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Signer-Kirkwood expansion of the phase-space density for semi-infinite nuclear matter
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The phase-space distribution of semi-infinite nuclear matter is expanded in an fi series analogous
to the low-temperature expansion of the Fermi function. Besides the usual Wigner-Kirkwood ex-
pansion, oscillatory terms are derived. In the case of a Woods-Saxon potential, a smallness param-
eter is defined, which determines the convergence of the series and explains the very rapid conver-
gence of the Wigner-Kirkwood expansion for average (nuclear) binding energies.

I. INTRODUCTION

The density of semi-infinite degenerate Fermi systems
exhibits oscillations which are interference effects close
to the surface of the medium. These oscillations are also
present in the Wigner transform of the density matrix'
p. In the case of semi-infinite matter, the Wigner distri-
bution function f(r, p) in the six-dimensional space actu-
ally depends only on one spatial coordinate, say, z, per-
pendicular to the surface of the medium which is infinite
in the x and y directions, and on the components p

~~

and

pz ——p, of the momentum p, respectively, parallel and
perpendicular to the surface:

pw=f(z p~~ pi»
where W stands for "Wigner transform. "

In the special case of the ramp potential
V(r) = V(z) =ctz, the Wigner transform f is a function of
the classical Hamiltonian only H, ~

——c=p /2m+czz: It
may be convenient to write it also, in the case of a gen-
eral potential, as a function of the total energy c and of
some angles 0 and cp. For example,

when approaching 8+,
(iii) it falls off to zero within a certain thickness

representing the uncertainty of the momenta close to the
surface, and

(iv) its surface is asymmetric around E~ as compared
to the step function.

Keeping in mind the picture of the Wigner distribution
as a function of c and knowing that the purely classical
limit of f (r, p) is a step function e(E~ —E) of the classi-
cal energy c, the oscillations appear to be quantal effects.
They are contained in higher-order terms obtained, for
example, by a formal Taylor expansion of the density
operator:

p =e( El,. H)—
around the classical Hamiltonian H, &

——E:

(4)

The Wigner transform of Eq. (4) for a local potential
leads to the well-known Wigner-Kirkwood expansion of

with

e=p /2m + V(z), tan9= z, tanp=p~~ /pq . (2)2 V(z)

p /2m

For given values (I90,po) of the angular variables, the
above-mentioned oscillations of the Wigner distribution
function show up close to the Fermi energy cz. They
are similar to the ones known for the ramp potential and
shown in Fig. l. The main features of f(e, 9o, @o) are,
with increasing E,

(i) it oscillates around the unit step function (Wigner
distribution of the homogeneous infinite matter) when
E~ —oo,

(ii) it exhibits oscillations with increasing amplitudes

FIG. 1. The Wigner transform of the density matrix as a
function of the classical energy c in arbitrary units for the linear
potential V(r) =az, as compared to the step function 0(cF—c)
around the Fermi energy cF.
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the density matrix:

pw=f(r p)

fi=6(sz —E)— . b, V 5'(Ep —E)
8m

1 2(VV) +m
3

2

V V

In order to get an expansion for F(E) by comparison
with Eq. (6), the derivatives h "+ " are written by
means of the Dirac distribution:

h' "+' (E )= f deh(E)5 "+' (c —r)
0

which gives the low-temperature expansion:
2 4

F(E)=6(E+—s)+ T 5'(Ez —E)+ T 5"'(E~—s)
6 360

X5"(eF—s) +O(&'), +O(T ). (10)

the Wigner transform H~ of the Hamiltonian being the
classical energy c and the derivatives being taken with
respect to the Fermi energy sz. Equation (5) is an )ii ex-
pansion of the distribution function f(r, p) by means of
Dirac distributions but the derivation is completely for-
mal and no statement with regard to its validity was
made as yet.

