
PHYSICAL REVIEW A VOLUME 36, NUMBER 4 AUGUST 15, 1987

Shear-induced angular dependence of the liquid pair correlation function
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A formal expansion in spherical harmonics or Cartesian tensors of the pair correlation function of
a liquid subjected to a shear rate is discussed. Expressions for the coefficients to tensor rank 4 are
evaluated via a nonequilibrium molecular-dynamics simulation of an inverse twelve soft-sphere liquid

undergoing Couette How. It is shown that the expansion converges slowly if the product ~y &0.05,
where ~ is the Maxwell relaxation time and y is the shear rate. Further, the fourth-rank coefficient
that represents cubic symmetry is significant for our model system. The microstructure of a shear
liquid is demonstrated by intensity plots of particles around a given central particle. We have de-
rived expressions for the expansion coefficients using a relaxation-time model and the comparison be-

tween them and the simulations is generally very good.

I. INTRODUCTION

In nonequilibrium molecular dynamics (NEMD) one
simulates the behavior of a model liquid that is perturbed
away from equilibrium. ' The technique is powerful; inter-
preting and debating the results has led to a re-
examination of the fundamentals of nonequilibrium sta-
tistical mechanics and nonequilibrium thermodynamics.
The connection between simulations and real experiments
is also a point of interest because the simulations indicate
that the simplest model liquid under shear can display
nonlinear, non-Newtonian characteristics often associated
only with the rheological behavior of complex molecules.
Further, one can evaluate a priori the coefficients that de-
scribe non-Newtonian phenomena for a model system.
Thus non-Newtonian phenomena can be examined from a
fresh viewpoint: Rather than discuss the phenomena in
macroscopic terms and then infer the properties of the
liquid (the traditional approach), the properties are in

principle known so the macroscopic behavior can be pre-
dicted. We have done this. Given the shear-rate-
dependent properties of model liquids, in particular the
Lennard-Jones and the soft-sphere Auid, we have dis-
cussed light scattering from colloidal suspensions, the
Weissenberg effect in a stirred liquid (rod climbing
phenomenon), the flow behavior of a coal slurry, and
shear-induced phase transitions in mixtures.

A key to understanding such phenomena in a sheared
Quid is to understand the behavior of the pair correlation
function g(r, y) or the structure factor S(k, y). Here r is
the vector separation between a reference particle and
another particle, k is the wave vector, and y is the shear
rate. The variation of g(r, y) with shear rate gives a
quantitative picture of the distortion and relaxation of the
Quid structure, and appropriate integration gives the
Quid's properties. The object of this paper is to discuss
the evaluation of the correlation function, specifically to
expand g (r, y ) in spherical harmonics, ' or in the
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equivalent Cartesian tensors constructed from the com-
ponents of r = r/r, and to estimate the expansion
coefficients by simulation. Finally we will show how the
coefficients can be predicted via a relaxation-time model. '

We have looked at this problem in our previous
work' '" when an expansion for the pair correlation func-
tion to tensor rank 2 was derived. Recent computer
simulations show, however, that the anisotropy of a
sheared system can be substantial when the shear rate is
high, ' ' and a truncated series to rank 2 is too simple.
Accordingly, the series is extended to rank 4 in this paper.
In so doing we thought it worthwhile to present the series
expansion in a more systematic manner than before.

The article is organized as follows. The expansion for
g (r, y) is derived. The expansion coefficients for a system
of 864 particles interacting with the 1/r' soft-sphere po-
tential are estimated. The coefficients are then used to
construct intensity plots for g(r, y). Finally, we extend
the relaxation-time model of Ref. 10 to coefficients of rank
4, and compare these theoretical results with the simula-
tions.

II. EXPANSION OF THE PAIR CORRELATION
FUNCTION

A. Spherical harmonics and Cartesian tensors

The pair correlation function can be expressed in terms
of spherical harmonics Yt* (r) as

where we have written g(r, y), etc. , as g(r) for conveni-
ence. The scalar contribution is

g, (r) = f g (r)dr1

4~

and the expansion coefficients are
Work of the U. S. Government
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g) (r) = I Y( (r)g (r)dr, (3)

when dr is the solid angle element on the unit sphere sur-
rounding a central reference particle.

