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In this paper we present molecular-dynamics and kinetic-theory calculations of the interdiffusion
coefficients in dense binary ionic mixtures for conditions appropriate to both astrophysical and
inertial-confinement fusion (ICF) plasmas. The diffusion coefficient is the product of a Green-Kubo
integral and a thermodynamic prefactor. The molecular-dynamics and kinetic-theory estimates of the
Green-Kubo portion agree very well, and it is found that this integral may also be well represented
by the usual concentration-weighted sum of self-diffusion coefficients. In addition, the low-density
limit of the thermodynamic prefactor is shown to represent an enhancement of the diffusion by the

“‘ambipolar” electric field.

I. INTRODUCTION

Ionic diffusion in dense plasma mixtures has been of in-
terest recently for a number of reasons. In astrophysics,
diffusion plays a central role in understanding the distri-
bution of heavy elements in the atmospheres of white
dwarf stars.! The performance of multilayer x-ray mir-
rors should be affected by diffusion, and the evaporation
rate of metal ‘“‘chunks’ injected into the fuel of an
inertial-confinement fusion (ICF) capsule by hydrodynam-
ic instabilities is controlled by the diffusion coefficient. In
all of these applications, the plasmas can be very dense
and estimates based upon the Spitzer formula® are often
inadequate. In fact, naive applications of Spitzer’s theory
can lead to negative diffusion coefficients. Simple
modifications, such as placing a “floor” on the value of
the Coulomb logarithm?® can eliminate such unphysical re-
sults, but they are untested under these conditions.

In order to gain better understanding of diffusion in
dense plasmas we will study a simple model system called
a binary ionic mixture (BIM), which consists of two
species of classical point ions immersed in a uniform neu-
tralizing background. The charge and mass of ion species
“o” are indicated by Z,e and m,, respectively. Similar-
ly, the number and mass densities are n, and p,=m,n,.
The corresponding total densities are n =n;+n, and
p=p1+p>. The strength of the Coulomb coupling among
the ions is measured by the parameter

e2

r= ,
r()kBT

where T is the temperature and ry is the ion sphere radius

4mr (3)
3

=1/n .

There are two characteristic plasma frequencies in a BIM.
One is the Vlasov plasma frequency defined by

4mn,Z%e? 41n,Z3%e? —y——
cof,-zw%—kw%: + =4mne’Z*/m .
mj mj

(1.1)
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The other is the so-called “hydrodynamic” plasma fre-
quency defined by

O, =4mne’Z*/m <w, . (1.2)
In the above, barred quantities are number weighted aver-
ages,

2201A1+C2A2 , (1.3)

where ¢, =n, /n is the number concentration. The corre-
sponding mass concentration is X, =p,/p.

The rate at which concentration fluctuations dissipate
in a mixture is governed by the interdiffusion coefficient
D, which linearly relates mass fluxes to gradients in the
mass concentration. Specifically, if the center-of-mass ve-
locity field u is defined by

2
u(r,t)= Y X,(r,thu,r,t), (1.4)

og=1

where u,, is the velocity field of species o, then the mass
flux of o is

jo(r,t)=ps(r,0)[u,(r,t)—ulr,)] , (1.5)
and ahe interdiffusion coefficient is defined by the relation-
ship,

Jolr,t)=—p(r,t) DVX ,(1,1) . (1.6)

The purpose of this paper is to evaluate D for strongly
coupled binary mixtures using both numerical and
theoretical methods. Molecular dynamics studies of
H"-He’* mixtures have already been made by Hansen,
Joly, and McDonald.’ The present authors have previ-
ously looked at both H*-He?* and Si'**-Sr3®* mix-
tures.® In this paper we report additional simulation re-
sults for He?"-C°" mixtures in regions appropriate to
the “carbon pollution” problem in white dwarf stars.’
We also describe a kinetic theory calculation based upon
the disconnected approximation®® which gives excellent
agreement with all of the simulation results in the re-
gions of greatest interest.

