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Theory of the holographic laser: Correlated emission in a ring cavity
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We consider a ring laser whose counterpropagating modes are coupled by a spatial modulation in
the gain medium. We derive a nonlinear Fokker-Planck equation for these modes. In this way we
show that the diffusion coefficient of the relative phase angle may vanish in both linear and nonlinear
theory.

I. INTRODUCTION

The concept of the spontaneous-emission noise quench-
ing in a correlated-emission laser (CEL) has been
developed recently. ' In such a device two laser modes are
coherently coupled. In quantum-beat or Hanle-effect
lasers three-level atoms sustain the two laser modes which
correspond to transitions from two (coherently prepared)
upper levels to a common ground level. Diffusion in the
relative phase angle between both laser modes can vanish
under certain conditions. It has been shown that this
noise quenching can be used to improve the quantum-
noise-limited sensitivity of both laser gravity wave detec-
tors and laser gyroscopes.

With the laser-gyro problem in mind, it has recently
been shown that for an active medium consisting of two-
level atoms, CEL operation can be achieved in the two
oppositely directed running waves via a spatial modula-
tion of the active medium. The noise due to spontaneous
emission is then suppressed just as in the "three-level
lasers" described above.

In an earlier work, the theory for the correlated-
emission ring laser has been only formulated to first or-
der in the atom-field interaction. Gain coefficients a&~
and a22 for the two modes are obtained as well as cou-
pling coefficients a&z and a2& ~ Noise quenching in the
relative phase angle is obtained, when these coefficients
are all equal. Therefore a spatial modulation of the
linear gain medium is required. However, there remains
the important question "Will higher-order effects des-
troy this noise quenching?" That is, will the nonlinear
modification lead to a spatial hole burning which tends
to modify or degrade the linear CEL noise quenching?
It is therefore the purpose of this paper to formulate a
nonlinear theory that takes saturation in the atom-field
interaction into account. As we shall see, the nonlinear
theory indeed leads to a different type of noise quench-
ing (diff'erent formal form for noise quenching) but the
ultimate result is still valid. That is, CEL noise quench-
ing is obtained even in the presence of higher-order con-
tributions to the atom-field interaction. Since steady-
state operation can only be described by the theory in-
corporating saturation effects, this necessary condition
shows that the correlated-emission ring laser is indeed a
realizable situation.

The motivation for the present CEL device derives
from the realm of coherent Fourier optics and hologra-
phy. In particular, we recall that in the process of pre-
paring in a hologram, one radiates a film with two beams
of light as indicated in Fig. 1(a). These two beams of light
(the reference beam and the incident beam) interfere to
produce a holographic grading or modulation in the film.
We then read out the information stored in this film by
probing with the original light beam which is now scat-
tered from the striated layers of developed film to produce
our new signal [Fig. 1(b)]. In this way we note that the
Read beam scatters from the striated medium to produce
the new signal of interest.

In a similar way one anticipates that a striated gain
medium will produce a strong coupling between the two
counterpropagating modes of the ring-laser gyro. This
correlation will be such that the two modes are strongly
correlated and this correlation is anticipated to carry over
into the quantum character of the fields as well. We
therefore call this type of ring laser a holographic laser
(HL).

In the HL the active medium in the ring cavity consists
of thin layers with a constant spacing (cf. Fig. 2). The
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FIG. 1. (a) To create a hologram, an object beam and a refer-
ence (write) beam interfere. The interference pattern is recorded
on the film. (b) After development the reference (now read)
beam is scattered from the atomic layers in the hologram. From
the scattered light a virtual image of the object is obtained. It
should be pointed out, however, that the modulation in the holo-
gram is varying like sin z rather than having very narrow peaks.
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AC

since k 1 =k2.
We conclude from this heuristic derivation that the lay-

ers of the gain medium have to be located at z = (m /k)j in
order to get maximum coupling between the beams. In
fact, the same result is obtained from our detailed
analysis.

