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Melting of the signer crystal at finite temperature
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Melting of the Wigner crystal is studied in a new expansion scheme which is much more power-
ful than the Wigner-Kirkwood expansion of the quantum correction. The theory does not include
the symmetry effect. The free energy including the quantum correction is evaluated with full use
of the recent Monte Carlo results obtained for the classical one-component plasma. The melting
entropy as well as the melting curve is obtained as a result of various extrapolations of properties
for the liquid phase, in the approximation up to the sixth "reduced moment" of our expansion.

I. INTRODUCTION

The phases of the electron gas have attracted a great
deal of interest' since the pioneering work of Wigner. He
pointed out that the electron gas would crystallize at
sufficiently low density and temperature. The melting
curvt„of the Wigner crystal is still unknown, though the
melting density at zero temperature has approximately
been determined by the recent Monte Carlo studies.
Even at zero temperature, determination of the melting
point is very difficult because a high accuracy is needed
for estimation of the free energies of both the crystal and
the fluid.

The electron gas is a one-component plasma, the sys-
tem of charged particles in a uniform neutralizing back-
ground. The properties of the classical one-component
plasma are known very accurately, owing to the Monte
Carlo studies. It is then conceivable to take account of
the quantum correction in order to get the quantum plas-
ma, with the classical one as a starting point. There exists
some attempts along the above line of thought, in the
Wigner-Kirkwood (WK) expansion. 'o"

The WK expansion is a power series of A, with 2M
denoting the Planck constant. This expansion is awkward
to handle in obtaining the higher-order terms; the
coefficient of fi consists of thirteen terms according to
Hill, ' where all of the terms are not so simple. When ap-
plied to the Coulomb system the WK expansion gives a
power series of (13fico~), where P=1/kttT with ktt the
Boltzmann constant and with T the absolute temperature,
and co~ denotes the plasma frequency. The series is diver-
gent at low temperature where @fico~ ~ 1. Thus the validi-
ty region of the WK expansion is confined to the high-
temperature region.

In this paper we adopt the quantum-correction ap-
proach to the electron gas in a new formalism. Our for-
malism is based on an expansion obtained by resumming
the partial series in the WK expansion for our particular
system. In deriving it we observe that the WK expansion
is a moment expansion of the free energy, as apparent
when applied to a harmonic lattice. Accordingly, we shall
get the quantum correction to the free energy by starting
with the moment expansion for the harmonic lattice. For
our harmonic Coulomb lattice, ' the moment is a polyno-

mial of co~, where each coefficient is the reduced moment
apart from a numerical factor. Then we obtain a new ex-
pansion by summing up all of the terms for a particular
reduced moment in the moment expansion.

The reduced moment is generalized to the anharmonic
Coulomb lattice. By examining the free-energy correction
due to the anharmonic term, we get the general expan-
sion, apart from additional contributions. Here the re-
duced moments are expressed in terms of the
configuration average of products of the derivative of the
forces between particles. The resultant expressions are in-
dependent of whether the system is the solid or the liquid,
and accordingly must be valid in the liquid phase as well.
In actuality the present result in the expanded form repro-
duces completely the WK expansion up to (Price~), ir-
respective of the phases of our Coulomb system.

The reduced-moment expansion is effective even at low
temperature in contradiction to the WK expansion,
though the validity is confined to the low-density region
of particles. In treating the electron gas by the new for-
malism, we utilize the Monte Carlo results for the classi-
cal one-component plasma. The reduced moments can be
evaluated from the classical distribution function of
charged particles, provided also by the Monte Carlo simu-
lation. '—'

Using the free energies with the quantum correction, we
treat the melting of the Wigner crystal. The symmetry
effect will be disregarded throughout the present paper,
though it is an important quantum effect.

The melting occurs at the crossing point of two free-
energy curves for the liquid and solid phases. generally,
the quantum effect works to lower the free energy for the
liquid relative to that for the solid, with depression of the
melting temperature. By extrapolation we estimate the
free energy for the liquid phase below the classical melting
temperature. For our system the quantum correction is
small with fractional contribution less than —10% in the
whole region of interest, where the primary term of the
quantum corrections vanishes in the free-energy difference
responsible for the relative stability of liquid and solid
phases. It is a very small quantum correction that shifts
the melting point remarkably. We note here that the
free-energy difference is generally small between the two
phases of interest.
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II. QUANTUM CORRECTION IN A HARMONIC
LATTICE

The harmonic oscillator model is very useful in obtain-
ing the quantum correction. By relying on this model,
Feynman and Hibbs' have given the primary quantum
correction to the classical distribution of a particle in an
external potential. Thus we first consider the quantum
correction to the free energy of a harmonic lattice.

Let Z~ be the partition function for the harmonic lat-
tice, whose normal-mode frequencies are denoted by cu;.
Then we have

Zk (P) = g [2 sinh(Pfico; /2) ] (2.1)

The free energy of the system is then given by the known
formula

Fk = k// T g in [2 sinh(/33fuu; /2 ) ] . (2.2)

Let us begin with writing the free energy FI„ for the
classical harmonic lattice,

This paper is organized as follows. In Sec. II we de-
scribe the moment expansion of the free energy for a har-
monic lattice. The result is applied to the harmonic
Coulomb lattice in Sec. III, where the moments are
represented in the configuration space, followed by
description of the reduced-moment expansion. In Sec. IV
we consider modification of the reduced moments for the
anharmonic lattice to obtain the general form of it. Then
we evaluate the reduced moment in Sec. V and describe
the result in Sec. VI. The summary will be given in Sec.
VII with some discussion.

Mgk =(3N) ' g co;", (2.9)

with N denoting the number of particles for the system of
unit volurr .

The expansion coefficients a~k's are given numerically
in Table I. For later use we also note a known formula

x cothx =1+2 g ka2k(2x) ",
k=1

(2.10)

III. REDUCED-MOMENT EXPANSION
FOR THE COULOMB LATTICE

A. Expression for the moments in the configuration
space

For the Coulomb lattice, the moments have been evalu-
ated by Coldwell-Horsfall and Maradudin (CHM). ' Let
us describe their procedure, since it is very important in
deriving our expansion formula. Let D //( q) be the
dynamical matrix for phonons with wave vector q, such
that

which is obtained from Eq. (2.5) by differentiation.
Now we have the quantum correction in the moment

expansion, Eq. (2.7), for the harmonic lattice. This expan-
sion is a power series with respect to the Planck constant
2M, and hence may seem appropriate for treating the
correction. For the Coulomb lattice, however, the conver-
gence of the expansion series is limited to a very small
value of P because our characteristic plasmon frequency
co& is quite high. We shall obtain an improved expansion
series, by decomposing the moment M2k in the
configuration space and by resumming the resulting par-
tial series.

