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The gain, phase shift, wave-front curvature, and radius of the radiation envelope in a free-electron-
laser amplifier are obtained in the small-signal regime. The electron beam is assumed to have a
Gaussian density distribution in the transverse direction. Numerical calculations indicate that the ra-
dius and curvature of the radiation beam entering a wiggler asymptote to unique spatially constant
values after a finite transition region. However, in the asymptotic region the wave fronts are diver-
gent. Analytical expressions for the gain, phase shift, curvature, and spot size are derived. It is
shown analytically that small perturbations of the optical waist and curvature about the matched
value are spatially damped out, indicating the stability of the matched envelope. When the electron-
beam envelope is modulated in space, the optical spot size oscillates with an almost identical wave-
length but is delayed in phase. In the case of small-amplitude long-wavelength betatron modulation
of the electron-beam envelope, generation of optical sidebands in wave-number space is examined and
the effect on the dispersion characteristics of the primary wave is found to be negligible for typical ex-
perimental parameters.

I. INTRODUCTION

A well-known feature of the free-electron laser (FEL) is
that the refractive index of the medium is a complex func-
tion and hence the radiation is amplified and to some ex-
tent focused in the vicinity of the electron beam. ' It
may then be possible for the electron and radiation beams
to interact over an extended length along the wiggler, with
the diffractive tendency being compensated by the FEL
interaction, thereby enhancing the efficiency of the pro-
cess.

Considerable progress has been made in studying this
process by several authors. The purpose of this paper
is to apply the formalism of the Gaussian-Laguerre modal
source-dependent expansion (SDE) of Ref. 8 to examine
the propagation and guiding of the optical wave in an
amplifier operating in the exponential gain regime, for a
variety of operating conditions.

The plan of this paper is as follows. In Sec. II the for-
malism of the SDE is employed to obtain the evolution
equations for the radius and the curvature for the lowest-
order mode of the optical beam, along with the relevant
dispersion relation for a Gaussian electron beam driving
an FEL amplifier in the small-signal regime. In Sec. III
numerical solutions of the single-mode equation for the
radius of the optical beam are presented and compared to
the result from a multimode truncation of the radiation
field. In this case, and for cases not presented herein, the
single-mode and multimode results indicate that the
radiation-beam profile entering the wiggler asyrnptotes to
a unique form after an initial transient. Additionally, the
numerical values of the radius of the radiation envelope
and of the wave-front curvature are in fair agreement, ir-
respective of the degree of mode truncation, indicating the
usefulness of the single-mode equations. Limiting our-
selves to these equations, the electron beam is then al-

lowed to oscillate at the betatron wavelength and the re-
sulting radiation profile is examined. It is found that the
optical-beam envelope follows that of the electrons with
almost identical wavelength, but retarded in phase. Sec-
tion IV discusses the results, deriving formulas for the
matched radiation-beam profile (i.e., radius and curvature)
in terms of the electron-beam and wiggler parameters. It
is shown analytically that perturbations of the profile are
spatially damped out, consistent with the numerical obser-
vations indicating a unique, asymptotic matched radius
and curvature. Appendix A presents the necessary details
required to derive the source term, for the wave equation,
for a planar wiggler and an electron beam with uniform
density along the direction of propagation. Appendix B
considers the efFect of the modulation of the electron
beam on the optical wave. Specifically, a simple analysis,
taking into account sideband generation, indicates that the
dispersion characteristics of the primary wave are only
slightly modified for typical experimental parameters.
Appendix C presents the details of the stability calcula-
tion.

II. MATHEMATICAL FORMULATION

The purpose of the present section is to present the
salient features of the source-dependent expansion
method so as to fix the notation and for reference in the
subsequent sections.

For a planar wiggler, it is appropriate to assume a
linearly polarized radiation vector potential

A= ,' A(r, B,z)exp i —cot e„+c.c. , —
C

with angular frequency co and complex amplitude A. In
the slowly-varying-envelope approximation, the wave
equation reduces to
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a ~ a' 2i~ a
r + + a =S(r, O, z),

r Br Br r2 Qg2 c Bz

where a =
l
e

l
3 /mpc, and the source function is given

by

S(r, O, z)

cAk
n, = 1+ . C 20 1 —iar —r

Q) Bz

n„= 2crz(a+i) .
~r,

ponents of the refractive index are given by

(9a)

(9b)

8~le
l

. cpzJ, ( r, O, z)exp —i
moc C

slow

Assuming the electron-beam profile to be given by

(2)

Here e is the charge on an electron of (rest) mass mp,
J, (r, O, z) is the current density, and [ I,J,„indicates that

only the spatially and temporally slow part of the quantity
in braces is to be retained.