In this work we first derive the equation of motion for
the field ensity operator, including saturation for the two
counterpropagating beams This equation is then tran-
sposed into a Fokker-Planck equation. Via a change of
variables we then obtain a Fokker-Planck equation
which involves the relative phase angle. From this ex-
pression we extract information concerning the drift and
dift'usion of the relative phase angle.

MIRRORS

GAIN MEDIUM

FIG. 2. In the holographic laser, each beam is reflected in
part by the thin atomic layers of the gain medium (dotted ar-
rows) . When the refiected light interferes constructively with the
light of the counterpropagating beam, noise quenching is
achieved.

coherent coupling of the two counterpropagating modes in
the ring cavity occurs by backscattering. ' When light of7, 8

a mode is backscattered from a layer of the gain medium,
constructive interference is achieved when the phases of
the reflected part of the beam and the counterpropagating
beam match. The two modes in the ring cavity can be de-
scribed by their wave vector k ],k 2, their frequencies v 1,v2,
and their amplitude Eo which we assume to be equal for
both beams,

E]=E0exp[i(k]z —v]t)]

and

E2 =E]]exp[—] (k2z +v2r)] .

At the reflection at time to the phases of both beams have
to be equa1 up to an integer multiple of 2~„

k]z0 vlr0 2+j k2z0 v2r0( j =0,+ 1,+2. . . ),
where zo is the coordinate of the reflecting layer. From
this we get

(k]+k2)z0 —(v] —vq)t0 ——2' .

Since vi —v2 contains the small signal, the second term on
the left-hand side will be much smaller than the first term
during the measurement time, so that the condition for zo
1s

z0 =2' I(k] +k2 )=mj lk

II. THE MODEL
FOR THE CORRELATED-EMISSION RING LASER

As in the preceding linear theory of the HL we describe
both modes by annihilation and creation operators a 1, a ~1,

and a 2,a q, respectively. The modes have "bare cavity"
eigenfrequencies Q [ and Q2, and their operating frequen-
cies are vi and v2. The losses are described by loss
coefficients y 1 and y2. Noting that both modes interact
with the same atoms in the gain medium, the equation of
motion for the field density operator is given by

p(a], a ],aq, a2, t)

= —i (n] —v])[a]a],p] —i (n2 —v2)[a2a2]p]
—g g(s;

~

[V'(t),p'(t)]
~
s; }+X]p~X~ . (1)

l Si

The first two terms describe the "free" field oscillations,
the last two terms the cavity losses with

Xjp= —
2 y/(aj ajp+paj aj 2ajpaj ), —j = 1,2 .
I

The interaction of the beams with the laser medium is
given by the middle term in (1). p (t) is the density opera-
tor for the ith atom and the field, obtained from the com-
bined density operator for all atoms and the field by trac-
ing over all atoms except the ith one,

p'(&)= Tr] 2
. ],+] & p]OIll fi M(t) . (3)

The interaction potential of the ith atom and the field is
given by

V'(t) =g
~

b '}(a '
~

3 (z, t)e '"'+(adj. ), (4)
where

~
a ' } and

j
b ' } are the upper and lower state of the

ith atom with energy separation co. g is a coupling con-
stant, and the combined operator

3 (z, r)—:a]e ' u](z)+a2e 'u2(z) (5)
incorporates the normal mode functions u] (z) and u2(z).
The coordinate z is defined parallel to the beams so that
the gain medium extends from z = —l /2 to z = I /2, and
we assume that the extension of the medium perpendicu-
lar to the beam direction is independent of z.

Now the equation of motion for p'(t)

p '(&) = ——[ V'(r), p'(r)]

is expanded perturbatively in the usual way,
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p'(t)=p'(to) ——f dt'[V'(t'), p,'(to)s p(t)] —,f dt' f dt"[ V'(t'), [V'(t"), p', (to)e p(t)]]

' dt' dt" f dt"'[ V'(t'), [ V'(t"), [ V'(t"'), p'. ( to)p( t))]] . (7)
fp fo to

Note that the influence of a single atom on the field is very small. Therefore we have set p(to)=p(t) in Eq. (7). The
first order of this expansion gives the gain, and the third order the saturation, while the second order does not contribute
because of the trace in Eq. (1).