Fk, = k// T g ln(Pico; ) . (2.3)
D p(q)e//(q, j)=co, (q)e (q,j) (3.1)

Fg ——FI c +Fpq (2.4)

Then the difference (Fk Fk, ) stands —for the quantum
correction, which will be denoted by F~q. That is,

with e(q, j) denoting the polarization vector for a normal
mode (q,j). On the left-hand side of Eq. (3.1) the summa-
tion over repeated Greek suffixes is implied. Then the
moments are given easily by

2k —1

lnsinhx =lnx + g ( —1), x
2 Bk z

k=1
(2.5)

The expression for F~q can easily be obtained by utiliz-
ing the following expansion formula: M2=(3N) ' gD (q),

M4=(3N) 'gD //(q)Dp (q), . . .

q

(3.2)

valid for 0&
~

x
~

&qr, where Bk is the Bernoulli number
given by

Let us below consider the Coulomb lattice, for which
we have'

B)———,', Bp ——B4—
30~ B3 42 ~

The result becomes

(2.6)
TABLE I. Numerical values for the coeKcients a2k.

aze

Fkq
——3Nk// T g a 2k M2k (pR) ",

k=]

where

(2.7)

1
k 1 k

(2k)!(2k)
(2.8)

and M2k is the 2kth moment of the normal-mode fre-
quencies given by

1

24
1

2880
1

181 440
1

9 676 800
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D p(q)= —,'co&5 p+ —g' [1—cos(q R„)]P p(R„), (3.3)
m

Using Eq. (3.3) we evaluate Eq. (3.2). In the evaluation
we note

where cop is the plasma frequency given by

4~Ne
COp =

m
(3.4)

with m denoting the particle mass, and with e the elec-
tronic charge. P p(R) is defined by

e2
P p(R) =V' V'p

R
(3.5)

In the second term on the right-hand side of Eq. (3.3) the
summation is taken over lattice points R„with origin at
Ro (=0), where the prime on the summation sign indi-
cates the sum to be taken over R„except R„=O.

(R)= —4~e 6(R) .

We note also

g e "=N5(R„)
q

for the system of unit volume.
By this way we obtain CHM's expressions'

M2 =—67p, M4 =—cop +@42 4

M6 = —COp +COpp4+p6,6 2

8 2 4 4 2M8 —
g] CC)p + 3 Q)pp4+ 3 Copp6+p8 7

where we put

(3.6)

(3.7)

(3.8)

1
@4=

3m

1
p6=

3m n'n n' n" n

y y y p(R„)yp (R, )+ y y p(R. )yp (R, )
n n' n

p(R )Ppy(R ')Pq (R ")+3 g P p(R ) g Ppy(R ')Py (R ')

—g g P p(R„)gp~(R„)P~ (R„—R„)
n n'

ps= g g g g P p(R„)/pe(R„)gys(R„")Ps (R„)+4g g g P p(R„)/pe(R, )Prs(R„-)Ps (R„)1

n n' n" n'" n n' n"

+ 2 g g g P (Rp„)P yp(R„)(h~ (Rs„-)P s(R„)—4 g g g P (Rp„)P p(R„)P~ (Rs„-)P (sR„—R„-)
n n' n" n n' n"

+ g g g P (Rp„)$ ~(pR„)$ (rRs„-)P (sR„—R„—R„-)
n n' n"

(3.9)

The quantities p4, p6, . . . will below be called the reduced
moment.

B. Resummation of the partial series

3
(Nk~T) 'Fhq ——3fo(t)+3 g 2 p2(f2I(t),

I & 2 Q)p

where fq~ is given by

(3.1 1)

M2k ——
2 k

COp k
+ 2

k —2

COp

In Eq. (3.8) the moment M2~ is a polynomial of co~

with coefficients including the reduced moment, whose or-
der becomes higher with decreasing power of cop. Here
the term of the highest power of cop is the most important
and the subsequent terms become less important with de-
creasing power of cop, since mp is very large.

The moment expansion (2.7) consists of the partial
series, each for a particular reduced moment apart from
the most important one. In summing up each partial
series we note

fqt(t)= g 1
aqk(2t)"

k=1
(3.12)

as a function of our important parameter t defined by

(3.13)

=ln sinht (3.14)

Let us consider the series (3.12). For 1=0 we have sim-

ply

k
+

2
k 3

COp

@6+

Substituting Eq. (3.10) into Eq. (2.7) we get

(3.10) by recalling Eqs. (2.5) and (2.7) with Eq. (2.8). In the
evaluation of fqt for 1& 2 we utilize an integral represen-
tation for the binomial coefficient
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(3.15)

5t
8 16 128

(3.19)

1
1

sinh(t~ 1 +z)
ln

2rri rv'I+z
dz

I
(3.16)

where the contour is taken to be a circle of radius
~z

~
&1, with its center at the origin. Substituting Eq.

(3.15) into Eq. (3.12) we get

Owing to the resummation our expansion series works
much more effectively than the moment expansion. The
latter expansion is no longer valid in the low-temperature
region where Pirtro„~2rr. On the other hand, the present
expansion, Eq. (3.11), does not break down at low temper-
ature, as manifested in Eq. (3.19) for large Pfizer~.

Thus

sinh(t+I+z )

tv'1+z

which gives us the following:

2

f4 —————cotht ——csch t,
8 8

2
2

f6= ——'+ cotht+ csch t
16 16

t3
+ csch t cotht,

24

z=0

fs= 5t 2
3

128
(cotht +t csch r) csch t co—tht

32
]4

192
csch t(2coth r +csch r) .

(3.17)

(3.18)

IV. GENERALIZATION

A. Generalized expression for the reduced moments

1 f Ae ~ dri dr2 dr~ (4.1)

For the quantum correction in the system of a harmon-
ic Coulomb lattice the important quantities are the re-
duced moments, which are pq(IR„ I), p6(IR„ I), . . . as
functions of RI, R2, . . . , where R; denotes the position
vector of the ith particle relative to the 0th one at origin
Ro ——0 in the rigid lattice. We want to generalize our re-
sult to the liquid states as well, by replacing p4(IR„I),
p, 6( I R„ I ), . . . , respectively, by the averages (p4( I r;o } ) ),
(p6( I r;oI ) ). . . of the corresponding quantities, where
r;o —=r; —ro denotes the position vector of the ith particle
relative to the 0th one at ro. Here the average is taken
over a canonical ensemble for the classical system such
that

The functions f2''s are plotted in Fig. 1. For large t
these functions are linear in t,

QS-

FIG. 1. Curves for fbi and f, as functions of t The func-.
tions f2'(t) and fq(t) are defined in the text

with U denoting the potential energy of the system and
with 0 the configurational part of the partition function.

The generalization above implies that the average value
is different for different phases, whereas the quantities to
be averaged must be independent of the phases as it is the
case in the WK expansion. In proving the generalization
we shall examine modification of the reduced-moment ex-
pansion in the anharmonic lattice. The modification will
be shown to occur with the reduced moments averaged
over the distribution of particles, as mentioned before.
We note here that the resultant reduced moments are ex-
pressed in terms of the average of products of the deriva-
tive of interparticle forces which depend only on the rela-
tive position vectors of interacting particles. Accordingly
these reduced moments depend upon phases of the system
only through the average over the configuration of the
particles. Therefore the generalized expansion must be
valid in the liquid phase, because the liquid is different
from the solid only by the absence of long-range order of
particle density as far as the equilibrium properties are
concerned.