For the purpose of obtaining some insight into the
significance of this expansion, a comparison may be done
with the low-temperature expansion of the Fermi func-
tion, which is known to be a good approximation. In
order to get clearly the conditions for this expansion to
be valid and then to apply them to the case of expansion
in Eq. (5), its derivation is briefly repeated.

If h(s) is an arbitrary continuous and continuously
derivable function of the energy, its mean value with the
Fermi function at temperature T, F(c, )=9(e)[1
+exp[(s eF )/T] j

—' is

(h ) = f deh(E)F(e) . (&)

If the temperature T is low enough, the unit step func-
tion is a first-order approximation for the Fermi distri-
bution. It is thus reasonable to split it off in Eq. (6):

for n )N, where N is the maximum number of terms to
be kept in the series.

On the other hand, Eq. (10) may be written with the
dimensionless variables e =c./cF and g = T/cF,

2 4

F(e)=6(1—e)+ rl 5'(1 —e)+ g 5'"(1—e)
6 360

+O(g ), (10')

which shows up a second criterion for the validity of this
expansion: the width T of the region around c.F where
the difference (F—6) is not negligible must obey

g=T/C. F ((1 . (12)

The validity of this expansion depends on the smooth-
ness of the function h(E), the mean value of which is to
be calculated [second step in going from Eq. (6') to Eq.
(7)]: h(s) must not vary too strongly in the region
around EF for the expansion to be rapidly converging.
Thus, a first criterion for the convergency of expansion
(10) is

h (2n +1)(& )/(&2mh (2n +2m + 1)
) )) 1 P~ )0EF ~F

(h ) = f dc. h(E)6(s —E)
0

dEh c. F c. —Oc —c.
0

(6')

Finally, the error introduced by replacing the lower limit
by —ao [first step between Eqs. (6') and (7)] can be eval-
uated:

22n +1
(e —s )

"+'= (r)T) "+
i
Bq„ (7)

where Bk are the Bernouilli numbers. Then

(h ) = f dEh(E)6(ez —E)

(
)2n+1

+y h(2n+i)(
)

(2n + I )!

The following steps are now:
(i) The difference [F—6] is very small except around

the Fermi energy: Thus a small error (which will be cal-
culated later on) is made if the lower bound is extended
from zero to —ap in the second integral.

(ii) For the same reason, and due to the choice of the
test function h, h(E) may be expanded in a power series
of (E —sz).

(iii) With the new limits in the integral, the difference
(F—6) being odd with respect to the variable (s —e~),
only the odd moments of the distribution (F 6) are-
not vanishing. They are

hh = —f dch(c. )[[1+exp(e—E~)/T]

—6(sF —s)] .

Due to the condition (12), the difference in the bracket is
equivalent to exp[(s —eF)/T]. Expanding again h(E) in
a Taylor series around cF and with a relation analogous
to Eq. (9), one gets the error bF on the Fermi distribu-
tion expanded following Eq. (10'):

bF=e 'i"[r15(1—e) —r(l1 +r)l5( I—e)+ . ), (14)

which is exponentially small as g~0.
We have thus obtained an expansion for the Fermi

function which can be pushed to any desired order, ac-
cording to the accuracy needed when calculating mean
values of not too distorted functions h(c. ). The quality
of the asymptotic expansion (10') is fixed by the two
constraints: Eq. (11) on h(e) and Eq. (12) on the tem-
perature, and the error is measurable by b,F [Eq. (14)].
The same method may now be used for the case of the
Wigner distribution function [Eq. (5)].
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II. ASYMPTOTIC EXPANSION OF THE D'IGNER
DISTRIBUTION FUNCTION

As previously, we are looking for an asymptotic ex-
pansion for the Wigner distribution function by means of
Dirac function derivatives:

f(c, &,y) =e(cF —c)+ g C„(8,(p)6'"'(cF —c.),
n=0

(15)

(16)
The Wigner function f which plays the role of the

previous Fermi function is not in general an explicit
function. It may be given as the inverse Laplace trans-
form of the Bloch operator C''~'=exp[ —P8] in the
phase space

f ( g ) Q i C ( c$ f lp )(p) g
(17)

and now

C„(8,ip) =, f dc(c —cF )"Xii ',n!
C'~'(c 8 &p) —e

(18)

The integrand in the inverse Laplace transform Eq.
(18) is in general unknown. In order to get some prelim-
inary insight before making any approximation for
evaluating (18), the use of a simple potential, for which
the exact Bloch density C'~' is available, will be chosen.
This is the case for the linear potential: It will be treat-
ed as an example to follow in the same way as the Fermi
function was an example in order to get Eqs. (15) and
(18).