With the help of this expansion the contribution from the gain medium in Eq. (1) can be rewritten and the equation of
motion for the field density operator p is then

p(a i, a i, a2, a 2, t) = —i(II1—vi)[a ia i,p] i (—II 2
—v2)[a2a 2,p]

f dz n (z)[A(z, t) A (z, t)p+pA (z, t) At(z, t) 2A t(z,—t)pA (z, t)]
2 —1/2

PO 1/2+ dznz A ztA ztA ztA ztp+pA ztA ztA ztA z
8 —I z2

+6A (z, t)A (z, t)pA (z, t)A (z, t)

—4A (z, t)pA (z, t)A (z, t)A(z, t) 4A (z, t)—A (z, t)A (z, t)pA (z, t)]+Xip+Ã2p.
(8)

Here ao is a gain, Po is a saturation coefficient, and the summation over all atoms has been transformed into a spatial in-
tegration over the linear density n (z) of gain atoms. '

III. THE FOKKER-PLANCK EQUATION

We now transform the equation of motion for p into a Fokker-Planck equation. "' The density operator p is ex-
pressed in the coherent state representation with a distribution function P (61,D2),

p= f d'~i f d'~2P(~1, ~2)
I
~i&&~i

I I
~2&«2I (9)

81 and 62 are complex numbers corresponding to mode 1 and 2, defined by

ai
~

6'i&=Bi
~

6'J & and ai+
~ 6; &= +a

awj

The Fokker-Planck equation for P (6'1, 62) is now

p(p gg g gg )
+11 8 P +22 8 P

aa, ac*,
+

2 aW, aa,*
—i (Q2 —v2)P + [i (Q2 —v2)+

(10)
2 ~ 6J & (for j=1,2) .

obtained from a lengthy but straightforward calculation. We find
a'p a+a12e ' i (II 1

——v 1 )P+ [i (II1—vi ) + —,
' (y 1

—a 1 1 ) ] ( 6'1P)
B61882

a , ap
(l 2 &22)] (@2P) 1212e @1 + @2aa, a2

+ 2Pll;11
@

(~1@1P) TIP11;11 3@1 2 + ~@1~1 ~ + 2022;22 (@2@2P)
ae', ~e, a@*, ' a@2

, a'p . a'p, a
gP22;22 3~2

2 +5~2~2 ~ +012;12 @1@1 (@2P)+~2@2 (~1a~,'a~, a~,* aw,

a2p a p a2p
g012;12 ~@1@1 + ~@2~2 ~ + 12@1@2 + lOD, D,*aa,aa,* aa, ac*, ae )a@p aa, aa,

+—'itl11. 12e
'~ 8 ( 6'181 82 P) +4 ( 6'1@2P) +4@161

—10@1
6'z —66'1 6 2aa, a~', ac*'

—106 6'' ae&aa2 aa& a&2 ap, ap ap+ —,
' p, 2.22e

' 8 ( 81@2@2P)+4 „(@1@2 'P)+4@2@2 10~1@2
a@, ' ''

a@,* ac*, aa, a~',
a'p

' ac*, aw,*

—3gz —3@1 +c.c. (11)
„a'p,a'p
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The integration in Eq. (9) involves the normal mode functions and the density of atoms in the gain medium. The
coefficients in (11) are therefore found to be (for ij,k, m = 1,2)

t/2
a;, —=ao u;(z)u, *(z)n (z)dz,

(12)
PJ k

=—. Po f u;(z)u, (z)uk (z)u *(z)n (z)dz .
—)t /2

The angle P is given by

(h=(vi v2—)t .