The effect of the anharmonic terms also brings us addi-
tional terms to the reduced-moment expansion. With
these terms taken into account our generalized expansion
is in agreement with the WK expansion when expanded
in power series of Pfi. This agreement shows that the gen-
eral expansion brought by our heuristic method should be
correct.

Our expansion is basically a low-density approximation,
where the Madelung energy or its equivalent in the liquid
is assumed to be most dominant and its quantum correc-
tions are taken into account successively. However, the
mentioned nature of our expansion is appropriate to the
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with

V(qj;q', j'}=g e (qj )ep( —qj )e~(q',j ')e (s—q', j')

iq. R iq''Rn i (q+q )'Rn
&( j2 —2e " —2e " +e

I

+e ")(t p~s(R„), (4.3)

where nqJ is the occupation number of phonons in the
normal mode (q j) and

gati p~s(R) = V V'pV'zV's(e /R).
In Eq. (4.2) we expand (2ni+1)=coth(Pficoii2) with

the use of Eq. (2.10) to get
r r

PfiCOi f3ACO2
coth

2
coth

2

study of melting of the signer crystal which occurs at
sufficiently low density of particles.

Let us now consider the primary anharmonic contribu-
tions to the free energy. The first contribution is the diag-
onal part of the quartic terms in particle displacements u;.
This term is given by'

I I

32Nm' ~p, (q)pi, (q')

(4.2)

In Eq. (4.4) we divide the expanded terms into two parts:
the singular part and the regular one, in co~ and m2. With
the substitution of Eq. (4.6) into Eq. (4.2) we obtain the
primary term of F4 as

8Nm P q 1 q ~' [p~)(q)co~'(q')]
(4.7)

which is an anharmonic contribution for the classical lat-
tice.

The remaining terms in F4 are the quantum correction,
and will be denoted by F4q. %'e divide F4 as

F4q =F4'q +F4'(]) (2) (4.8)

in accordance with Eq. (4.4), where F4~ is the free-energy
contribution coming from 3 i (co i, i@2) and Fp~ from
A2(a~i, co2). We shall consider F4q' below. In dealing
with F4~' we utilize the following identities:

D p(q)= g e (qj)co, (q)ep(q, j),
J

D p(q)Dpi, (q)= g e (q, j)cp&(q)e~(q, j), . . . ,
J

(4.9)

assuming e ( —q,j)= e (q,j). These identities can be de-
rived from Eq. (3.1). We also utilize

(4
e(, )e(, )

where we put

2
PflCO &CO2

3 i(COi, CO2)+(4'') A2(COi, PI2),

(4.4)

which implies the average of the product of displacements
in the classical harmonic system, according to Eq. (4.1).
In applying Eq. (4.10) we shall use the following abbrevia-
tion:

A i(cubi, co2) = 1+2a2(pA') (coi+a~2)

+4a4(PA') (coi+co2)

+6a6(Pfi) (cubi+(o2)+

~2(a~i a~2) a2+2a2a4(P~) (~1+a~2)+

(4.5)

(4.6)

A„P = ((u „—u p)(up„—upp) ) i, .

Then it follows that

(3Nks T) 'F4q' a4M4(P——A) +a6M6(PA)

in accordance with Eq. (2.7), where we set

(4. 1 1)

(4.12)

M4 ——(3m )
' g A~„P pcs(R„) g Pp (R„)+Pp (R„)

n'

M6=ai&M'4+(2m )
' g A~„p pcs(R„) g p „(R„)p,p(R„)+2/, (R„)g p,p(R„)

(4.13)

n'n" n'

+ g P,(R„)[Pp(R„)—P,p(R„R„)]— (4.14)

The next contribution comes from the second-order perturbation of the cubic terms. It can be written as'

g2F = —
3 g g g ' ' ', ' ' „h [co, (q), a~;(q'), co, (q")]b,(q+q'+q") . (4.15)

In the above expression we set

V(q, j;q',j ', q",j ")= g e (q, j)ep(q', j')e~(q",j ")(e "+e "+e ")P pz(R„) (4.16)

with P p (R) defined similarly as before, and
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h (co»co2, co3)

/3fico1=—'csch
4 2

/3fico2
csch

2

/31r1co3
csch

2

B
1 (~1 co2 co3) 4 4(P~) g col~2

cyc]

—6a6(/3') g (co1co2+co1co2)+
cycl

sinh[/31'(co1+ co2+ co 3)/2]
CO

& + Cc)2 +C03 B2(col co2 co3 ) —6a 6 +
(4.20)

(4.21)

sinh[pA( —co1+co2+co3)/2]+g
cycl

—CO & +6)2 +633

F3, ———
12Nm 'P

~ ~. .~-, [co, (q)coj'(q')co, (q")]where in the second term inside square brackets the sum
is taken over terms obtained by cyclic permutations in co[,
co2, and co3. ' Also, X+(q+q+q") . (4.22)

The primary term is the free energy of the classical system
(4.17)

1 if q+q'+q"=0, 6
A(q+q'+q")= '0

for any reciprocal lattice vector Cs.
We expand h (co1,co2, co3) similarly as before,

(4.18)

We divide the quantum correction F3q as

F F(11+F(21

in accordance with the decomposition in Eq. (4.19).
Similarly as before we obtain F3q as follows:

(4.23)

/1 (co1,co2, co3)

CO
& C02C03

2
1

2 2 2B1(co1,co2, co3)
CO }M2C03

(3Nks T) 'F'(3q'=a4M4'(PA') +a6M6'(/3')

where M4' and M6' are given respectively by

M4'=(3m )
' g P py(R„)A1„'„Psp (R„)

(4.24)

where

+4(/3A) B2(co1,co2, co3), (4.19) n, n'

+ g P p~(R„)A~„Psp (R„) (4.25)

M6'=co~M4'+m g P py(R„)A~„Qsp, (R„)c/P, (R„-)+ g P py (R„)A~„Psp (R„)P, (R„)
n, n, n n, n

+ g p p1,(R, )A„esp (R, )[2(b, (R„)—p (R„—R„)]
n, n

(4.26)

Now we substitute R„+(u„—up) for R„ in M4, Eq. (3.8) with (3.9), and then average over the particle distribution. If
we expand the substituted expression in powers of displacements, the quadratic parts of it are identified with M4+M4'.
Similarly the terms M6 and M6' are absorbed in M6 of Eq. (3.8) with the same substitution.