An alternative expansion for g(r) is, via Cartesian ten-
sors 13' 14

g (r) =g, (r)+ g g„",'„,. . .„,(r)P„,„,. . . ~((r),
t

(4)

with

where the overbar indicates the symmetric traceless part
of a tensor and for the special case of rank 2,

a„b,= ,'(a„b +—a,b„)—3akbko„—„, (6)

with 6„the unit tensor. The Cartesian components are
denoted by Greek subscripts and the summation conven-
tion applies. Note that the g, (r) of Eq. (4) is shear depen-
dent and is not the radial distribution function g,q(r) of
the fluid at rest.

For general I, a traceless symmetric tensor is by
definition symmetric under interchange of any pair of
indexes and vanishes after contraction of any pair of
indexes. For example, the P tensor for 1=4 is given by
Eq. (1.6) of Ref. 9. Cartesian tensors have the property
that

In this case the only expansion coefficients of Eqs. (1) or
(4) are those associated with the exchange (x,y, z)
~( —x, —y, z), i.e., only (l + 1) of (21+ 1) terms occur.

Equations (10) and (11) are a special case of the more
general linear flow profile, where e and e are unit basis
vectors,

v =yy e"+ayx e" (12)

(4)X(4) + (4)X(4). . . (4)X(4) +. . . (1 3)

where if x, y, and z are the components of r we have for
rank 2, '

Xp ——z(2)
3

(14)

which also obeys the above "Couette symmetry. " Plane
Couette flow corresponds to a =0, rigid rotation to
a= —1, and "four-roller flow" to o.=+1.

An objective of the paper is to expand the pair correla-
tion function to rank 4. For plane Couette flow, the most
general form for the tensors of Eq. (9) is given in Eqs.
(A 1) and (A2) of the Appendix. Upon substituting these
forms into Eq. (4) and performing the contractions, made
simpler with Eq. (7), we obtain

g(r)=g (r)+y ygk Xk
I k

( )+ (2)X(2) + (2)X(2) + (2)X(&)

(7)

Thus Eq. (4) does not uniquely define g'„",„,. . .„,(r), since

two different tensors with the same traceless symmetric
part yield the same result. However, the expansion can be
made unique by requiring that g'„",„,. . .„,(r) be traceless
symmetric.

The normalization coefficients are given by

g( = [(2l +1)!!/l!]'~

and the expansion coefficients are obtained from inver-
sion of Eq. (4),

(9)

X2 =xy(2)

and for rank 4,

Xp ——z ——z(4) w4 6w2 3
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X'i ' ———,'(x —y )(z ——,
' ),

X,'" =xy(z ' ——,'),
X3 ' ———,'(x +y —6x y ),
X4' ) ——xy(x —y ) .

The expansion coefficients are [cf. Eq. (9)]

gk (r) =kck I Xk '(r)g (r)dr
4~

(16)

B. Plane Couette geometry
where Ck" is a coefficient with the values for I =2 and 4,

For pure simple (luids g (r) =g ( —r), so only even
values of l & 2 occur in the summations of Eqs. (1) and (4)
and there will be (2l + 1) expansion coefficients for each l
in general. Moreover, we can choose special symmetries
that will further simplify the expansions. In fact it is
most convenient to consider a fluid subjected to plane
Couette flow. Define a fluid with velocity v subjected to a
shear rate y so

(17)

The Xk" functions are closely related to the spherical
harmonics. For even nonzero k, Xk" is proportional to
Im YI, m =k; for odd k, Xk" is proportional to Re Y~

m =k +1; for zero k, Xk" is proportional to Y~p.

y =aU. gay =const,

hence

U~ =py, Uy =Uz =0

(10)
III. COMPUTER SIMULATION

We used the same computer procedure here as reported
in our previous work, ' " namely, we simulated Couette
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(low of a soft-sphere liquid with the potential /=1/r ' at
the state point p(4T) ' with the temperature' T set at

p is the density, p =N /V with N the number of parti-
cles in volume V. Runs were carried out at p=0. 8 and
p=0. 7 with N =108, 256, 500, and 864 for the system in
equilibrium and when subjected to several values of the
imposed shear in the range 0.01 (y (2.0. The algorithm
was a very minor variant of that described by Evans and
Morriss' and makes use of the Gaussian equations of
motion, i.e. , r';=(1/m)F; —A, r; where F; is the force on
particle i and A. is a multiplier given by
A, =Jr~.F~/(m gr , ). 'The power of this algorithm is
that the kinetic temperature is a constant of the equation
of motion so one can work in the convenient (N, V, T) en-
semble.