In the next section we will introduce the Green-Kubo
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expression which relates the diffusion coefficient to the
product of an integrated correlation function and a ther-
modynamic factor. In Sec. III we demonstrate that, at
least in the weak-coupling limit, the thermodynamic fac-
tor may be thought of as an enhancement of the diffusion
due to the “ambipolar” electric field. Our molecular dy-
namics procedures and results are discussed in Sec. IV,
and in Sec. V we present our kinetic theory calculations.
Our results are summarized in Sec. VI.

II. GREEN-KUBO RELATION
FOR THE DIFFUSION CONSTANT

The diffusion constant, like other transport coefficients,
can be expressed in terms of fluctuations in the system in
equilibrium, without any external forces to drive a partic-
ular mass or energy flux. Derivations of this are available
in the literature'®!! but for completeness we include a
simplified derivation which gives the correct result. We
consider low-frequency, long-wavelength fluctuations
which is the regime governed by linear hydrodynamics.
Since we are only interested in diffusion, we consider only
mass concentration fluctuations and ignore temperature
and pressure fluctuations. Thus only number, and not
momentum Or energy conservation, must be considered.
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The conservation law for, say, species one,

a 1(1‘,1’)
L o Vepir O (r0)=0 ,
ot
may be rewritten using the definitions of Sec. I and
overall mass conservation as

2.1

aXl(r,t)

3 (2.2)

plr,t) +u(r,t) VX (r,t) |=—=V-ji(rt).

Linearizing this equation and introducing the diffusion
constant gives the diffusion equation for mass fluctuations

—a—BXI(r,t)zDVZ 8X.(r,t) ,

ar (2.3)

where 6X(r,t) is the deviation of the mass concentration
from its equilibrium value. The free space solution of this
equation, in terms of Fourier components is

86X (k,t)=08X,(k,0)e — D%t (2.4)

If the initial fluctuation, 8X,(k, t =0), is assumed to be
an equilibrium fluctuation, then averaging over these ini-
tial fluctuations and Laplace transforming gives

(8X1(—k,0)8X (k, 1 =0))= [ "' (8X\(—k, 08X, (k, t =0))dt

={(|8X,(k,t=0)|?)

where the angular brackets { ) denote an equilibrium en-
semble average. By taking the appropriate limits in this
last equation and performing a few manipulations, we ob-
tain a relation for D

ci1C2 o
D_Su(k—_—O) fo dt V(1) , 2.6)
where
1
= . 7
Vp(t) 3Nc162(vd(t) vy(0)) (2.7)

is the autocorrelation function for the (microscopic)
diffusion velocity

valt)=cy 3 vilt)—cy 3, vilt) .

i€l i€2

(2.8)

The concentration structure factor S, (k) is defined in
terms of the partial structure factors S,,(k) as

Seclk)=c1e3[e2811(k)+¢1S2(k)—2V ¢1c2815 (k)]

=P /miman (| 8X, k1 =002 . 2.9)

In the low-k limit, S.. is related to the Gibbs free energy
through
G

S,k =0)=NkyT 52

(2.10)

iw+Dk?
0*+D*k*’

f

The presence of the factor c¢;¢, /S, (k =0) stems from our
definition of D in terms of the mass concentration gra-
dient rather than the gradient of the chemical potential as
is sometime done. For neutral gases, this factor reduces
to unity for all concentrations in the low-density limit.
For charged particles, however, cic, /S, remains concen-
tration dependent even in the weak-coupling limit. This
may be seen by using the Debye-Huckel estimates of the
partial structure factors to obtain

ci162/S,e(k =0)—>2Z%/Z? 2.11)

which is greater than unity whenever ¢;c;-40.

We also point out that if the velocity correlations be-
tween different particles are neglected, D can be related to
the self-diffusion coefficients for the individual species.
Specifically, we obtain*?>

Sec(k =0)
———D=¢,D{+cD; , (2.12)
CciCy
where
D,= [~ .
o= [7diZ,0), (2.13)
and
Z,(t)=1{v,v,(1)) 2.14)

is the velocity autocorrelation function for species . This
relation is exact in the low-concentration limit, and if
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Vp(t) is expanded in powers of t? the cross correlations
first enter at order ¢%.