In any case, the 6'"' will account for some details of
the phase-space distribution close to the Fermi energy:
The aim is not to reproduce them explicitly in the phase
space, but to reproduce their efFects when calculating
mean values from the Wigner function.

A. Example of the linear potential

For the semi-infinite potential in the 3D space

V(r) =az

and constant in the direction parallel to the surface, the
Bloch function is

3

CI~'(c) =exp —Pc+, b =(8m /iii a )'
3b

(20)

where the limit X depends on the desired accuracy. The
weights C„may be obtained directly from inversion of
(15):

+„(c cF—)"
C„(e,q)= f dc, [f(c,e,~)—e(c —c}] .

The Wigner distribution function in the 6D-space
f(r, p) only depends on c [Eq. (2)] and is an Airy func-
tion integral:

f(c)=f, dx Ai(x)=—IAi(b(c —cF)} . (21)

For the Fermi distribution, the energy E is restricted
to positive values and the error in the low-temperature
expansion stems from the extension of the integration
range to negative energies [Eq. (13)]. For the Wigner
distribution in a linear potential, the energy E ranges
from —ap to + m. In order to get a finite energy distri-
bution, and also in order to approximate a finite depth
Vo to the potential, as in realistic cases, the potential en-

ergy will be limited to V(r)) Vp. Thus, we shall now
consider the distribution function

f ( r, p ) = I Ai(b (p /2m +az —cF ) )e(az —Vp ) (22)

or

f(c)=IAi(b(c —cF))e(c—Vp) . (22')

X I W( —b (cF—Vp );k + I }—[b (cF —Vp ) ]"+ '
I

(23)

with the function W defined by Balazs et al. ,

W( y;n)= —f dx(x+y)"Ai(x) . (24)

By partial integrations and using the differential equa-
tion xAi(x)=Ai"(x), W( —y, n) may be written by
means of the Airy function, its first integral, and its first
derivative.

Expression (23} can be simplified if the function W is
replaced by its asymptotic expansion:"

It is clear that (22) is not the distribution function for
a new potential which would be V(z) =az if
z &zp ——Vp/a and V(z) = Vp if z (zp because the wave
functions in such a potential are not simply obtained by
cutting off the wave functions of the ramp potential
beyond zp. However, the limit of (22) when Vp~ —oo is
(21), and everywhere in the following, this limit will give
the result, eventually diverging, valid for the linear po-
tential. The aim in defining (22) is to deal with a func-
tion which resembles realistic Wigner distributions, even
if the corresponding potential is not precisely defined (at
least it has a finite depth) and whose limit represents the
known linear potential.

An exact calculation of the weights C„[Eqs. (15) and
(18)) is possible,

( 1)" 'n—i (-cF Vp)" "—
(n —k)!(k+1)! bk+'

W( —y;n)=y" 1+ 3 +O(y ) +. . . sin —y — m [1+O(y )] .I (n+1) 1 1 (n+ 1) . 2 3&2 2n +1 —1

3y I (n —2)
(2,5)
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(Higher-order terms may be obtained from the asymptotic expansions of Airy and related functions ). This is allowed
in (23) if and only if

b(EF —Vo)~+ oo . (26)

It turns out that the actual variable in the asymptotic expansion of the Airy function Ai(x) is x, thus the smallness
parameter is

no= [b(eF —Vo)] '"« I . (27)