Estimates of the functions gk" (r) follow directly by can-
structing histograms of the appropriate moments of r as
given by Eqs. (14) and (15); see, for example, Ref. 11.

%'e first worked with the system at p=0. 8 and @=2.0
for N =108, so chosen because we knew the signal-to-
noise ratio for the histograms was strong in this case.
We observed that the g3 ' coeScient was large and dom-
inated the g~

' series. To check the effect of system size,
runs were repeated for N =256, 500, and 864 particles
but we found that X had only a small influence on the
values of all gq ', and that g3 ' was indeed the most
significant. Subsequent simulations were made for a
864-particle system at p=0. 7 for 5000—10000 time steps
with At =0.003. The change in density was advisable
because it is now realized that p=0. 8 is too close to the
freezing transition and its associated complications, dis-
cussed elsewhere. ' '

Sample results are shown in Figs. 1 and 2 for @=1.0.
The plots for gI', ' are equivalent to similar plots published
previously. ' The curves for gk

' are new. The general
pattern of Figs. 1 and 2 was obtained for all values of y,
only that the gl', ' are small for y &0.5 with g3 ' the most
prominent.

It is interesting to represent the expansion coefficients
through an intensity plot of g(r), i.e. , the intensity
with respect to the average of particles around a given
central particle. For example, let us write the expansion
of Eq. (13) in polar coordinates for the shear plane:
x =cosi)), y =siniti, and z =0. We have, through rank 4,
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P=m. /4. The effect of g'i ' is to shift the axis very slight-
ly away from n/4 For p=0. 7 and y=1, the changes
due to g'&

' and go
' are quite small, in contrast to the

large and dramatic effects for p=O. 8 and y =2 as report-
ed earlier for the radial distribution function' and the
static structure factor.

Figure 5 includes the g~
' terms that give rise to a fur-

ther intensity variation in the second ring. It is clear
that for the system at p=0. 7 and y = 1 the gk

' terms are
significant in the expansion of Eq. (13), but we can make
a more general conclusion. A relaxation time ~ can be
defined as ~=g/G where G is the shear modulus and g
is the shear viscosity; ~=0.2 for p=0. 7. If the dimen-
sionless expansion parameter, i.e., the product ~y, is ap-
proximately 0.05 or less, we surmise that the expansion
(13) converges rapidly and contributions with l & 6 are
negligible. For the example we have illustrated, ~y =0.2
and we conjecture that the convergent limit of g(r) has
substantially been reached, although the I =6 terms
might effect some subtle changes in the shapes of the pri-
mary rings.

g(r)= g. ——,'go '+ ,', go" +(-,'gP' —
—,', gi")—cos(24)(2)

+ ( —,'g P' —
—,', gq

' )sin(2$)

+ —,'gq cos(4$)+ —,'gq ' sin(4$) .

g p

-0.25—

-0.50—
W.25—

Since we have gk" as a function of r, we can construct
graphs such as Figs. 3—5 for our system at p=0. 7 and
@=1. Figure 3 is essentially the intensity plot for the
fluid at rest; that is, all gk" are zero. Note that
g, (r)+g,q(r) as remarked, however. The graph is radial-
ly symmetric and the highest intensity (darkest shading)
corresponds to the peak in g, (r) The circle . in the
center is an artifact to represent the central particle. In
Fig. 4 we add to g, (r) the three giI

' terms. The pattern
shifts from circular to elliptical. If only the gz ' term
were added, the major axis of the ellipse would be along

-0.75—
-0.50—

FIG. 1. Plots of the first four coefficients of Eq. (13); g, and
gk ', for the soft-sphere system at p=0. 7 and y=1.0. The
solid curves are the simulated data; the dashed curves are pre-
dicted from the Stokes-Maxwell relations of Sec. IV B. The re-
laxation time r [e.g. , Eq. (34)] was approximated by fitting the
coefficient gq

' at the first minimum, with the result v=0. 169.
Compare with the curves of Ref. 10.
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FIG. 2. Plots of the gq
' coefficients of Eq. (13). The dashed curves are predicted from the Stokes-Maxwell relations; see the caption

to Fig. 1.
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FIG. 3. Intensity plot of the scalar contribution to the distri-
bution of particles around a central particle for the soft-sphere
system at p=0. 7, y=1. The inner (darkest) ring of maximum
intensity corresponds to the peak in g, (r). The center dark spot
is an artifact to depict the central particle.