III. THE ENHANCEMENT FACTOR
AND THE AMBIPOLAR FIELD

As seen in the previous section, the long-range nature
of the Coulomb potential leads to an enhancement of ion
diffusion in a binary mixture, even in the low-density lim-
it. In this section it will be shown that an identical result
follows from the usual Boltzmann theory of diffusion,
provided the ambipolar electric field of the electron back-
ground is taken into account.

If temperature gradients are neglected, the standard

Boltzmann approach gives!?
2
mymjzn

Ji=— Dod, , (3.1)

where Dy is the Spitzer estimate of the diffusion coefficient
and d; is
Z 1he

X,

E .

2
> Z,n,eE—Vp

o=1

1
dl——n an—

(3.2)

The ambipolar field is E, and the pressure is given by
p =nkgT. If the system is to be mechanically stable, then
the sum of the forces on the ions must be balanced by a
pressure gradient,

Vp=(Zln1+Zzn2)eE . (33)

Requiring charge neutrality over hydrodynamic scale
lengths yields

ZIVn1=——ZZVn2 . (3.4)

By combining Eqgs. (3.1)-(3.4), it is straightforward to ob-
tain

. z?

1= —p?DOVXl .
Comparison with Eq. (2.11) shows that, at least in the
low-density limit, the thermodynamic factor, cic,/
S..(k =0), may be thought of as an enhancement of the
ion diffusion due to the ambipolar electric field of the elec-
trons.

(3.5)

IV. REMARKS ON MOLECULAR-DYNAMICS
SIMULATIONS

The self and interdiffusion constants have been evalu-
ated by molecular dynamics for a model of classical
point ions in a uniform, charge neutralizing background.
These techniques are by now routine, but there is a ques-
tion about the ensemble dependence of the computed
time correlation function. The molecular-dynamics
simulations use a system from a microcanonical ensem-
1

S, (k,z;p,p’)= fomdt e’ f d3r Co(r—1',t | p,p'le ~KU—1)

ble with constant energy, particle number, volume, and
total momentum, P. On the other hand, the theoretical
results have assumed a canonical or grand canonical en-
semble. The differences between averages calculated in
these ensembles and by molecular dynamics is due to the
presence or absence of energy and momentum fluctua-
tions. For example, the average square of the total
momentum is zero in the molecular-dynamics simula-
tions but equal to 3kzTM for a canonical ensemble.
Similarly, the energy fluctuations, which are zero in a
molecular dynamics simulation, are proportional to the
specific heat in a canonical ensemble.

We are interested in the ensemble dependence of
(vy(t)-v4(0)). The key point is that the average
diffusion velocity is zero in the molecular dynamics ex-
periment. This is still true even if the total momentum
were nonzero since adding a drift velocity to all the ve-
locities does not affect v;. We also need a standard re-
sult in statistical mechanics that the ensemble depen-
dence in the correlations of any two dynamical variables
A and B is given by"’

(8A4A8B)..=(8A48B)up

9{ 4)mp
oE

39{B)mp
oE

+((E—E))ce

3{ 4)mp
oP

3(B)mp
JaP

+{(P¥).

+0(1/N), @.1)

where ( ). denotes the canonical ensemble average.
Applying this with 4 =v,(t), B =v,;(0) we see that the
ensemble-dependent corrections vanish since (v, )up is
zero for all E and P. Therefore, the molecular dynamics
correlation function can be used directly in the equations
in Sec. II.

V. KINETIC THEORY FOR THE
TIME-CORRELATION FUNCTION

A. General theory

Any time correlation function may be expressed in
terms of the correlations of the phase-space densities

folr,p;t)= 3 8(r—r;(2))8(p—pi(t)) .

i€o

(5.1)

If §f, represents the deviation of f, from its equilibrium
average value, then the phase-space correlation functions
are

Cor(r—1,t | p,p)={8f,(r,p;)8f.(r',p;0)) .