To obtain the Fokker-Planck equation (12) we have assumed

II3, ;~- I
« I~, I

but

(13)

In this approximation, we obtain also the mean time derivative of D~ and 62 from the drift coefficients of the Fokker-
Planck equation. The noise-induced drift can be neglected (cf. Appendix). We then have

~1 t(II1 vl)@1+ (oil Yl)~1+ &12e ~2 Pl 1;1il l~1 P12;12' 1~2~2

Pl 1;12e ~1~2 Pll;12~ ~1@1~2 P12;22e ~2~2 Pll;22e ~1 ~2 (14a)

t (II2 v2)~2+ ( 22 1 2) ~2+ t212 ~1 022;22' 2@2 P12;12~1~1 ~2

1-Il 1;12e ~1 ~2 011;12e ~1~2@2 —012;22e @1@1 —Pl i;22e @1@2 (14b)

Both differential equations are coupled in the linear theory (by a12) as well as in the nonlinear theory (by p12. 12, p1112,
p12.22, and /311.22, these coefficients take account of the mutual saturation of both beams). In addition, we have the usual
gain and saturation terms for the two beams.

Since we are interested in the relative phase angle between the modes, we substitute new variables for Dt and 62 in a
next step. From the definitions

—iOI —i 026) ——pie and D2=—p2e (15)

we take pl, p2, y—:—,'(01+02), and 0—:01—02 as new variables. Expressing the derivatives in Eq. (12) in terms of the new

variables, we obtain after another straightforward calculation the following Fokker-Planck equation for the distribution
function P (p 1,p2, cp, 0; t ):

aP ap ap ap ap
P(pl p2, tp, O;t) =doP —d (pl 1

—d (p2) d(y) ——d(0) +D (pl) 2 +D (p2) 2ap) ap2 ac@ aO ap, ap

a'P ap ap a p a p+D (lp) 2
+D (0), +D(p, , p21 +D (p, , y) +D(p„O)

ag ag ap)ap2 ap)ac/ ap)ao

a p a p+D (p2, y) +D (p, , O) +D (g, O)
ap, a~

'
ap, a6

'
a~ a6

(16)

The coefficients of Eq. (16) are given in Table I, where we have defined 6o, 61, 62, and 263 as the arguments of the com-
plex numbers a12, pl 1 12, p12.22, and f11.22, respectively, and the angle it as

it =0+/=0+(vl v2)t . — (17)

IV. DIFFUSION OF THE RELATIVE PHASE ANGLE

We now take a closer look to the diffusion coefficient of the relative phase angle 0 (Table I).
for simplicity that all gain coefficients and all saturation coefficients are real, i.e., 6o ——6i =62 ——6

5 Pi P2 3
cosf 7 all;11+$22;22+p12;12 2 + 2 + I I ll;22 5+

2 p, p',
' 2

O'i2D(0)=, +
4pi 4p2 2pip

Pi P2+ 4 (P11;12 P12;22) COS1/f

P2 Pi

From now on we assume
3

——0. Then we have
r

Pi P2
2 +—

2
cos(2$) .

P2 P&
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TABLE I. The coe%cients of Eq. (16).

do=1'] —al]+1'2 —azz+2p]] ]]p]+2pzz;zzpz+2p]z;]2{p]+pe)+4
~
p»;]2

~

p]pzcos((/] —51)+4
~
p]2, 22

~

p]pzcos(]/] —52),

d(pl)= z(all —y])p]+ 2 I
a»

I
pzcos{]/] 50) z/zl]];]]p] z I&»;» I

p]pzcos{]/] 5]) z I&12'22
I
p2«s{0—52) Plz lzplp2

—
2 ~

P]1 22
~

p]pzcos{2]/] —253),

d (pz) = —,'(azz —yz)pz+-2'
~
alz

~
p]«»(]/] —50) ——2'Pzz;zzpz ——,

'
~
P»;]2

~

p]cos(]/ —51)