FICx. 4. Intensity plot for the soft-sphere system subjected to
a shear with @=1.0. The plot is for the plane of the shear, see
Eq. 118), with all g] ' included. The major axis of the ellipse is

slightly away from m. /4 and there is some weak structure in the
second ring.



36 SHEAR-INDUCED ANGULAR DEPENDENCE OF THE LIQUID. . . 1799

most general liow, a term (V v)(r ()/Br) would also ap-
pear within the parentheses of Eq. (20), but for Couette
flow and all incompressible fluid flow V.v=0. Here co is
the vorticity

$: .

)

r

a) =
2 ( |)' X v)

and y is the shear rate defined formally as

~v =~vU

The terms X are operators
r

a a
Br

' " " dr„.P

and 2) is a damping term that has the property

2)g,q(r) =0,

(21)

(22)

(23)

(24)

FIG. 5. In this plot all expansion coefficients of Eq. (18) are
included. Note the structure changes in the second ring.

g (r)=g, (r)+g„,(r) (25)

and make the specific relaxation time approximation '

that

which is a consequence of the constraint that g (r) relaxes
to its equilibrium value in the absence of a viscous flow.

Let us write Eq. (4) as

IV. GENERALIZED STOKES-MAXWELL RELATIONS

2)g, (r) =rp '[g, (r) —g,q(r)],

ng„,(r)= y r(-'g„")„, „((r)y..„.)~, . ~, (r) .
I~O

(26)

We next develop a predictive method for the expansion
coefficients. In Ref. 10 it was shown that a relaxation-
time method led to expressions for gq

' in terms of the
scalar coefficient g, and the time ~; the simplest is well
known, i.e., g2

' ———~yr dg, /dr. We want to extend that
approach here.

A. Kinetic equation

The pair correlation function is assumed to obey a ki-
netic equation of the form'

a
Bt 4ngs + Y)&)sgnssdvr+ rp (gs geq ) 0 r (27)

a
gns+(~)&) + Y(A) v)g'ns

at

From this point, for simplicity we suppress the r depen-
dence of the g functions. Inserting Eqs. (25) and (26) into
Eq. (20), and noting that ro.Xg, =0 leads to two coupled
equations:

a +(V'„U,)r„ a
at r~

+2) g (r) =0, (19)
++r( guI,

1

(28)

which we write as

a
c}t
—+co„j„+Y„~„+XIg (r) =0 (20)

after decomposing the velocity gradient tensor into its
symmetric traceless and antisymmetric parts. For the

The term involving the operator ())„X„canbe calculated
from Eqs. (2.23), (2.52), and (3.7) of Ref. 9. That opera-
tor couples only tensors of the same rank 1. We have de-
rived a similar expression for the term containing the
operator Y&~„,which couples tensors of rank 1 to those
of ranks 1+2 and 1 —2. The net result is that Eqs. (27)
and (28) can be rewritten in a general form

g(!) +l(~X (() 21 d 3 (l),-1 (
.+21 3 "d„+2Y,~ . . . +

1 (1 —1)
(21 —1)(21 + 1)

1/2
I3 —2)

~P &P2g P3P4
' ' Pl

(1+2)(1+1)
(21+5)(21+3)

1/2

+~+3 (I +2)
dr

(29)
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The cross product on the left-hand side of Eq. (29) stands for e&,~~~,'&,&, . . .„,, where e„z,is the totally antisym-

metric isotropic tensor of rank 3. Equation (29) leads to the following equations for the scalar, second-rank tensor
(I =2), and fourth-rank tensor (l =4) contributions:

1/2—g, + ro (g. —g.z ) =—
15

+3 yx gP.

