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Solitons in strongly magnetized electron-positron plasmas and pulsar microstructure
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The propagation of an electromagnetic wave in weakly nonlinear but strongly magnetized
electron-positron plasmas is investigated. A quasistatic slow plasma response to the wave is shown to
result in solitons with the height directly proportional to the strength of the ambient magnetic field.
A dispersion relation is derived in this case of magnetized plasma and the result is used to confirm
the recent suggestion of self-modulational formation of pulsar microstructure.

I. INTRODUCTION

Nonlinear propagation of intense electromagnetic waves
in magnetized plasma is of interest in connection with
laser-induced fusion, ionosphere modification by radar,
and the interaction of pulsar radiation with the plasma en-
vironment. The case of unmagnetized plasma has been
investigated by several authors for the last few years
(Shukla et al. see also references therein). Compression-
al, rarefactional, subsonic, supersonic, single-hump and
double-hump solitons etc. , are found to exist in electron-
ion plasma. But for the large amplitude field, electron-ion
plasma also behaves like electron-positron plasma to first
order in the mass ratio; the oscillatory velocity of the
particle approaches the speed of light and the resulting
mass variation causes strong nonlinearity. The latter
competes with the self-interaction (ponderomotive) non-
linearity and gives rise to solitary wave structures, either
density humps (solitons) or density holes (cavitons) in
plasma.

According to current polar-cap pulsar models, ' the
pulsar magnetosphere is composed of secondary electrons
and positrons resulting from pair production induced by
high-energy curvature radiation photons emitted by pri-
mary positrons or electron beams coming from the pulsar
surface. Recently, Chian and Kennel explained the ul-
trashort intensity variations within individual pulses in
pulsar radio emission. In their model nonlinearities aris-
ing from wave-intensity-induced particle-mass variation
may excite a modulational instability of circularly polar-
ized pulsar radiation. The result is a modulating solitonic
envelope on a high-frequency carrier wave, and the mi-
crostructure analysis shows that the number N of micro-
pulses within an individual pulse and the temporal pulse
width 7 are within the observed ranges (N —10 —10,
r —1 @sec), provided that the emission takes place in the
low-density region. Such an investigation was carried out
in our earlier paper and similar results were obtained.

Since plasma in laser fusion, in the upper atmosphere,
and in the pulsar environment is strongly magnetized, a
strong magnetic field is to be taken into account. Such an
attempt has been made in this paper with the approxima-
tion of quasistatic slow plasma response.

In Sec. II we derive the governing equation which de-
scribes the nonlinear evolution of the intense electromag-
netic wave propagating in a magnetized electron-positron
plasma. In Sec. III the governing equation is solved
analytically for the case of a highly intense ambient mag-
netic field. Plasma response to the wave is found to result
in a soliton with the height directly proportional to the
strength of the ambient field. A dispersion relation for
this solution is also derived following the method of
Karpman and Krushkal.

In Sec. IV our solution is used to confirm the recent
data on pulsar microstructure. We have shown that mi-
crostructure of the individual pulse is related to the am-
bient magnetic field and the temperature of the pulsar en-
vironment. Some other aspects of the present theory, its
short comings, and future developments are noted in the
d1scuss1on.

II. BASIC EQUATIONS
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Consider an electromagnetic (e.m. ) wave propagating in
an electron-positron plasma immersed in an ambient mag-
netic field. The direction of wave propagation is taken
along the ambient field Bo (z axis) and it is assumed that
all quantities do not depend on x and y but on z and time
t. This system is described by the two Auids relativistic
equations for the plasma, the wave equation for the vector
potential A, Poisson's equation for the scalar potential N,
and the continuity equation
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where j refers to p =e+ and e =e, q~ =+e is the
charge, v~ is the particle velocity, u~ =p~/mc is the di-
mensionless momentum (m is the electron rest mass):

$„P, are constants. Equation (9a) gives the condition
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n~ is the particle density and T~ is the temperature. For
convenience, we have assumed isothermal electrons and
positrons, although other adiabaticies can easily be includ-
ed.

The circularly polarized wave is given by
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The amplitude a in (6) is complex and a slowly varying
function of z and t.

It is easily verified that the transverse motion is related
to the field by

Our earlier investigations ' show that the relativistic
mass variation of the particle generates modulational in-
stability of the wave. The wave is localized in the form of
solitons. The speed of the soliton is su perluminious
(v =vp/c ) 1). Longitudinal liow of the Quid occurs due
to the radiation and the thermal pressure. Since the lon-
gitudinal force is a gradient force, the fiuid How may be
considered much smaller than the speed of the soliton
(i.e., uj, ((up). In such a case the theory of quasistatic
slow plasma response '' may be used to investigate the
present problem. Furthermore, particle energy in this
case is mostly determined by the transverse motion and it
gives y, =y~ =y. Under such conditions particle energy
in the high-frequency field and the ponderornotive force
may be easily calculated. Particle energy in the field is
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where
The ponderomotive force is the averaged force which acts
on the particle due to radiation:
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From the wave equation we have
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where cu~ =(4wnpe /m)'/, np is the background initial
density, 5=cu/cu~, and the term (I/cu)a« —0 is neglected.
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is the ponderornotive potential.
It is to be noted that the ponderomotive force calculat-

