y~ 6n,

(A16)

(A14) contains the coupling terms in (A9). It is shown
in Sec. II that (A14) combined with (A16) is nondissipa-
tive in the sense that (2.5) is satisfied. (A16) contains
0'& and also the terms proportional to k of o'&. There-
fore, a term of the symmetric part of the stress tensor
does not contribute to dissipation. The term associated
with the Ericksen tensor in (A10) is also nondissipative,
as shown in Sec. II, taking into account the equation for
n In .summary, the dissipative terms are (I/y&)hp in
the equation for the director, and the coupling term
(A15) in the equation for the velocity. Other coupling
terms are nondissipative. It is now an easy matter to in-
clude random forces balancing those dissipative terms.
These are g and t) II p in (2.8) and (2.9) satisfying the
fluctuation-dissipation relations (2.14)—(2.16).
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