1/2

(30)

(2) 4 d 3 2) 1 (2)

at gpv+2(~Xg )pv+ «+ ypMIv +&2 gpv =—
7 dr 2

2

15

d 2 d (4)yp.«d g («) —~—«+5 y'g. '. ~

dr v'21 dr
(31)

and

(4) (4) 8 d (4) —1 (4)

at~ gp z +4(~Xg )p x + «~ + ypag x +&4 gp x
11 dr 2

2
« —2 y„.gI..—

v'21 dr
30
143

1/2

«+7 y 'p~, g, . (32)
dr

Clearly the equations are the first of a hierarchy of cou-
pled equations. Here we decouple the equations by disre-
garding tensors of ranks I & 6.

B. Stokes-Maxwell relations for Couette How

g4 = —2/74g 3
——pS4 r —2 g 1

(4) (4) (2)
2 dr

To fourth order,

(41)

We can infer the Couette-flow Stokes-Maxwell rela-
tions for glI" from Eqs. (30)—(32) by setting the time
derivatives equal to zero and using the Couette-low
modified expressions for g ' ' and g ' ' given in the Ap-
pendix. To the lowest nonvanishing order in the shear
rate we get to zeroth order:

g1 =p&4g2 + —„&&4 r + g4(4) (4) z d 3 (4) (42)

We have also derived Eqs. (33)—(42) by an alternate
method that is more tedious but requires less of the for-

gs =geq

i.e., the equilibrium limit. To first order,

(33)
2.5—

(2)
dr

To second order,

(34)

2.0—

&g, =g, —g„(«)=—
—,', yro «& +3 gz', (35)

1.5—
(2, ) (2)

g 1
=+%2g2

go =
7 A%2 r + —g2(2) 3

dr 2
(37) 1.0—

go = ——&&4 r —2 g2
(4)

dr

g3 ———y&4 r —2 g2
(4) d (2)

dr

(38)

0.5—

To third order,

g2 ———y~4 r —2 go + —&&4 r + go(4) (2) q4 3 (4)

dr dr 2

0
0

I I I

1.0 2.0 3.0 4.0 5.0

r

2 3 '

(4)——@~4 r +—g311 dp 2

FIG. 6. The equilibrium distribution function g,~ ( r ) at
p=0. 7, solid curve, and the value calculated via Eq. I35) from
the results with y = 1.0 (dashed curve).
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FIG. 7. The curves for g q
' for the soft-sphere system at p=0. 7 and @=0.5 and 0.25; the dashed curves are predicted from the gen-

eralized Stokes-Maxwell relations.

malism of Cartesian tensor analysis. The flow term of
Eq. (19) is written as yy dldx. Upon insertion of Eqs.
(13)—(15) into Eq. (19), the differential operator mixes the
coefficients of L~" and leads to a hierarchy of coupled
equations. This hierarchy is solved iteratively to leading
order in yr, and after considerable algebra Eqs. (33)—(42)
are recovered.

One should point out that Eq. (36) and the first terms
in the right-hand side of Eqs. (41) and (42) arise from the
term involving the vorticity in Eq. (20) so they would van-
ish in a vortex-free fiow, e.g. , Eq. (12) with n=l. All
other contributions arise from the shear-rate tensor y„.
Also, to leading order in y~, only the first terms on the
right-hand side of Eqs. (31) and (32) are required. The
truncation of the hierarchy represented by Eqs. (30)—(32)
at l =4 is justified to leading order in y~; inclusion of
the terms of rank l ) 6 would affect only higher-order
terms in a yw expansion.

Equations (34)—(37) were presented and tested in Ref.
10. The expression in Ref. 13 for the "cubic" fourth-rank
function, which is a linear combination of gp

' and g3
follows from Eqs. (38) and (39).

C. Test of the relations

To test the relations, given the simulated values of g~",
we made a very simple assumption that turned out to be
generally upheld, namely, that ~p=7 p=74. Further, rath-
er than treat each relation in any detail we decided to
determine w solely by comparing the relationship of Eq.
(34) with the simulated data for g~ I. In fact we did this
very simply by setting ~ so that the minimum in the simu-
lated and theoretical curves at small r corresponded for a
given value of y. The results for y =1 are shown in Figs.
1 and 2 as dashed curves with ~=0.169. Figure 6 shows
the plot for geq Figure 7 gives representative plots for the

comparison at lower shear rates, @=0.5 and 0.25. We
show only the curves for g(3 ', the others follow the same
trend as seen in Figs. 1, 2, and 7 and for these shear rates
we found r (y=0. 5) =O. 1 and r (y=0.25) =0.18.