ed in this case is exact and by letting V=O the unmagnet-
ized case is recovered. ' In the slow plasma response, the
radiation pressure is assumed to be balanced by the ambi-
polar potential and thermal pressure. Hence the density
perturbation of the Quid may be calculated from the longi-
tudinal motion dropping the inertia'

where cr, P are real. From Eq. (g) we have two equations,
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The ambipolar field N is generated by the high-frequency
radiation pressure which is charge independent. Hence
the charge separation may be neglected and the plasma is
quasineutral (n& ——n, =n).
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In the linear phase approximation

P(z, t) =g(z) ~ P(t), (10)
The complex amplitude a(z, t) is described by the equa-
tion
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Under the approximation of quasistatic slow plasma
response, Eq. (16) is the governing equation which de-
scribes the nonlinear evolution of the intense electromag-
netic wave propagating in a magnetized electron-positron
plasma. Relativistic and ponderomotive nonlinearities are
the reasons to generate modulational instability to the
wave.

III. SOLITONS IN STRONGLY MAGNETIZED PLASMA

We are considering the case of laser fusion or pulsar ra-
diation where the ambient magnetic field is very intense
(in the vicinity of 10' G). In such cases v » 1,
v »

~

a ~, and Eq. (16) takes the form
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is the dimensionless amplitude and the phase 8(z, t) is
given by
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The solution is a solitonic envelope to the wave. The
amplitude and the phase of the wave are modulated and
differ significantly from the case of unmagnetized plasma.
The magnetic field strongly effects the solitonic envelope
of the wave with the modification in the phase. The field
energy is proportional to apsech x, where
x =(Q/2P)' apg. For larger v, we see that the height of
the localized field is directly proportional to the strength
of the field (v).

A dispersion relation for the wave in this case of
strongly magnetized electron-positron plasma can be ob-
tained with the method of Karpman-Krushkal:

If the linear term is removed with the substitution
co=to(k, ao), P=—,Q=—1 8 CO 6cO
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where P, Q are given by Eq. (20). The result is
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the equation for a is the nonlinear Schrodinger equation
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which shows that the increasing magnetic field sig
nificantly modifies the dispersion relation.

IV. PULSAR MICROSTRUCTURK
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A well-known solution of Eq. (19) is the soliton"
1/2

The microstructure of the individual pulse is related
with the modulational instability of the wave. This can be
seen to occur for PQ & 0 and in the magnetized case this
condition is always satisfied.

We estimate the number X of micropulses within a sin-
gle pulse and the pulse temporal width r. From Eq. (23)
we see that the envelope pulse width is
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1'he solution for the wave is then
1 /2
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where A. is the wavelength. Taking P and Q from Eq. (20)
and the wave number k from Eq. (26), we have
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We see that the magnetic field and the temperature of the
pulsar environment inhuence greatly the microstructure
and the pulse width of the pulsar radiation. For an easy
understanding, let us consider a limiting case where
co/cop ~) 1.

Then we have
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V. DISCUSSION

In this paper we have investigated the solitonic en-
velope to an intense electromagnetic wave propagating in
a strongly magnetized electron-positron plasma. Such a
situation prevails in laser fusion and in the pulsar environ-
ment. We have also studied pulsar microstructure here.

It shows that the number of micropulses and the pulse
width are directly proportional to the magnetic field and
the temperature. On the other hand, micropulses of
higher intensities have a narrower pulse width as suggest-
ed by Ferguson. '

A quasistatic slow plasma response is considered with the
assumption that thermal pressure is exactly balanced by
the ambipolar and the ponderomotive forces. Under the
quasineutral approximation, plasma density is determined
by the ponderomotive potential. The field-dependent non-
linear current is calculated and the governing equation
describing the nonlinear evolution of the propagating
wave in the magnetized electron-positron plasma is ob-
tained.

For intense magnetic fields the equation is simplified
and the evolution is governed by the nonlinear
Schrodinger equation (NLS), which gives a solitonic en-
velope to the carrier wave with the amplitude-dependent
nonlinear frequency shift. With the increase of ambient
field strength, the soliton's height also increases. The
dispersion relation for the wave propagating in the mag-
netized plasma is calculated to establish the pulsar mi-
crostructure. The resulting pulse structure, number of
micropulses within one single pulse, and temporal pulse
width are calculated with on account of the strong mag-
netic field and temperature in the pulsar environment.

However, a quantitative test of the modulational insta-
bility theory requires the extension to include other eAects
such as large wave amplitude, plasma temperature, plas-
ma inhomogeneity, and the removal from the quasineutral
approximation. Progress on the above points will be re-
ported elsewhere.
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