Due to (25), the asymptotic expansion of f(E) clearly splits into a smooth part fwK, the subscript of which will be
clarified later on, and an oscillatory part f„„~,

lim f(E)=fw~+f„„, ,
&o O

2

fwK ——e(1—e )+ 5"(e—1)+ 5 '(e —I )+O(rjo),
3 18

(28)

3/2 5
1f i= —'g sin(po+ ( n —'o' )i)ocosyo—V'ir n!n=0

35 905
4608

+ n i)osinyo 5("'(e —1)+O(i)o ),

with

C —VO = 2
and go= +

CF —V0 IO

(29)

Note that even in the limit F0~0, siny0 and cosqo0 are
finite. From Eq. (28) i)o appears to be the convergence
parameter, equivalent to i) = T/EF [Eq. (12)] for the Fer-
mi distribution. Moreover, i)o [Eq. (27)] also reads

+O(fi ) (31)

lows expansion of the Bloch function Eq. (20) in powers
ofb

2
gaia P 1 gaia PC(~'(e) =e ~' 1+

I8m 3 2! Sm 9

rjo ——A'a/[( m8)'~ (EF —Vo) ] &&1 (29') By a formal inverse Laplace transform of C(~'/P with

and expansion (28) is at the same time an fi expansion,
the physical meaning of which is now clear: The slope cx

of the potential must be not too steep, for the expansion
to converge.

Contrary to what was the case for the Fermi function,
no change in the integration limit has been done and the
only approximation in (28) lies in the limited number of
terms in the asymptotic series for W. On the other
hand, the oscillatory part is not a negligible correction
and it may overcome the smooth part: Its contribution
has to be considered before being eventually neglected
in the calculations of mean values.

An illustration of the role of the criterion (27) may be
shown if the distribution function (22) is written by
means of the convergence parameter g0.

—pc
pn

e e(eF —E),
dCF

then, with the same condition g0«1, only the first part
of f(E) [Eq. (28)] is obtained, and the term f„„,is miss-
ing. Thus the asymptotic expansion for the signer dis-
tribution consists in the Wigner-Kirkwood part fwK

f(e) =IAi((e —1)i)o ~ )e(e) . (30)

If qo«1, the argument has almost always a very large
modulus, even for E —EF (e —1): The oscillations are
concentrated close to the Fermi energy, as compared to
the case go-1. This is schematically shown in Fig. 2.
The expansion (28) of the Wigner function will be a
better representation of the Airy function integral in the
case of curve a than of curve b of Fig. 2. Expression
(28) is now to be compared to the usual Wigner-
Kirkwood expansion [Eq. (5)].

For a finite value (EF —Vo) of the Fermi energy above
the minimum of the energy scale, the criterion (26) al-

FICx. 2. Comparison between the exact distribution func-
tions [Eq. (30)] corresponding to i)o-0.1 (curve a) and i10 1-
(curve b) as a function of the dimensionless energy variable e
[Eq. (29)].
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(the subscript of which is now clear) plus an oscillatory
contribution: The latter measures the error when only
the Wigner-Kirkwood series is taken into account.

The %'igner-Kirkwood part of the expansion may be
obtained directly (and this method will be used for a
more general potential) if, in the coefficients C„[Eq.
(18)] which now read

Cn = dC C —CFn! vo 2j~

df(r, p)d'r
(2irA')

1 dVf ( E )dx dg m d E d tp~~ dp l(2irili)'

(36)
and integration over all variables except c, giving

3/2
S 2, & —~o

gs(E)=, kF'
(2ir)i 3a EF —Vp

[f(e)—e(EF —E)]

obtained from the phase-space distribution function f
after changes of variables:

(37)P /3bC+i co —P(g —pF ) e —1dPe
C —1 oo

(33) and

&Es) = f, dEEgs(E) (38)
the P integration is performed along the imaginary axis
(P=it, because no pole in P) and the E integration is per-
formed first with

by means of the Fermi momentum
kF ——[2m(EF —Vp)/iri ]' and the (infinite) surface S of
the medium. The exact solution is

d E(e —r,F )"e —2iri "5'"'(t ) .
Vo

(34) S 2
( Es )exact i kF gp(2ir)' 3a

r

X —,'W( —ilp ~, —,')

+—,~, W( —imp, '
—, ) ——„(5+7Up)—2/3. s z

90

From the previous study, it is now known that the
series obtained by this method converges only if F0&&1
and that the error is the oscillatory part f„„l [Eq. (28)]
which is here neglected and which represents the ap-
proximation (34).