Thus we conclude that the quantum correction including Fq"'=F4q +F3q + should generally be of the form

Fhq+Fq" 3Nkj3T g a2——kM21, (PA') ",
k&l

with M2k s still given by Eq. (3.8) but now with the generalization of the reduced moments,

1
p =, gg (P p(r;o)Pp (r;o))+ g (P p(r;o)Pp (r;o))

3m i i'

(4.27)

1
@6= g g g (P p(r p)Ppr(r;p)Pr (r;-p))+3 g g (P p(rp)Ppz(r;p)Pz (r;p)) —g g (P p(r p)Ppz(r; p)P~ (r;; ))

1
p8 —

4 g g g g ( p p(r p)pp1 (r p)$18(r;-p)$8 (r;"p) ) +4 g g g (p p(rp)/pe(r, 'p)$18(r; p)$8 (r;-p) )4m4
j I 'll Ill

1 1
'I

+2+ g g (p p(r;p)/pe(r; p)pys(r; p)$8 (r;p)) —4g g g (c/p p(r;p)c/1p~(r; p)/~8(r; p)$8 (r;; ))~
+ g g g (c/P p(r;p)c/1pr(r p)jl&s(1; p)c/18 (r;,' —r;""p)) (4.28)

Here the average in the harmonic lattice may be replaced by that in the full classical system. With the reduced moments
defined above we still have Eq. (3.11) for Fhq +Fq" ' which replaces F&q.
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B. Additional quantum corrections

In the foregoing analysis we left aside the free-energy contributions F41 ' and FP~'. These contributions come respec-
tively from Az(coi, coz) and 82(coi, coz, A@3) which are given respectively by Eqs. (4.6) and (4.21). The neglected terms bring
us corrections to the reduced-moment expansion which is related basically to the harmonic lattice.

Let us first consider F4~'. Since Az(co1, coz) is an integral function of co1 and coz, we put

(4Pirt) Az(cci, e2') = g cII'ei '(ei') ' .
1,1'&0

By Eq. (4.4) we obtain the coefficient cII as

1 g g, coth(/31yico/2)coth(/3fico'/2)

(2 )z & X zI+z( )zI'+z

with contour encircling the origin in the complex co plane.
We substitute Eqs. (4.3) and (4.29) into Eq. (4.2) and then utilize Eq. (4.9) with the following result:

(4.29)

(4.30)

F4'= g cII g' g (2 2e —"—2e "+e "+e ")I/p pys(R„)[D'(q)] p[D (q')]y~ . (4.31)
32Nm 11 &0 „q q

We expand [D'(q)] p in a power series of (3/co~ ) by the substitution of Eq. (3.3), where the primary term (co~/3)'fi p
vanishes identically because of the identity P ys(R„)=0. Then the primary contribution to F'4~' proves to be of the
higher order.

The other contribution F3q' can be evaluated similarly. In the evaluation, we need to modify Eq. (4.16), referred to
the lattice of inversion symmetry, in order to ensure relevancy of the resultant expression to the noncrystalline state.
It is proved that the above modification corresponds to adding —I to the terms inside parentheses on the right-hand
side of Eq. (4.16). Thus we get

PI
9%A

q
=

16

'2
3

/45t fg(t)
Mp

(4.32)

as a primary term, where a "moment" p5 is given by

/2/= 3 y t, c/I Py(r;o)I/ Py(r;0))+3/ (, I/I Py(r;0)c/P Py(r;0))
(3m)

(4.33)

with the average taken in the rigid lattice. And we put

fq(t)=t —coth t ——cotht +———'csch t2 2 2
3 2j 6 (4.34)

which is shown in Fig. 1. The above expression follows from
1+1'+1"+ 2

Q)p

3
fs(t) = g cII'I"

—1

1, 1', 1"&0

2
2

Ct)p

3

1 /I (Cd 1, Cdz, 603 )

3 f d Q7 1 fd co2 f d co 3
(2iyi) [co', —(co~ /3)][coz —(co~ /3)][co3 —(~~ /3)]

(4.35)

where c11 1- is defined by C. Comparison with the WK expansion

4(P~) +2(~1 ~2 ~3) y cii'I"eel ~2 ei3
1, 1',1"& 0

(4.36)

The quantity p5, Eq. (4.33), is dimensionally the fifth
moment and will hereafter be so ca11ed, where the rigid-
lattice average will be replaced by the average over the
particle distribution. This is a reasonable procedure in
view of the generalization made before in Sec. IV A.

Another contribution ranked with the sixth moment
comes from the second-order perturbation of the quartic
terms. However, this contribution has been shown to be
very small, and may be omitted.

j4

6 180 2835
(4.37)

f4=—
180

+
945 ' f' —=

2835 '

We compare our expansion with the WK, which is a
power series of the Planck constant 2vrA. This series is
known up to the term of (2vriii) for the system of general
force. ' The series adapted to the Coulomb system can be
identified as Eq. (3.11) with pzI given by Eq. (4.28), with
additional contribution FI3q' given by Eq. (4.32). In the
identification we use the following expansion for small t:
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and

(4.38)

Note that the above identification is independent of the
phases.

V. EVALUATION OF THE REDUCED MOMENTS

We shall use the parameter r, which is defined by
4nN (r, ao ) /3= 1 with ao the Bohr radius, and measure
the distance r in units of r, ao. Define the dimensionless
moment p2~ by m'p2~ with substitution of

1
P p(r)=V Vp-

r
(5.1)

for P p, in Eq. (4.28). Then Eq. (3.11) can be written as

(NkB T) 'bF = 3 fo(t)+ g pzjf2t(t)
1&2

with t = I /(2+r, ), where I is a current parameter

e2

r, ao

(5.2)

(5.3)

The additional correction, Eq. (4.32), can similarly be
written as

(Nkjj T) F3q' —f5@5
8

(5.4)

with p, & defined similarly as above (m =6= 1).
Below we shall evaluate the reduced moment @2~ and

the similar moment p, 5 separately for solid and liquid
states.

A. Reduced moments in solid state

In the body-centered cubic (bcc), which is the lowest-
energy structure of the Coulomb lattices, numerical values
of p21 can easily be obtained from CHM's moments for
the harmonic lattice. ' However, small error in the mo-
ments does produce considerable effects on the estimation
of reduced moments.

In the rigid lattice, the expressions for the reduced
moments become simpler, since the terms including

g; P p(R;0) as a factor vanish identically due to the cubic
symmetry of lattices. It is also the case for the other mo-
ment p5. The calculated results are shown in Table II for
the rigid-lattice values of our reduced moments. We note
that CHM's values, '

p6 ——0. 19856 and p8 ——0.1347, are
considerably different from the tabulated ones due to their
insufficient lattice summations. '

At zero temperature Eq. (5.2) gives us the zero-point
energy

which is estimated as 2.633r, , in comparison with
2.657r, , an accurate value based on the direct sum
over 32768 points in the first Brillouin zone. Equation
(5.4) contributes to the same energy by

E3q' 3 1
p5 Ry,

cV 8 r,2
(5.6)

which is estimated to be —0.4243r, . For comparison
we note —1.10r, for the total zero-point-energy contri-—2

butions from Eq. (4.15), according to Kugler. '

At finite temperature we first consider p, 4 in Eq. (4.28).
The first term of p4 is divided into two parts. The part
with i&i needs the three-particle distribution function for
estimation, while the part with i =i can be estimated sim-

ply with the use of the two-particle one. It is noted that
these parts cancel each other for the rigid lattice, as men-
tioned before. However, a small remainder is left owing
to the distribution of particles around lattice point. It is
also the case for the first and second term in p6, and for
the similar term in p&.