——,
~
)l)]z;22

~
p]pzcos{]/ —5z) —P»;]zp]pz ——,

~
8»;22

~
p]pzcos(2]/] —253),

"{y)=2{3']+»—&]—&2)+
& I

a»
I

— »n{]/l —5o) —4 Ip»;» I
(pl —pz)»n{]/ —51)1 1 P] P2 2 2

P2 P& P2

——'
~
P]z zz

~

—(pl —pz)sin(]/] —52) ——'
~
P]] zz

~
(pl —pz)sin(2]/] —253)4 4

+»n{0—5o)+ 2 IP]];» I
{p]+pz)s'n{@—5])1 Pi P2 2 2

P2 Pi P2

+ —'
~
p»;22

~

—(p]+pz)sin(]/ —52)+ —'
j p», 22

~
(pl+pz)sin(2]/] —253),

2
p

2

D (pl ) = 4 a] 1
—

z p]],]]p]——,'6 pl 2, lzpz —
~
p]],.]2

~
p]pzcos{]/] —51)——,6 ~

p]],22
~

pzcos(2]/] —253),

D (p2) —
4 a22 2 pzz;zzp2

16 p2 p22

16P]2;]zp] —~
P]2;22 ( p]pzcos(]/2 52) ——,6 ( P]] 22

~

p]cos(2]/] —253)

2)a]z) 1 I 5 pz pzz
'/ ll;11+Pzz;22+Plz;12 2 + —1

P&P2 32 ' ' ' 2 p2 p,

+
~
p]];22

~

5 ———z+ —
z cos(2]/] —253)

3 p& p2

P2 Pl

+2(
I
&]];»

I
cos(]/] —51)+

~
P]z;zz

I
cos(@—52))

Pi P2

P2 PI

all azz 2~a]2~ 1 5 pl
2 2

D()= —,+ cos(1/] —50) — '/311;11+/322;22 0+2;1]2 2 + 2 + 1
4 p] p2 P]P2 8

' ' ' 2 p2 p

~
pl 1;22

~

5+ ——
z +—

z cos(2]/] —253)
3 p] p2

2 p2 p]

P& P2+ q l I
/3»;»

I
cos(]/] —5])

I
&»;22 I

cos(]/] —5z)]
P2 P]

{P]~P2)= 2 I
a»

I
Cos{4—5o) 8 ~11&]2;]2P]P2+81&]];»IP]cos(@—51)+8

~
/3]222 ~Pzcos{]/] —5, ) ~5

~
P„.zz ~P]Pzcos(2]/] —25, )],

IalzI . 1 4pl —3pz Sp &

—3p2
pl e)= i (1 —5o) ——

I/3]], ]2 I
sin(]/ —51)+

~
p]z zz

~

pzsin(]/] —52)+ I&» 22 I
sin(2]/] —253)

4p2 8 2p]

1 . 4pz —3p', 5p2 —3p]o)+ I/3»;]2
~ pl i ]/2 —51)+

~
p]2.22 sin(]/] —5z)+

~
p». zz

~

sin(2]/] 25, )4pi 8 p& 2p2

D (p], g) =-
2p2

1 gp~+6p2 . 5p]+ 3p2sin{]/ —50)+ —2pz
I
]{)»;22 I

s'n{]/] 5z)+
I &»;]2 I

sin(1/] —5, )+
I
p]].22

~

sin(2]/] —253)8 P2 pi

8pz+ 6p 1 5pzz+ 3pz]s'"{]/'—5o)+ 2p] I P»;]2 I
si"{0—51)+

~
Plz 22

~

sin(]/] —5z)+ ~/3]1. 22 ~
sin{2]/] —253)2pi 8 pi P2

1D(y 0)=—
4 2

2 2

+ / ]1;]]+/ 22;22+ 2P]2; ]2 2, —2
l P]1;lz

~

—«s{]/ —51 )

2 2

+2
I
p]2. 22

~

—cos(]/] —52) —2 (/3]], 22 (

—
z

——
z cos(2]/] —253)