As an application, a "surface energy" may be defined:

dp 5'
&E )=f d'rf P, P +az

(2iriri)'

X[f(r,p) —B(EF—p /2m —az)], (35)

(39)
with Up defined like e by Up= Vp/(sF Vp).

An asymptotic expansion for gs(E) may be obtained in
the same way as for f(E) [Eq. (15)],

3/2

where the bulk phase-space density, represented by the
step function in the bracket, is subtracted. (ss ) is also
the first moment of a "surface-energy distribution" gs(E)

S 2 2mgsE=
(2ir ) 3a A' ,

5l"'(CF —C), .

n!

and uP to imp (or equivalently fi ) order:

(40)

S 1 6 "'(e —1)gs(s)= kFilp g [(1—5n ) ——,', (1+n )imp]
(2ir ) 6a 16

5

+ 3iip g cos
n=0 3 IO

5n . 2
90 +O(ilp)n! (41)

The semiclassical surface energy is then

( )
S 1 iri

S semicl

2.7 2 IO 2
kF'l7p 5+Up+ ( 5 —5Up ) + 3'gpUpcos

16 3@0
I 5 2 r 2+ —,g0sin

3 Q0
+ O(imp) (42)

which is exactly the limit when ilp~0 of the exact result [Eq. (39)].
If instead of expanding gs, the previous expansion of f(e) is used in Eq. (37), the asymptotic condition ilp~0 is not

taken into account in e and the accuracy is weaker because ( es ) is an exact moment of the distribution gs and not
of (e f ): The Wigner-Kirkwood contribution in (es ) is unchanged but the oscillatory part is slightly different.

Numerically, for realistic values,

Vp ———50 MeV, sF ———8 MeV, a=20 MeV fm (43)

then g0-0.2 and the g0 contribution is about 2. 10 times the g0 contribution to the "surface energy, " showing the
high convergence of the Wigner-Kirkwood series. However, the oscillatory contribution is about 10% of the g0 one
and is not always negligible: Et actually strongly depends on g0 and these terms have to be evaluated carefully.

The local density p(z) and the momentum distribution n (p), both in a three-dimensional space, are obtained from
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the Wigner distribution [Eq. (22)] by integration over p and r, respectively:

lim p(z)=
2 2

t e(EF —az)e(az —Vo)
ma

go-o 6m W

5/6

& ~ 1 ——t+ —t + ——t —sin +—2
8 128 2 v/ 3~ 4 n=1

1.3 . . (2n —3)
"n! 90

2n /3

+ O( ~3/2)

1/3
S Aa

lim n(p)=—
0 cz Sm

2u- e E„— —V,
—2/3

2m

5/6
2/3 IO . 2 77

1 —u / — —sin +—+O(2)o/ )
3go

2

t=t(z)=[b(eF —az)], u=u(p)= b sF — —Vo
2m

—3/2

(44)

It may be noted that the only dependence on p in n(p) is
quadratic, in the Wigner-Kirkwood term.

In spite of negative powers of go in the sum entering
the oscillatory contribution to p(z), the expansion does
not diverge because 2)0~0 means a/(eF —Vo)~0 or
a~0 because Vo has been chosen finite on purpose.
Then (t/2)o) =(eF —Vo)/cF is finite. The same is not
true for a really linear potential (Vo~ —co ) for which
the local density is infinite.