The basic premise of the work presented herein is that
the radiation field is azimuthally symmetric and the vec-
tor potential is expressible as

nQ (z) —nbp
rbp r

exp
rb(z), rb(z)

2 2
2 2

~bp rb0 r cokwawaS (r,z) =fIJ exp
2y c rb(z) rb c(hk —il )

where rJ, (z) is the electron-beam radius at z and nJ, O is the
beam density at rb(z)=rJ, O, the source term in Eq. (1) may
be readily evaluated (Appendix A) to obtain

a(r, O, z)= g a (z)D (g,z),
m=0

(3)

with D =L (g)exp I
—[1—ia(z)]g/2 I, where

$=2r /r, (z), r, (z) is related to the radiation spot size,
a(z) is proportional to the curvature of the wave front,
and L (g) is the Laguerre polynomial of order m.

Now, if the transverse profile of the radiation beam is
close to a Gaussian, the lowest-order mode is expected to
dominate, ' ' ' and, following Ref. 8, it is simple to show
that the associated vector potential evolves according to

A = A„cos(k„z)e„,

a =le lA /mpc

(12)

(13)

y is the relativistic mass factor, fs is the usual difference
of Bessel functions, fs =Jp(g) —J~(g), j=(1/4)a /[1
+(1/2)a ], and

where the vector potential of the planar wiggler of periodi-
city 2n/k is given by

a
az

0 ao= —iFo,

d
dZ

2c cx = —rs
ao r

and the spot size and wave-front curvature evolve via

(4)

(5a)

cpb 0 = (4~
l

e
l

'n

ho�/m

0 )
'"

is the plasma frequency of the electron beam with density
nbp.

Substituting Eqs. (8) and (11) into Eq. (6) and making
use of Eqs. (4) and (5), it is simple to show that the equa-
tions reduce to

a —2(1+a )
dZ

where

c =2
cars

F]
ap ap da =2(1+a )

ckw

(fan
z CO

l

(k„r, )

r, +i (1+a )
1 d . 2 c
r, dz

A d 1
r, + — a

r, dz' 2dz

Fl
kwao R

F]—CX

k ao
(14a)

the F's are given by the following overlap integral:
d(k r, )

d(k z

ck —2
Fi

k ao
(14b)

F (z)= f "dgS(g, z)D*(g,z),
2cg7 0

and the label R (I} indicates the real (imaginary) part.
Noting that Lp(g) =1, the normalized vector potential

is seen to be given by [Eq. (3)]

Ak . I—i +2
ck„

(k r, )

Fl+2
k ap

rb1+
2

=0, (14c)

r2
a (r, O, z) =ap(z)exp —[1 ia(z)j-

r, (z)
(7) where

rbp a (rJ /r, )
'2 2 2

rJ, (z) 2y' [1+2(rJ, /r, )2]~

CObo=fr
kwao ck„where, in the exponential gain, sma11-signal regime,

ap(z)=a (0)exp i f dz~[bk (z~ ) —il (z~ )]
0

(8) Ak r
k. 'k. (14d)

Here a (0) is the input signal at z =0, and the two com-
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The spatial evolution of the system is governed by the
diff'erential system (14a) and (14b) along with the disper-
sion relation (14c), the solution of which yields a(z), r, (z),
b,k(z), and I (z).

III. NUMERICAL RFSULTS

cur, (z)
zR

2c z=0

it is informative to present the numerical results with the
distance along the wiggler measured in units of the Ray-
leigh range. In all the numerical results to be presented,
the radiation field is assumed to be in the form of plane
waves at the entrance to the wiggler, i.e., a(z =0)=0.

A. Case I

To begin with, Fig. 1 shows the results for the follow-
ing parameters: beam current Ib ——270 A, rbo ——0.01 cm,
y =2000, 2m/k =10 cm, a =6.15, and r, (z =0)=0.02
cm. Noting the factor of 2' difference between the
definition of a„ in Eq. (13) and that in Ref. 4, it is clear

Having obtained the single-mode system of Eqs. (14), it
is of interest to determine the extent to which it approxi-
mates the general solution in (3). Once it is established
that Eqs. (14) provide an adequate representation of the
general solution, it is then possible to study a variety of
problems of interest by solving a simple set of equations.
Briefly, the numerical procedure for solving an initial-
value problem is the following. Substituting Eq. (14d)
into Eq. (14c) yields a cubic (algebraic) equation for
b,k —it which may be solved, at each z, in terms of r, (z),
o.(z), and rb(z), thus enabling Eqs. (14a) and (14b) to be
stepped forward in z. Since in the absence of source terms
an input radiation signal diffracts away on the scale length
defined by the Rayleigh range z~,