We consider the comparison between the Stokes-
Maxwell expressions and the simulation data to be very
good overall, with the agreement less satisfactory for the
5g, g'i, and gp

' terms. Note that these last two relation-
ships, paradoxically, are the simplest. There also does not
seem to be any clear correlation between the agreement
and the "order" of the expression.

V. CONCLUSIONS

In this work we have extended our previous studies on
a fluid's microstructure under shear as represented by the
behavior of the pair correlation function g(r, y).
Specifically we have expanded g(r, y) in terms of spherical
harmonics, or Cartesian tensors, to tensor rank 4 and
evaluated the coefficients by NEMO for a soft-sphere
liquid. We have found that the influence of the rank 4
coefficients is not necessarily small for the soft-sphere sys-
tem studied; in particular the coefficient g 3

' that
represents cubic symmetry is significant. The intensity
plots in Fig. 5 illustrate this. As a rule of thumb, we ex-
pect the expansion for g(r, y) to reach essentially its con-
vergent limit at I =4 if the condition ~y 50.05 is realized.
For the specific case of interest, ~@=0.2, the expansion
through I =4 is probably close to its limit although
higher-order terms may give small but noticeable contri-
butions.

From a general kinetic equation, Eq. (19), we have de-
rived expressions for the coefficients of the g(r, y) expan-
sion for Couette flow using a relaxation-time approxima-
tion, Eq. (26). If we select a single relaxation time for the
system, we can predict all gp" surprisingly well given g2 '.
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For example, comparing the simulated g 2 with the
Stokes-Maxwell expression Eq. (34) we set r=0. 169 for
the system at p=0. 7 and @=1.0 and obtain the results
shown in Figs. 1 and 2. But it must be stressed that the
relaxation assumption is too simple and a more general
theory should take into account the y dependence of w.

Furthermore the relaxation-time approach here must
give an analytic y dependence for the properties of the
system. This is not in agreement with the results of the
computer simulations that indicate, for example, that
pressure varies with y and the viscosity v ith y'
Nevertheless, one has a theory that predicts the shear-
induced behavior of the radial distribution function of a
simple liquid, and consequently the shear-dependent mac-

roscopic behavior, given the equilibrium radial distribu-
tion function and a relaxation time.

ACKNOWLEDGMENTS

The authors thank D. G. Friend for valuable sugges-
tions. The work was supported by the U.S. Department
of Energy (Office of Basic Energy Sciences).

APPENDIX: ANSATZ FOR THE EXPANSION TENSORS
OF RANKS 2 AND 4

In plane Couette symmetry the tensors g„'and g„' '~

occurring in Eq. (4) can be written as

(2) (2) x y (2) ] x x y y (2) z z$2g„,s =g2 e„e,, +g ~ , (e„e—,, —e„e,)+go e„e,,
(4) (4) z z z z (4) ] x x z z y y z z (4) x y z zg~„i, = go e„erie,+g~ —,(e&e,eqe, —e„e,eqe, )+gq e„e,zie,

I

+gI3 I(e„eeqe,"+e„e~&e~—,'e' „'e~—qe',)+g4 '(e„e"„eqe~—, e„"e~ze,),

(A 1)

(A2)

where e,e', e' are unit vectors parallel to the coordinate axis; the overbar indicates the symmetric traceless part of a ten-
sor. The factors g& and g4 are defined by Eq. (8); $2=&15/2 and g4

——&315/8. Note that all tensors on the right-hand
side of Eqs. (Al) and (A2) obey the Couette symmetry.

Ensertion of (Al) and (A2) into Eq. (4) for l =2 and 1 =4 leads to Eqs. (13)—(15). The numerical factors occurring
are somewhat arbitrary since we could multiply X&" by a constant and compensate by dividing CI,

'" by the same con-
stant; those for the second-rank tensorial functions have been chosen such that g 2 ', g &

', and g o
' are consistent with

our previous work. '' " The functions XIi ' and X3 ' of (15) which follow from (A2) are linear combinations of the
cubic harmonics K4& and K42. All other functions occurring in (14) and (15) are proportional to the standard cubic
harmonics, which, in turn, are linear combinations of spherical harmonics.
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