If the same functions were calculated from the exact
%'igner distribution

p(z) = W( b(EF ——az );—', ),6'�'A'
' 1/3

S Ra
n(p) =-

a Sm
8' —b cI,.—P

2m
—Vo,' 1

and asymptotically expanded, the Wigner-Kirkwood
contributions are the same as the semiclassical ones [Eq.
(44)], but the oscillatory parts are different. The condi-
tions for the asymptotic expansions of the exact densities
(45) are, respectively, t(z)~0 and u(p)~0, but, for the
semiclassical p(z) and n(p) they are 2)O~O and, respec-
tively, V(z) &eF and p /2m &EF —Vo, which is less res-
trictive. Thus the Wigner-Kirkwood expansion which is
usually regarded as an A series is actually an go series,
which constraints the slope of the linear potential to not
too large values.

As compared to the Fermi function expansion, the
Wigner function expansion shows up some details of the
shape: for example, the Fermi function being symmetri-
cal around cF, its expansion contains only odd deriva-
tives of 5(EF —E), opposed to the Wigner function which
is asymmetric around eF (Fig. 1) and for which, conse-
quently, the first derivative of 5 is missing. On the other
hand, the correction to the Wigner-Kirkwood expansion
is no longer exponentially decreasing with the conver-
gence parameter, but it is an oscillation damped by go.
All these results must now be extended to the case of a
more realistic potential.

C'~'(e, 8, (p)=e ~' 1+ g Kk(E, O, qr)P" +O(A' ),
k=2

(46)

the coefficients of which are given in Appendix A, may
be used only if a condition analogous to Eq. (27) (2)0~0)
is fulfilled.

For a general local potential V(r)= V(z), the slope
V'(z) replaces the constant a of the linear potential in
the definition (27) of the smallness parameter:

' 1/3 —3/2
Sm 1

V (z)
2)(z) = (47)(sF —Vo )

For a smoothly increasing potential, like the Woods-
Saxon one, V'(z) has its largest value at the inflexion
point zo and the convergence criterion now means

' 1/2
8m

V'(zo) «
g2

V )3/2

The criterion for the convergence of the semiclassical
expansion may be compared to the %'KB constraint:

1/3 —3/2
8m 1

V' (z)
((1, (49)(E —V)2IWKB(E z )

which also reads

8mV'(zo) «
1/2

(E —VO) / (50)

and (48) turns out to be a particular case of the WKB
constraint, namely, c.=cF. Thus, if the condition for the
WKB approximation to be valid is fulfilled, then the
semiclassical one is fulfilled. On the opposite, the semi-
classical condition does not imply any special range for
the energy and therefore it is less severe than the WKB
condition.

Forgetting for a while oscillatory terms, the weights
C„[Eq. (18)] of the 5'"'(EF —e) are calculated using the
way of Eqs. (33) and (34):

B. Case of a general local potential

5 !C„= g ', Eg"+,"'(EF,O, y),
n —k! (51)

As previously shown, the Wigner-Kirkwood expansion
for the Bloch density,

where the upper limit k =5 accounts for up to A order.
Then
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5 5

f(e, 8,y)=e(s~ —e)+ g g „Kk i"'(EF,8,p)
n=0 k=n

x 5("'(E,—E )+O (p') .

The derivatives of Ek are taken with respect to EF.
In order to calculate the oscillatory correction f„„~,the

approximated Bloch function (46) is partially resummed
to look like the one which was already studied:

C ~'(e, 8,g) =exp —pe+(iri~p /24m )( V')

6

1+ g M, (E, 8, q)p" +O(iri'), (53)

where the Mi, are easily derived from the Ki,. (Appendix
A).

It is known from the linear potential study that the
asymptotic expansion is valid if the variable in the func-
tion 8' [Eq. (23)], which is now r)(z) ~, is very large—
that means when V'(z)-0. But in this case, the
coefficients Kk and thus Mk are very small, because they
all contain the derivatives of the potential and the sum
in (53) plays the role of a correction to the linearized po-
tential. If, on the other hand, the oscillatory part is con-
sidered like a correction to the signer-Kirkwood terms,
the sum in (53) will bring only second-order oscillatory
corrections, due to the weakness of the weights Mk.