Pi , P] P2

P2 '
P2 Pi
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8 [/31 1; 11 + /322; 22 + 6/312; 12

—8/311 22cos(2$)] . (18a)

How the coefficients all, a22, a12, and /311 11, /322. 22, /312. 12,

and /311.22 are related to each other depends on the modu-
lation of the gain medium, i.e., on the spatial variation of
n (z). Our aim is to obtain equality of all gain coefficients
and equality of all saturation coefficients, i.e.,
a 1 1 a 22 a 12 =a and /311; 11 /322;22 /312; 12 /31 1;22 =/3.
How we are able to achieve this will be investigated in the
following chapter. Here we assume now that this condi-
tion is fulfilled, and Eq. (18a) simplifies to

D (8)= (1 —cosl/j) —/3(1 —cos2$)
2p

(1 —cosl/j) —2P(1 —cos I/)
2p

In addition we require that both modes have the same
average number of photons, i.e., pi ——p2=p . With this
condition, Eq. (18) simplifies to

1
D (9) 2 [a 1 1 +a22 2a12cosltl]

4 2

D(8)= —/3 .
2p

(18a')

From Eq. (20) we conclude that a modulation for which
the gain and saturation coefFicients are equal must have
the density of atoms mainly at points where e ' '=1, at
z =~j/k where j is an integer. In principle we would like
to have 5 functions there but in reality there will be peaks
in the density with a width A. When we assume that
these peaks are of Gaussian type, the density function
n (z) between z = —//2 and //2 looks as follows:

no
n (z)=

2jo+ 1

In2
1/2

2
ln2

&( exp
k

z — j (21)

with j= [/k/2Ir] and n p = const.
With this equation we obtain for the integrals of Eq.

(20)
1/2

n (z)dz = n p,—1/2

2ikz 6 k
n (z)e ' 'dz=npexp

—1 /2 ln2

—2/3(1+cosl/) (1 —cosl/) .
2p

(18b)

We see that the diffusion coefficient D(H) vanishes for
/=0 also when nonlinear saturation eff'ects are taken into
account. Thus we see that the quantum noise quenching
obtained for the Hanle effect and quantum beat CEL's is
recovered and remains valid in the nonlinear regime.

V. MODULATION OF THE GAIN MEDIUM

For traveling waves the normal mode functions ul(z)
and u2(z) are given by

ul(z)=e' ' and u2(z)=e

Then from Eq. (13), using the fact that
= fu2

f

=l, wehave

aj, =ap f n (z)
f u, (z)

,
'dz

—1/2

(19)

fulf

=ap n (z)dz (j =1,2),j/2
—1/2
I /2 lt /2 2ikz

a12 ——ap n (z)u1(z)u 2 (z)dz =ap n (z)e dz,
—E/2 —I /2

1 /2
/311; 11 =/312; 12 —/322; 22 =/3p —1/2

I /2 2i kz
/311; 12 /312; 22 —/3p —1/2

P11.22=/3p f n (z)u 1(z)u2 (z)dz=/3p f n (z)e '"'dz .
—I /2 —I /2

(20)

f 4k, 4A k
n (z)e ' 'dz=npexp

—1/2 ln2
(22)

VI. MEAN MOTION OR DRIFT OF AMPLITUDE
AND RELATIVE PHASE ANGLE

We now examine the drift coefficient d (8) for the rela-

tive phase angle (cf. Table I). In the Langevin equation
the time development of 0 is given by a velocity and a
noise term. The drift coefficient in the corresponding
Fokker-Planck equation contains the velocity, but in gen-

eral there is also a noise-induced drift. ' However, this
noise-induced drift can be neglected here as is shown in

the Appendix.
Therefore we can write

P& P2
0 =d(0) = Al —II2 —vl+ v2 ——,

' a12 —+—sinl/j
P2 P&

We see that all integrals are approximately equal if the
width b. is much smaller than 1/k. This result [Eq. (22)]
is still valid when only every nth peak in Eq. (21) is
nonzero (n positive integer). From Eq. (22) we see im-
mediately that all coefficients for gain are equal
(all =a22=a12) as well as all coefficients for saturation
(/311;11 /322;22 /312;12 —/311;12 /312;22 /311;2—2), w»c»s «
quired to obtain a vanishing diff'usion coefficient D (0).