We shall evaluate the distribution function in the har-
monic approximation, following Kugler. ' Consider a
6 & 6 correlation matrix

A,oI

A,oI (5.7)

gq(u;, uk)=[(2n) detD]

Xexp ——,
' g u~j(D ')~j pj upj

j,j'=i, k

(5.8)

with D ' implying the inverse matrix to D. Generaliza-
tion of the above expression to the higher-order distribu-
tion function is straightforward and may be omitted.

By the use of the above distribution function, we esti-
mate the temperature-dependent part by confining our-
selves to the nearest neighboring pairs. The results thus
obtained are shown in Fig. 2 for p4, p, 6, and p~ in compar-
ison with the rigid-lattice values. These reduced moments
increase with increasing temperature. However, the tem-
perature dependence is rather small.

Here A, ;j, is a 3 & 3 matrix whose aP component
X«pj, —= (u;upj, )h is given by Eq. (4. 10), and Aol is a
unit matrix multiplied by j(,o= (u;u; ) /3. [Note that
the factor (N/3m) ' in Eq. (4.10) changes to (1/3NI ) in
our scaled coordinate and for coj(q) measured in units of
co~. ] The probability distribution of (u;, uk) must be
equal to the product of the Gaussian functions in a six-
dimensional coordinate system where D reduces to a di-
agonal matrix. Thus we get for the two-particle distri-
bution function

P4+ I 6 p8) Ry'
r,

(5.5)

0.827 702 0.550 45 1.3673 1.131

TABLE II. Rigid-lattice values of the reduced moments
(bcc).

B. Reduced moments in liquid state

The reduced moments, Eq. (4.28), can be treated as
above. The moment p4 consists of two kinds of terms,
where the one is expressed in terms of the three-particle
distribution function g3(1,2,3) and the other in terms of
the two-particle one gq(1,2)=—g (r) with r denoting the dis-
tance between two particles. After angular average we ob-
tain
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1.5-
PI

liq

1.0-

05-

1.5-
P6

1.0—

[lq

0.5- sol

1.0—

0.5

P5

sol

P4 ——3(4Iz [4]+3I3[1,1])

with the integrals defined by

Iz[k]= f" „g(r),
r

I3 [k, I]

= —,
' f"dr~ f drz „ f dx(3x —1)

0 0 r lr2

(5.9)

(5.10)

I I l I I

9 0 180 360 720 9 0 180 360 720 9 0 180 360 720
r r

Xg3(r~, rz, x), (5.1 1)

where x =cosO with t9 denoting the angle r2 makes with
r~. The above result is by Hansen and Vieillefosse.

For P6 we similarly evaluate from Eq. (4.28),

FIG. 2. Reduced moments pql and p, ~ as functions of I for
solid and liquid phases. The dashed lines show the extrapolated
curve. The rigid lattice values for bcc are indicated by arrows.

p6= 3(8Iz[7]+18I3[1,4]—3J3"+9J4") .

The above expression includes the new integrals

(5.12)

1 i 2 —3(x +u +v ) —9uvxJ3 ———, dr ) dr2 dx g3 rt rz x
o o r~rz —& (r ~+rz —2r~rzx)

J4"= f"dr~ f"drz f dr3 f '
dx) f '

dxz f dy[2 3(xf+xz+yz)+9x x ~]8m 0 0 0 r~r2r3 —1 0

(5.13)

Xg4(r~, rz, r3,x~,xz, g) . (5.14)

In the first integral J3", by x, u, and U we denote the
cosines of the interior angles for a triangle with sides r~,
rz, and

~

r~ —rz ~, respectively. The second integral J4I"
includes the four-particle distribution function
g4(1,2,3,4):g4(r„rz, r3, x&,x—z, g), where x, and xz are,
respectively, the cosines of the angles r& and r2 make
with r3. In the same integral we also put y =x &X 2

+ [(1—x, )(1—xz )]' cosP.
The evaluation of p, 5 can be done as above,

g3(1,2, 3)=g (1,2}g(2, 3)g (3,1), (5.17)

I

higher-order distribution functions than g2. There exist
some methods for obtaining the many-particle distribu-
tion functions from the liquid-structure function. ' '

However, the evaluation becomes formidable particular-
ly for the integral including the four-particle distribution
function, because the relevant integral is conditionally
convergent (Appendix A). In computation we assume
the superposition approximation:

IM5= 5(8Iz[6]+3J3[2,2])

with a new integral defined by

(5.15)
g4(1, 2, 3,4}=g(1,2)g (2, 3)g (3,4)g (4, 1)g (1,3)g (2,4) .

(5.18)

J3[k, l]=—,' f "
dr) f drz „, f ' dx(5x —3x)

0 0

X 3g( l)rz)r)x
(5.16)

No computer-simulation data are available for the

With these approximations the integrations were per-
formed by the Monte Carlo method, where the pair distri-
bution function g(r) is obtained from the available data
for the structure functions, ' through the Fourier trans-
form. The estimates are given in Table III for our in-

TABLE III ~ Numerical values of the integrals.

80
120
140
150
160
170
180

Iz [4]

0.1660
0.1581
0.1559
0.1546
0.1538
0.1528
0.1522
0.1380

0.0552
0.0499
0.0485
0.0477
0.0471
0.0465
0.0461
0.0377

Iz[7]

0.0337
0.0296
0.0284
0.0278
0.0274
0.0269
0.0266
0.0205

I3[1,1]

—0.0894
—0.0810
—0.0779
—0.0757
—0.0742
—0.0722
—0.0709
—0.0920

I3[1,4]
—0.0157
—0.0134
—0.0126
—0.0121
—0.0118
—0.0114
—0.0111
—0.0136

—0.0663
—0.0642
—0.0636
—0.0632
—0.0630
—0.0627
—0.0625
—0.0612

J3[2,2]
—0.0299
—0.0298
—0.0296
—0.0295
—0.0294
—0.0293
—0.0292
—0.0251

0.0064
0.0061
0.0061
0.0059
0.0060
0.0060
0.0060
0.0091

'The rigid lattice values for bcc.
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tegrals, at several values of I. We also estimated the
same integrals by the use of Hansen's distribution func-
tion, with results close to the tabulated ones. However,
our estimate involves certain systematic errors due to the
superposition approximation, which should be more
significant for the integrals including g4 than the others.
Accuracy of the approximation is examined in Appendix
B using Schofield's identity.