The main approximation in the Wigner function [Eq.
(50)] is therefore written as f„„& [Eq. (28)] but with i)o
replaced by r)(z) [Eq. (47)].

+O(R') . (58)

The surface-energy distribution function equivalent to
(37) is now

gs(E) = S I
(2m. ) fi

e(EF—E)] .—(59)

On the other hand, all derivatives V'"' can be written
by means of the potential V and the first derivative V'(z)
factorizes in all coefficients Mi, as in coefficients Ek (see
Appendix A): They vanish at least as quickly as V'(z) if
il(z) « 1 and the correction Af will mainly be due to the
leading term in the Bloch density, as previously men-
tioned.

After a straightforward but tedious replacement of the
derivatives of K„ in Eq. (52), the weights C„(8,g) of the
5'"'(eF —e) are obtained: They are given in Appendix B
for the A' contribution. Actually, they have been com-
puted and are available up to A order for any local
half-infinite potential V(z).

Due to the fact that the potential only depends on z,
the phase-space distribution f(r, p) in the 6D-space ac-
tually depends on three variables, as previously.

For the Woods-Saxon potential, the variables e, V(z),
and pz are the most convenient because V and pz natu-
rally arise in Kk, which are moreover independent of c.
Hence

5

f(e, V,p, )=e(E,—E)+ g rC„,(V,p, )5'"'(e, —e)
k=1

C. Example: The Woods-Saxon potential Its asymptotic expansion is obtained from Eq. (58), up to
4.

90For this potential, in the 3D space:

V(r) = Vp[1+ exp(z —zp)/a ] (54) gs(E) = , , kFe'", rjo[~+Brjo+O(rlo)]
2m. A 15U0

(60)

with

2

A = g a„(e)5'")(e—1),1/2
8m—V0/a ((4
fi

(eF —Vo)'" (55)

B = g b„(e)5'"'(e —1) .
Defining a potential surface width Az by

the criterion (48) for the validity of the Wigner-
Kirkwood expansion connects the depth Vo and the
difFuseness a by

V'(zo) = —Vo/as (56)

with 6, =4a in the present case, the convergence param-
eter is (p~ =fikF )

Vp
tp &(1 .

~sp. 2(EF - V. )
(57)

For the numerical values already used with the ramp
potential (Vp ———50 MeV and cF = —8 MeV) this leads
to a &&0.1 fm, and the usual value a =0.6 fm obeys this
condition, giving gp-0. 2. In general, Vp/(EF —Vp) —1

and hence the A correction to the Thomas-Fermi ap-
proximation will be proportional to (b,sk~) -0.1.

n =2

a„and b„are given in Appendix C, and S is the (infinite)
surface. It gives for the surface energy previously
defined [Eq. (38)]:

k
( )

4aS fi kF

45~2 2m

12+25UO + 15U 0

2

+ (320+784vp+560vo+35vo —35vp) .
35 UO

(61)
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For the numerical values previously used ( Vp ———50
MeV, ez ———8 MeV, a=0.6 fm), the nonoscillatory gp
term gives about 5.10 times the contribution of the go
term, which is much larger ( —20 times) than for the
linear potential.

However, the pecos, 7Jp and qpsin —3r)p [Eq. (40)] terms
may reach, respectively, up to 12% and 0.5% the gp (or
fi ) contribution. This shows that the Wigner-Kirkwood
expansion, or the partially resurnmed series, are accurate
if the A correction is already very small and gives the
mean energy with a good accuracy.