It is usually more convenient to deal with the transformed
functions

(5.2)

The diffusion coefficient may be written in terms of these latter functions as
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162 = . +
D= S ReVp(0+in) (n—07), (5.4)
cc
where
Vil f dte™Vp(t)=1 E}/gj/rf d pfd 'Sy-(k =0, z;p,p )PP > (5.5
with
172 172
1 e and —1|a
ri= m ni Ya= mo ny
The transformed phase-space correlation functions obey a kinetic equation of the form!'*
ko |~ -
2= B Sarthkzipp) = 3, [d'p" Poolhozipp ISk p)=ingdo(plBo AP —p) b p ior K], (5.6)
|
where ¢,(p) is the normalized Maxwell-Boltzmann dis- mately yields
tribution for species o, and 4 ,.(k) is related to the radi- - . ..
al distribution function through Fourier transformation Vp(z)=5Vi(z)+3Vi(2) , (5.10)
Fork)= [dre™ gy (r)—1] . (5.7) ~ Where
. . _ k (2202
The operator @, is written as Vi(z)= pkaT 2z — ) (5.11)
K nmiym; zz(zz—cof,)—\\-izv(z)(zz—ﬂf,)
. n_ ‘P =
D, (k,z;p,p')=—n, m, éo(p)Cs-(k) is the correlation function for the longitudinal component
_ of the diffusion velocity and
+M,.(k,z;p,p’) (5.8) .
- kgT
Piz)= L2 = (5.12)

which is the sum of a mean-field term involving the direct
correlation functions

CorlK)=hor(k)— 3 Coo(K)hgrr(k) (5.9)
and the “memory” function M,. which contains the
effects of collisions.

The standard procedure for solving Eq. (5.6) is to ex-
pand the momentum dependence of the S,,’s in terms of
Hermite polynomials, which are a complete set of orthog-
onal polynomials with Maxwell-Boltzmann weight func-
tions. The Hilbert space defined by these functions is
then divided into two subspaces: the ‘“hydrodynamic sub-
space” spanned by the ten (five for each species) functions
corresponding to the hydrodynamically conserved quanti-
ties, number, three components of momentum and (kinet-
ic) energy,!® and its complement, the “nonhydrodynamic”
subspace. Projecting the kinetic equation onto the ‘“hy-
drodynamic” subspace then yields a closed set of equa-
tions for the hydrodynamic matrix elements of the S,,’s.
The details of this procedure are well described in the pa-
per by Baus'® and will not be given here.

Applying Baus’ method to the problem at hand ulti-

J

M, (12;0=—3 [d1" [d2' Vivg,(r,—r})-

v

api

where the four-point function G

0 Gin(1,152,2 | )V 0 (1 — 13-

ou;vr TEpresents the propagation of pairs of particles between interactions.

nmim, z?+izv(z)

is the correlation function for the transverse components.
If the coupling to the nonhydrodynamic subspace is com-
pletely ignored,'” the collision frequency is

wz)=i(Q'"'+ Q%) , (5.13)
where
pkB = d [dp piM,,(k=0,zp,p)
X¢.(p')p/ . (5.14)
In terms of v(z) we find
kpT
p=Si& _ PrB (5.15)

S.. nmymyv(0)

Hence, to proceed we need an expression for the memory
function.
B. The disconnected approximation

The memory function may be expressed in “time-
space” in the form!*

“Upa), (5.16)

9
ap2
If this

function is simply factored into a product representing the propagation of single particles through the plasma, then in

the long time limit M reduces to the usual Lenard-Balescu collision operator.
the four-point function is factorized in such a way as to preserve its exact initial value.’

¥ In the disconnected approximation

The principal effect of this
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TABLE I. Diffusion coefficients (in cm?/sec) for 50% H*-He?™ mixtures with n =10?> cm 3 from (a) Ref. 5 and (b) Ref. 6.