The values of p4, p6, . . . thus obtained are shown in
Fig. 2. The shown curves include extrapolation to the
values of I higher than I"=178 at which our classical
liquid freezes. In the extrapolation we assume the re-
duced moments to be of the form A +B/I +C/I for I
larger than 1", where the constants 2, B, and C are
chosen so as to fit the assumed form to the values com-
puted for each moment in the region of I & I ".

internal energy U,' is written as

= —0.895 929+ —,
' +

U,",

, 10.9 h

B r r' (6.6)

In the second term on the right-hand side, a part —,
' is re-

tained of —', in Eq. (6.3), since we drop out the remainder 3
of which a half stands for the kinetic energy part. The
other half has been inserted in Eq. (6.3) for convenience,
in accord with SDD. We fit U,' to SDD's Monte Carlo
data to get the estimate of h.

For the liquid phase SDD have given an interpolation
formula covering a wide range of temperatures. On the
other hand, our interest is in finding an extrapolation for-
mula applicable to the liquid far below the melting tem-
perature. We assume it to be of the form

VI. MELTING OF THK WIGNKR CRYSTAL
F( c=aI +(b +3)lnI ——— +5 .

NkB T I
(6.7)

We shall now consider the melting of the Wigner crys-
tal. Generally the solid phase is characterized by the or-
der parameters which describe particle density of lattice
periodicity. These order parameters vanish in the liquid
phase. Thus we have two branches of the free energies,
the one for liquid and the other for solid, which cross at
the melting point. Such treatment has been done also for
the classical Wigner crystal, in fairly good agreement
with the simulation results.

Instead of extending the above kind of theory to the
quantum Wigner crystal, we utilize the Monte Carlo re-
sults consistently for both of the classical free energies and
the quantum correction. Let us set

F, =F,'+AF, ,

F( =F("+hE),

(6.1)

(6.2)

where F," is the classical part of the free energy in solid
phase, and AF, the quantum correction. Similar quanti-
ties are denoted by F~" and AF~ for liquid phase.

For the classical part of the free energy the Monte Car-
lo data are available in Slattery, Doolen, and DeWitt
(SDD), whom we follow in our treatment but with some
modifications. For the solid phase we use

Fcl
= —0.895 929I + —,'lnI —1.8856—10.9

NkB T r
h

21

(6.3)

with h= 1318. On the right-hand side of the above for-
mula the first three terms are the free energy of the classi-
cal harmonic lattice in accord with Pollock and Hansen,
who added the anharmonic term proportional to I to
the above three terms. However, the anharmonic correc-
tions to the free energy are given primarily by Eqs. (4.7)
and (4.22), which we estimate to be

The above formula comes from the internal energy

Ut" c d
NkT I (6.8)

in conformity with Eq. (6.6).
In the solid phase we have b = —,', a classical result in

the harmonic approximation. For the liquid branch,
which is characterized basically by vanishing of order pa-
rameters, one must get an amorphous solid at low temper-
atures. This system is metastable in the sense that it has
higher free energy than the solid. However, the motion of
particles must still be harmonic in the potential of local
minima at low temperatures. Thus classically we should
have b = —,

' for the amorphous solid, in accordance with
Itoh and Ichimaru.

In Eq. (6.8) with the prescribed value of b, the
coefficients are determined by least-squares fit to SDD's
Monte Carlo data for N= 1024 and I & 120,

a = —0.89254, b =1.5000,

c =77.94, d = —5622,

6= —2. 1963 .

(6.9)

In the above the last value is a result of fitting our free en-
ergy to that of SDD at I =120.

By adding the quantum correction to the classical free
energies, Eqs. (6.3) and (6.7), we get the total free energy
F/NkB T, respectively, for solid and liquid phases. It is a
function of r, as well as of I ~ The r, dependence comes
from the quantum corrections, Eqs. (5.2) and (5.4). We
write them collectively as

AF =3fp(r)+ 3p4f4(r)
B

F4c 1 1.51
Nk, r r (6.4)

9 1—psf&(r)+3p6f6(r),
rs

(6.10)

F3c

NkB T
22. 37

r (6.5)

These contributions give the fourth term in Eq. (6.3). The

where f~(t)'s are shown in Fig. 1 and P~'s in Fig. 2. In
the treatment below we shall use the above expression,
which has different values for different phases by virtue of
the reduced moments p.~'s.
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We first examine accuracy of our free energies for the
worst case of zero-temperature limit. For the ground-
state energy in the liquid branch, the present extrapolation
gives us

1.7851 2.694
r

+ 3/2
S S

0.489
(6.1 1)

which is compared with Ceperley and Alder's Monte Car-
lo one in Fig. 3 in the low-density region. We shall
compare our EI with the corresponding result for E„ the
ground-state energy in the solid branch,

N
1.7919 2.793

3/2
S S

0.424
r 2

(6.12)

0.0
50

I

100
I

150
rs

200
I

I

—1.4—
~ la

As can be seen in Fig. 3, our ground-state energies are
very close to each other for the liquid and solid branches,
while both of the energies deviate considerably from the
simulation results. By this deviation one might suspect
the validity of the present treatment.

However, the mentioned deviation is mainly due to
neglect of the next term with a reduced-moment p8. If

we take it into account, the second term on the rignt-
hand side of Eq. (6.12) for E, changes to 2.633/r, ~ .
The resulting ground-state energy is very close to the
simulation result, as shown in Fig. 3. In the same stage
of the approximation, one would get the liquid ground-
state energy in the close vicinity of the solid one. It is
very important to recognize that the relevant quantity to
the zero-temperature melting is the difference of
ground-state energies. Therefore, the mentioned devia-
tion of our sixth-moment results from the simulation
ones does not negate the effectiveness of the present for-
malism. It is emphasized that the energy difference of
the liquid and solid phases would be very small unless
the system is very far from the melting point. We also
emphasize that our result for the liquid branch is most
unrelible at zero temperature, in view of our extrapola-
tion.

Our treatment works well when the Madelung energy
or its equivalent in the liquid is the most important (Sec.
IV). The Madelung energy corresponds to a horizontal
line roughly at —1.8 in Fig. 3. The energy correction is
surely small in the region of r, ~ 100.

The symmetry effect is more considerable at higher
density (Fig. 3) where the present result is less eff'ective.
We shall consider the density region of r, 100. At finite
temperature the quantum correction is small by itself and
less than —10% of the total free energy. We note that
the quantum correction comes mostly from the primary
term fo(l /2V'r, ) with small contribution of the remain-
ing terms. However, these remainders are very important
in shaping the melting curve from the free-energy
difference F~ —F„owing to cancellation of the primary
term fo.

In Fig. 4 we show curves for (F~ F, )/Nkq T—as a func-
tion of I for several values of r, . We note here that the
effect of p6 works in opposite direction to that of p, 4 and
p5.