III. CONCLUSION

correct the usual %'igner-Kirkwood expansion, the
meaning and the convergence properties of which are
clarified. The same technique is then applied to a
%'oods-Saxon potential and a smallness parameter
g —A'/(esp~), where b,s is the surface thickness of the
potential and pF the Fermi momentum, is found to ex-
plain the rapid convergence of the Wigner-Kirkwood
series for average nuclear binding energies. The expan-
sion is actually a A' (or equivalently a rI ) series and real-
istic values for the nuclear case give g =0. 1: This
confirms earlier empirical findings that the contribution
of each higher order is smaller than the previous one by
an order of magnitude.

The Wigner-Kirkwood expansion of the phase-space
distribution function was obtained in a way which differs
from the usual ones. The method closely follows the
derivation of the low-temperature expansion of the Fer-
mi function, and thereby exhibits analogies and
differences, with A playing now the role of the tempera-
ture. As a first example, the Wigner distribution func-
tion for the half-infinite Fermion matter bounded by a
linear potential, which is an analytically solvable model,
is investigated. Hence, oscillating terms are found to
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APPENDIX A

The Bloch function C'~'(r, p) for a spherical local potential V(r) = V(
~

r
~

) is, up to R order

2
C'~'(r, p)=exp —P + V

2m

6

1+ g Kg(r, p)P +0(fi ),
k=2

with

$2' ~v,
Sm

K3 ——
24m

(VV) +m
2

4
+2 V

128m 2

g4
K4 ——

~
3(b.V) +2VV VIV+A(VV) +2m

384m m
.V AV

&4
IOAV(VV) +10m b, V

1920m m
.V V+4m VV 7'

2

+8m
2

~ VV +m V V+4VV V(VV)

g4
K6 ——

~
(VV) +m

1152m ' m

2 2

For the semi-infinite Woods-Saxon potential,
—1

Z —ZQV= Vo 1+exp V VVI
a Vo

V' V
8m a Vo
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24m ma Vp

V' V V2
24 —36

2 +14 —1
128m a Vo Vp Vo

V' V V pi V' V2

384m a V V ma V V2

fi V,2 V

1920m Vo

/ 2
V ~i V' V2

a m Vo Vo m a Vp V' Vo

4 2
Px V

1152m ma Vo

2

Writing C'~' with a partial resummation,
r

2

CI~'(r, p)=exp —P + V + P V'
2m 24m

gives

6

1+ g Mk(r, p)p" +O(R ),
k=2

M2 ——K2, M3 ——E3 — V', M4 ——E4,
24m

2

1152m ma Vo

APPENDIX B

The weights C„of the 6'"'(EF —e) in Eq. (15) are [Eq. (51)]

k!C„= g rckIk+ , "'(eF,8,q
)-

k=n

and their fi contribution for a Woods-Saxon potential is given by means of the angles 0 and cp such as

tanO=, tang =V(z) PII

p /2m pi

Cp= 1
(6A.F +6XF + 1)

2 4cos g—3 + (12AF+9XF+1)
24m a (1+cot8) 1+cotO, 1+tanO

C1=
tF 2(2XF + 3A,F + 1 )

4 4cos Ip—3 + (SAF +9AF +2)
24m a ~(1+cot8) 1+cot8 1+tan8

C2= (AF+1) + (2AF+3AF+1)1 2 cos2g
12m a (1+cot8) 1+cot6I 1+tanO

with AF =eF/[ Vo(1+cot8)] and C„=O(fi ) if n ) 3.

APPENDIX C

The surface-energy distribution function for a Woods-Saxon potential is, up to R order,

gs=, ,e, Vo[~+&no+«no)]m F 1g2 32aS 2 4

2m. 15U p

4 2

A =e(4e+5vo)5'(e —1)+ (4e+.7vo)5"(e —1),
21
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2

e(128e +288e uo+196euo+35uo)6"(e —1)+ (3584e +98S6e vo+8844evo+2541vo)5"'(e —1)
7U () 99

4 3

+ (56448e +183456e vo+203060evo+78507uo)5' '(e —1)
19 305

4

+ (3968e +14880e uo+19 500euo+9295vo)5' '(e —1)
57 915
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