Simulations Theory
r Dy DHye D’ D Dy Dye D’ Dws Dom
0.4 (a) 0.519 0.153 0.336 0.311 0.477 0.145 0.311 0.329 0.544
1.0 (b) 0.122 0.0488 0.0854 0.0946(5) 0.109 0.0418 0.075 0.082 0.149
4.0 (a) 0.0205 0.0109 0.0157 0.0147 0.0198 0.0126 0.0162 0.0159 0.0274
40.0 (a) 0.00111 0.000 65 0.00113 0.000 88 0.00171

modified factorization is to renormalize one of the potentials and replace it with a direct correlation function. An al-
ternative form of this approximation® renormalizes both potentials. This has the advantage of giving a positive
definite “‘cross section,” but destroys the short-time behavior of the memory operator. In this paper, the first form of
the disconnected approximation will be adopted, but some comparisons with the second form will be made.

Using this approximation the collision frequency reduces to

j 3 d dwy Si1(k,01)Sn(k,wy)—S12(k,01)S7 (k,0;)
i dkkz~ E s (k w1 2 K, 1)922(K,w; 12{K,01)321(K, w7 17
v(z) ——&—3m1m2 s TR vl s oo : (5.17)
which for low frequencies becomes
VAVA
woy— — 212 J.7 dk ke [ 9218 (kw15 ko)~ Shiko)] . (5.18)
3mmim, 2

To complete the calculation estimates of the dynamic structure factors are needed. These are obtained by substituting
static structure factors obtained from the hypernetted chain (HNC) equation into Eq. (5.6) with M, =0. Applying
the same method to Eq. (2.15) yields expressions for the self-diffusion coefficients.

C. Time correlation functions

In order to study the behavior of the time correlation function Vj(t), the high-frequency behavior of v(z) is observed
to be

L' 477212262p

v(z— o0 )— (5.19)
z 3mim,
Using this result in Egs. (5.11) and (5.12) yields
2
_ kpT ] 41Z,Zse?
Vi=LE Ly L) 2 g T2 P : I (5.20)
nmym, z z 3mim;
and \ T T T T T T T T T T T T T
.0 . MD =
Vi(2)= pkpT i i 477'Z Zze P F ———— V(O (t=0)
1(z =momz 11717 3mom. T gosf N == vV (=0 ]
17702 1772 3 Vp(tVg (t=0)
52D %
Hence, one notes that §
) 47Z1Z 10" 8
Vi(t =0)/V)(t =0)= — |wl — Q2 4 —1 222 P
3mym, E
R (5.22) =
.. dnZ Zrep
Vit=0)/Vi(t=0)=——F—". (5.23)
3m1m2
Since ) >, the correlations of the longitudinal com-
ponent of the diffusion velocity have a more rapid initial FIG. 1. Normalized velocity correlation functions for 50%
decay than the transverse components. Combining Egs. H*-He** mixture with T'=1.

(5.22) and (5.23) gives the result
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TABLE II. Diffusion coefficients (in cm?/sec) for Si'**-Sr?** mixtures with n =102 cm %, T =1 keV (I'=0.005).

Simulations Theory
% Si Dy Ds, D’ D Dg; Dy, D’ D
0.1 0.185 0.185 0.185
25.0 0.259 0.088 0.217 0.215(17) 0.215 0.0775 0.181 0.186
50.0 0.325(3) 0.105(1) 0.215 0.217(10) 0.263 0.0904 0.177 0.182
75.0 0.408(4) 0.128(2) 0.197 0.204(15) 0.349 0.113 0.172 0.177
99.9 0.168 0.168 0.168

" Q} V4 74
Vp(t =0)/Vp(t =0)= — 2 S1MIL2F CamaZ
3 (c121+c222)m1m2

(5.24)

The more rapid initial decay of V;(z) is illustrated by
the ““dashed” and ‘““dash-dot” curves in Fig. 1. The solid
curve is the theoretical estimate of Vp(z)/Vp(t =0) as
defined in Eq. (5.10), and the dots are the simulation re-
sults for the 509% H*-He?*t mixture at I'=1. The com-
parison between the theoretical and molecular dynamics
(MD) results is reasonable out to about six inverse plas-
ma frequencies, but the theoretical curve seems to miss
the “shoulder” at 12w, .