In the classical limit the melting point is located atI"=172, according to the present treatment. Our value
of I" is slightly lower than 178, the location predicted by
SDD. The result including the quantum correction is
shown in Fig. 5 for the melting curve in the r, ' —k~T

-1.6—

-1.8—
Madelung

CO

z: Q2

FIG. 3. Ground-state energy as a function of r, . The solid
line shows the ground-state energy, E&/N, per particle for liquid.
The Monte Carlo results of Alder and Ceperley's (Ref. 5) are in-
dicated by )&'s for Bose liquid with spin 0, by 6 and, respec-
tively, for paramagnetic and ferromagnetic Fermi liquids, and by
o for solid. The dash-dotted line shows the ground-state ener-
gy, E, /N, for solid, and the dashed line shows the corresponding
quantity in the higher approximation with the eighth reduced
moment taken into account. The lowest horizontal line indicates
the Madelung-energy term.

—0.2-

FIG. 4. Curves for (I'I —F, ) /Nk~T as a function of I for
several values of r, . These curves are the results including the
sixth reduced moment.
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plane. The melting curve continues to go up with des-
cending melting temperature. This is similar to Imada
and Takahashi's curve for the two-dimensional Wigner
lattice, but different from those by the Lindemann con-
dition and its modification, which has a horizontal
part on the low-temperature side.

At zero temperature the melting point is located at
r, =230. This value is fairly larger than Ceperley and
Alder's ones: r, =100+20 for fermions with spin —,

' and

r, = 160+10 for bosons with spin 0, with values still
larger than the earlier ones for fermions. ' On the other
hand, our value is quite smaller than r, =1000, a value
predicted from the Lindemann condition.

A modified Lindemann condition has been proposed by
Mochkovitch and Hansen, but with old values of r, (100
for boson, 75 for fermion) and I "(155). Their formula is

adapted now to Ceperley and Alder's r, above and
I "=172. ' The resultant melting curves are plotted in
Fig. 5, with large deviation from ours and with sizable
symmetry effect, even in the low-density region of
r, ~ 500.

However, the present result should be correct at least

AS 0 FI —F.=r
Nkg BI Nkg T

(6.13)

which is to be evaluated at the melting point. The entro-

py change AS is plotted in Fig. 6 as a function of r, /r„
with r, the density parameter at the melting point. This
result shows that the entropy change decreases with in-
creasing quantum correction. It is mentioned that AS
should go to zero in the limit of zero temperature, as a
consequence of the third law of thermodynamics.

VII. SUMMARY AND DISCUSSIONS

in the mentioned region, where the symmetry effect is
smaller than the diffraction effect taken up in the present
study. It is noted for the Coulomb system that the
quantum-mechanical parameter characteristic of the
diffraction effect is I /Qr, , whereas the characteristic
parameter of the symmetry effect is given by I /r„
square of the ratio of the thermal de Broglie wavelength
to the mean particle distance.

We finally consider the entropy change AS which ap-
pears in the solid-liquid transition. This quantity proves
to be

0.6—

0.4

0.3

0.2

B

We have studied the quantum effect on the melting of
the Wigner crystal at finite temperature, where the sym-
metry effect has been neglected. The WK expansion of
the quantum correction, which has proved to be a mo-
ment expansion, is inappropriate for the present study, be-
cause of the validity confined to a very small value of our
quantum-mechanical parameter, I /Qr, .

A powerful expansion has been obtained by summing
up the partial series in the WK expansion for the free en-

ergy of the Coulomb system, where each partial series is a
power series of (fico&/kiiT) . The coefficients in the new
expansion are the reduced moments for the classical sys-
tem. Such an expansion is necessary for the present
study, because the WK expansion series breaks down in
the low-temperature region of (fico~ /ks T) ~ 1, or
(r/u r, ) ~1.

Since the WK expansion is awkward to handle, we
study the harmonic Coulomb lattice as a starting point, in

0.1

0.8-

0.6

0.0
0 1.0 2.0 3.0 4.0

kBT (10 Ry)

0.4

0.2

FIG. 5. Melting curves in the r, ' —k~T plane. The solid
curve is the result up to the sixth reduced moment and the dot-
dashed curve up to the fourth one. Straight lines are the classi-
cal melting curves, dashed curves are by the modified Lin-
demann condition of Mochkovitch and Hansen (Ref. 30) adapted
to the one by Ceperley and Alder (Ref. 5) and our value ofI"=172. Of the two dashed curves, F indicates the system of
fermions and B that of bosons.

r,0/ r,

FIG. 6. Melting entropy hS/Nkz as a function of (r, /r, ).
The curve is obtained in the approximation up to the sixth re-
duced moment. Here r, denotes the r, value for the melting
point, and r, =230 the corresponding value at 0 K.
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order to find the form of the reduced-moment expansion.
The expansion thus found out has proved applicable to
the liquid phase as well, by generalizing the reduced mo-
ments in the rigid lattice to those in the nonrigid one.
This point has been proved by examining the effects of the
anharmonic terms. These anharmonic terms also brings
us additional contribution to the free energy, contribu-
tions due to the reduced moments of odd order.

The free energy of the system can be obtained with full
use of knowledge of the corresponding classical system.
For the evaluation the existing Monte Carlo data have
been utilized mainly for the liquid phase of our classical
system. Since the quantum melting occurs at lower tem-
perature than the classical one, some extrapolation pro-
cedures were needed in the classical liquid phase. This
might give rise to certain errors in the resultant predic-
tions when the melting temperature is highly depressed.

In the extrapolation of the free energy for the liquid
phase, we for a moment look for the range of a parameter
a fitting the simulation data by the same procedure as be-
fore. In Fig. 7 are shown the differences of the predicted
energies from the corresponding SDD's, where the pre-
dicted ones are obtained from Eq. (6.8) with the least-
squares fit of b, c, and d when we set a = —0.8920 and
a = —0.8940, respectively. There is no appreciable
difference between the two extrapolation formulas above,
as seen in Fig. 7. The allowed band lies quite lower than
a = —0.88006 for simple cubic and slightly higher than
a = —0.895 87 for face-centered cubic. In the parameter
range of interest, the b value changes from 2.13 to 1.27 as
the parameter a becomes higher. Our value b =—,'lies be-
tween the two extremum ones.

The b value above is a result of applying the equiparti-
tion law to the supercooled classical liquid far below the
freezing point. The prescribed value is necessary for the
heat capacity of our liquid with quantum correction to

l~

ED

L 2-
V

vanish in the limit of zero temperature, according to the
third law of thermodynamics. Note that the primary
quantum correction, 3fo(t) in Eq. (5.2), gives a contribu-
tion which just cancels the classical term due to the
equipartition law of energy.

The melting curve has been studied in the approxima-
tion up to the sixth reduced moment. The melting point
r, at zero temperature is fairly larger than the current
ones. Another result is the melting entropy which has
proved to decrease with increasing quantum effect.