As an example of a possible device, one could envision
optically pumping narrow regions of the active medium
via a combination of interfering pump beams.

If the gain medium is not modulated, i.e. , n (z)=np
const. , a12 and /311. 22 are of the order of 1/k, which is

very small at optical frequencies. In this case, we no
longer obtain noise quenching in the relative phase angle,
and from Eq. (18a) we have

+ 2 /311; 12 (p 1 +p2 )sing
2 2

P2,

+ —,'/312; 22
—(p 1 +p2 )sinlt
p&

+ I /311;22(pl +p2)sin(2$) + p( r) (23)
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+P11.22p sin(2$) . (23a)

Assuming a11=a22 =a 12=a and P11;11—P22;22 P11—;12
=p12.22=p11.22=p (in the case of the discussed modula-
tion), we have

where 2(t) is the Langevin noise source defined by
( 9't(t)P(t') ) = 2D (t t—') with a diffusion constant D.

For p&
——p2 ——p we obtain the following equation for the

angle /=9+(v1 v—2)t:

+1 II2 a 12»ntt'+ (P11;12+P12;22)p'»ng
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APPENDIX: CONNECTION BETWEEN
LANGEVIN EQUATION AND FOKKER-PLANCK

EQUATION

It is well known' that a Fokker-Planck equation for N
variables g; (i = 1, . . . , X)

th=01 —02 —[a—2pp (I +c os/)]si nttj. (23b)

Q=II1 —II2 —(a —4pp )1( . (23c)

From Table I we have in the steady state (y'1=@2=@)

p = Q = —'(a —Z )p+ —'ap cosp ——', pp —2pp cosg

For small tt, we have sing=1tj and cosg=1, and we ob-
tain

t)P({g~ t) g r)
[d g;at

B2

+X&
&

is equivalent to N Langevin equations

(Al)

(A2)

—
—,'Pp'cos(2$)

= —,'(a —y)p+ —,'ap cosg —Pp'( I+cosg)
where the I j(t) are random variables. The connection be-
tween the coefficients is

i.e.,

1 a(1+cosP) —y 2a —y
p =

P( 1+cosg) 8P

Therefore, we have

and

D (k' 0') =g g'k( {kI t)g'k( {k] t)
k

d(g;)=h;({kI, t)+ggkj({kI )
~ gj ({~l

a

(A3)

(A4)

a —Zpp ( I+cosg) = = —,'y,
1+cosg

so that

The mean motion of the variable g;, is not only given by
the drift coefficient but there are additional terms,

1Itj =Q1 —II2
——,

'
y g,

i.e., locking occurs for

(24)

(AS)

which gives us the phase shift associated with the mea-
surement of small rotation rates.

CONCLUSIONS

The two counterpropagating laser modes in a ring laser
can be coupled via a modulation of the active medium.
For certain conditions, the diffusion of the relative phase
angle vanishes, and this is still true in the nonlinear re-
gime.

The second term is the so-called noise-induced drift.
In addition we have to rewrite Eq. (16) to obtain an

equation of the form (Al). The interchange of diffusion
coefficients and derivatives results in a contribution to the
drift coefficients that is the derivative of the diffusion
coefficient.

In our special case, however, where all coefficients are
given by Table I, the derivatives of the diffusion
coefficients are a factor 1/p smaller than the drift
coefficients and therefore negligible. The same is true for
the noise-induced drift. Because of Eq. (A3) the noise-
induced-drift term has the same order of magnitude as the
derivative of the diffusion coefficient.
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