VI. RESULTS AND DISCUSSION

We have evaluated diffusion coefficients for three pairs
of ions. Results for a 50% mixture of H*-He?* at I'=1
are shown in Table I along with the results of Hansen
et al.’ for the same mixture at a variety of other T’
values. Table II shows results at a fixed I" for various
concentrations of Si'*t-Sr’®*, while in Table III we
show coefficients for He?*-C®* at T values and concen-
trations selected from a model white dwarf atmo-
sphere.’” The Green-Kubo portion of the interdiffusion
coefficient is indicated by D and the estimate of D based
upon Eq. (2.12) is D’. Molecular dynamics results are
on the left side of each table; kinetic theoretic results are
on the right.

In Table I we show two kinetic theoretic results of D.
One is based upon the “asymmetric” theory Dwg de-
scribed in detail here and in Ref. 9. The other, Dgy, is
based upon the “symmetric” theory of Ref. 8. As can be
seen from the table the agreement between the simulation
results and Dwgp is quite good for the lower three T’

values. For I'=40 the oscillations in ¢,(k) lead to a neg-
ative value for Dwg. The symmetric theory does not run
into this difficulty, but it gives results for all T values
which are about 50% too high. In the moderate coupling
region of greatest practical interest the asymmetric theory
is definitely preferred.

In Table II, we compare the asymmetric theory to
simulations of Si'**-Sr*®* mixtures at I'=0.005, with
25%, 50%, and 75% Si'*t. Here, and in the other two
tables, the agreement between D and D’ is at the same
level (10%) as the uncertainties in the simulation results
for D. Both the kinetic theory and the simulations show
little variation in D as the concentration is changed.
However, the self-diffusion coefficients do decrease as
more Sr*®** is added and the plasma becomes more
strongly coupled (Z *T" gets larger). As this occurs the
interdiffusion is increasingly dominated by the more
mobile Si'** ijons. As a result the interdiffusion
coefficient shows much less variation than the self-
diffusion coefficients.

Results for He?*-C®* are shown in Table III. The
concentration and the I' of the mixture were varied
simultaneously to reflect values at various depths in a
model white dwarf atmosphere. The more strongly cou-
pled cases are deeper in the white dwarf envelope. Once
again the agreement between theory and simulation is
quite good. We note here that the diffusion model of Pa-
quette et al.! is also in very good agreement with the
MD results."’

In general, the results presented here indicate that the
Wallenborn and Baus form of the disconnected approxi-
mation agrees to about 10-20 % with numerical simula-
tion results for diffusion coefficients in binary ionic mix-
tures. The only problem arises at very strong coupling
where the theory breaks down and gives a negative result.

TABLE III. Diffusion coefficients (in cm?/sec) for He?*-C®* mixtures for conditions in a white dwarf atmosphere.

Simulations Theory
% He T (keV) n(10% cm™3) Dy D¢ D’ D Dye D¢ D’ D
20 0.739 0.877 0.0472(6) 0.0117(2) 0.0401 0.038(2) 0.0402 0.0100 0.0342 0.0345
50 1.00 1.50 0.0575(4) 0.0146(2) 0.0361 0.040(2) 0.0522 0.0156 0.0339 0.0327
80 1.49 3.72 0.075(1) 0.0187(5) 0.0300 0.031(3) 0.0707 0.0166 0.0274 0.0274
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This does not appear to be a serious limitation, since most
plasmas of practical interest are in the weak to moderate
coupling regime. Finally, our results corroborate the con-
clusion® that the interdiffusion coefficient can be well ap-
proximated by an appropriate average of self-diffusion
coefficients.
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