The fourth-moment result is rather miserable. Slow
convergence of the reduced-moment expansion may also
be seen in the expansion of the zero-point energy for the
harmonic lattice, Eq. (5.5). However, the essential quanti-
ty to the melting is the free-energy difference between two
phases. The moment p6 works to widen the region of
solid phase in opposite direction to the effect of p4. Ac-
cordingly, the effect of p8 possibly works in the same
direction as that of p4, namely, to reduce the region of
solid phase. It has, however, been confirmed that the
seventh moment p7 arising from the expansion of F~' and
F'3q' works to widen the solid-phase region, and accord-
ingly to cancel the effect of ps. We note a large effect of
p7 in comparison with that of p5.

These results are based on the estimation of the reduced
moments in the superposition approximation. By this ap-
proximation, however, no sizable error comes in for the
average values of the three-particle quantities (Appendix
B), though for the four-particle quantities the accuracy
remains unsettled.

Despite the slow convergence of the reduced-moment
expansion, our sixth-moment results for melting are sure-
ly correct for the region of quantum-mechanical parame-
ter (I /Qr, ) 10~ which is quite wide compared with the
region of (I /'t/r, ) 51 validating the WK expansion. In
the validity region of our result, the symmetry effect is of
less importance in view of its characteristic parameter, to
be given by I /r, .

APPENDIX A: EVALUATION
OF THE INTEGRALS IN THE SUPERPOSITION

APPROXIMATION

. 120 140 160
Some of the integrals appearing in the moments are

conditionally convergent. Let us consider, for example,
the integral I3[1,1] which is given by Eq. (5.11). The in-
tegral does not converge absolutely for the large value of
r, or r2, as can be seen by setting g3(1,2, 3)= 1 .for large
separations between particles. In evaluating the integral
in the superposition approximation, we set

g3(1,2, 3) =g (1,2)g (1,3){[g (2, 3)—1]+1} (A 1)

FIG. 7. Allowed range of the parameter a in fitting our extra-
polation formula to the Monte Carlo data for liquid phase. For
the internal energy (Uf'/Nkz T) difference is plotted between the
Monte Carlo datum and the interpolated value. The Monte Car-
lo data are taken from Ref. 8 for N=1024. Circles and crosses
indicate the differences for the interpolated values, respectively,
when a = —0.8940 (O) and a = —0.8920 {&& ) are assumed in
the formula (UI"/Nkg T) =aI +b +(c/I")+(d/I ). Here b, c,
and d are obtained by least-squares fit.

By substituting Eq. (Al) into Eq. (5.11) we divide the in-
tegral into two parts, where the integral corresponding
to the second term in the braces of Eq. (Al) proves to
vanish after angular integrations and the remaining part
is absolutely convergent.

The most cumbersome integral is J4" given by Eq.
(5.14), which is slowly convergent with respect to radial
coordinates. For the mentioned integral, we use the iden-
tity
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g4(1, 2, 3,4) =g (1,2)g (1,3)g (1,4) [ [g (2, 3)—1][g(3,4) —1][g(4, 2) —1]

+ [g (»3)—11[g(3*4)—1]+[g (3*4)—11[g(4 2) —1]

+ [g (4, 2) —1][g(2, 3)—1]+[g (2, 3)—1]+[g (3,4)—1]

+ [g (4, 2) —1]+1 I, (A2)

where the last four terms in braces bring no contribution after angular integrations. Of the decomposed integrals re-
sulting from Eq. (A2), the most awkward one is brought by the first term inside braces. We evaluate it directly by the
Monte Carlo method. The convergence of the six-dimensional integral becomes slower approaching the freezing
point. The number of samplings amounts to 1.5/10 until the integral converges, in the case of the slowest conver-
gence. The remaining three terms in the braces give the identical contribution, and can be collectively written as

2

—', f dr f "dr' f dx, (3x —1)[g([r +(r') —2rr'x]' }—lI (A3)
0 r o

as a contribution to the integral. The integration can be
performed in two steps. The first step is a double integra-
tion with respect to r' and x at a fixed value of r and the
second one the integration with respect to r using the tab-
ulated values for the integral obtained in the first step.

APPENDIX B: SUPERPOSITION
APPROXIMATION AND SCHOFIELD'S IDENTITY

The validity of the superposition approximation (SA)
has been a controversial problem. We examine it by using
Schofield's identity, which relates the s-particle distribu-
tion function g, (r~, r2, . . . , r, ) to the (s+ 1)-particle one
g +i(ri r2

For the one-component plasma the structure factor van-
ishes identically in the long-wavelength limit. Namely,
we have for the pair distribution function g (r)

N g r —1dr= —1, (B1)

where N is the particle density. Owing to the above prop-
erty, Schofield's identity reduces to a simple form

sg, (r~, r2, . . . , r, )+N f [g, +~(r~, rq, . . . , r, +~)

Let us set the correct form ofg3 to be of the form

g(3r, r')=[ I+C(r, r')]g(r) g(r')g(
~

r' —r
~

) .

By Eq. (B3) we then have

—fg (r')g (
~

r' —r
~

)C(r, r')dr'= —b, , (B6)

with b. defined by Eq. (B4). Since g3(r, r') is a symmetric
function with respect to interchange of the position vec-
tors of particles, the same symmetry must be kept also for
C(r, r').

A tentative form with the required symmetry is as-
sumed as

C(r, r') =
3 sing,(r+r'+

(

r' —r
)

)

2&
(r +r'+

~

r' —r )+ 1+rr'
~

r' —r
~

where 3, A, , a, and 6 are adjustable parameters. In Fig.
8 we plot the left-hand side of Eq. (B6) with reverse of
sign when k=1.4, a=5~/8, and 6=~/4, for the dis-
tance in units of r, ao. In the shown curve we fix 2 =37

—g, (r~, r2, . . . , r, )]dr, +~=0 . (B2)

Let us consider a simple case, s=2. For liquid we
may put g3(r&, r2, r3) =g3(r, r') where r and r' denote two
vectors characterizing a triangle formed by three parti-
cles. By dividing both sides of Eq. (B2) for our particu-
lar case by 2g (r), we have

6
f = ']BO

x1+— —1 dr'=0 .
2 g(r)

(B3)

This equation may be an integral equation for the three-
particle distribution function g3(r, r ) when the function
g (r) is given.

If the SA holds exactly, then

~=—f [g(
~

r' —r
~

) —1][g(r') —I]«' (B4)

must vanish. This relation follows by substituting Eq.
(5.17) into Eq. (B3), and by using Eq. (Bl). In Fig. 8 we
plot b, as a function of r, using g(r) obtained from Ref.
21. This curve demonstrates the failure of the SA.

FICr. 8. Illustration showing failure of the superposition ap-
proximation. The solid line shows the curve for 5 as a function
of r. The dashed line shows the curve for the correction term
which cancels 6, for tentatively chosen form of C(r, r') (r in r, ao
units).
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such that the plotted quantity coincides with b, (r) at
r=1.8. The Schofield's identity seems to fail still in the
region of small r, where g(r) is vanishingly small. We
note that the quantity of real interest is the plotted one

multiplied by g (r).
For the three-particle integrals in Sec. VB, the correc-

tion due to C(r, r') has proved very small. It is less than
1% for I3[I, I ] at I = 180.
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