B. Case II

Figure 3 presents the results for a case where the elec-
tron beam is not matched, i.e., the envelope of the elec-
tron beam is modulated:

rb (z) = r +bo6r~ si

(knez�

), (16)

where 5rb is the amplitude of the modulation and for sim-
plicity kp is chosen to be equal to the betatron wave num-
ber k a /(v'2yp, ), neglecting self-fields. ' p, is the
beam speed along the wiggler axis normalized to c. The

from Fig. 1(a) that after a transient oscillation over a dis-
tance of about 20 Rayleigh ranges, the radiation spot size
approaches a value quite close to that obtained with the
two-dimensional FEL code FRED at the Lawrence Liver-
more National Laboratory (LLNL). We also find that
for all the numerical cases examined, a unique, asymptot-
ic spot size is obtained irrespective of the initial optical
waist. Figure 1(b) shows the spatial evolution of a, indi-
cating that it, too, approaches a constant value after an in-
itial transient behavior.

The solid curve in Fig. 2 shows the evolution of the 1/e
width of the radiation amplitude with a five-mode
(m =0,1,2,3,4) source-dependent expansion calculation us-
ing the same set of FEL parameters. The radiation field
is represented by Eq. (3) and the source term is given by
Eq. (11). With the assumption that the fundamental
mode dominates, only the hk and I of ao(r, z) are in-
volved in the source function and they are obtained from
Eqs. (14c) and (14d). It is found that the fundamental
mode remains dominant over many Rayleigh lengths.
For comparison, the dashed curve in Fig. 2 shows the
fundamental mode spot size of Fig. 1(a), and the asymp-
totic results are seen to differ by about 10%. This sug-
gests that the single-mode system of Eqs. (14) may be re-
garded as a reasonably accurate simplification of Eq. (3).
Henceforth, the results presented pertain to Eqs. (14).
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FICx. 1. Spot size (r, ), a, phase shift (Ak), and gain (I ) vs dis-
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FIG. 2. (1/e) width of the optical field vs distance along the
wiggler. Solid curve, five-mode system; dashed curve, one-
mode system.
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parameters, typical of the Advanced Test Accelerator ex-
periment at LLNL, are Ib ——2 kA, rbo ——0.3 cm, @=100,
27r/k =8 cm, a =1.72, and r, (z =0)=0.35 cm. (The
reader is referred to Refs. 9 and 11 for details. ) In Fig. 3,
where 6rl, /rbp=0. 1, it is observed that the optical spot
size follows the modulations in the electron envelope ap-
parently identically. Specifically, a number of cases were
examined with 6rb/rbo up to 0.4. In all cases the electron
and optical beams oscillate with almost identical wave-
length, although the radiation beam appears to lag behind
in phase. Defining the modulation depth b, = [(r)
—(r);„]/[(r),„+(r);„],it is found from Fig. 3(a) that
b„=0.087 whereas, from Eq. (16), b, b = 5rq /rbp =0 1. .
Although the modulation depth of the electron beam
differs from that of the radiation beam, it is found that 6,
increases with 6rb.

More generally, allowing for the defocusing effect of
self-fields, there is always the possibility of a small-
amplitude ripple on the electron-beam envelope and hence
on the radiation-beam envelope. In Appendix B, genera-
tion of sidebands is considered in a simplified model and
found to have, for typical cases, an insignificant effect on
the linear dispersion characteristics of the primary optical
wave, as implicitly assumed by employing the source term
in Eq. (11) in the present case.

IV. ANALYSIS OF RKSULTS

One interesting feature of the numerical results is that
in all cases the radiation spot size has a unique, asyrnptot-

0.3

kwao
—a

kwao I
(17a)

ck F]
4a —2 (k r, ) =0.

kwao
(17b)

Combining Eqs. (17a) and (17b) one obtains

(1 ia) — +(k r, )
2 ckw F)

CO k ao
=0,

which, upon making use of Eq. (14d), yields

k2 1/25k=, I =5k/a,1+2f
where

ck
~ho

ck

2
rbo

2 2
aw

2$

and f =(ri, /r, ) is the filling factor. Substituting the ex-
pressions for Ak and I into the dispersion relation (14c),
one obtains

~ =[f/(3f +2)]' ',
(~/v)1/4 ( 1 +z /2) / f I/4( 1 +2f)3/2

23/4k yf I/2 g 1/2 (1+3f /2)3/4

ic limit irrespective of the initial value. The asymptotic
value of r, and of o. is determined by the fixed points of
Eqs. (14a) and (14b), i.e., at the fixed point

ck 12(1+a )
(k r, )'

0.2

0.1—

0.0 3.0
2/ZR

6.5x10 3

6.0

(aj i

6.0
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Z/ZR
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where v=(col, primp/2c) is Budker's parameter. These ex-
pressions may be used to obtain the asymptotic spot size
for a given filling factor, and then one obtains the corre-
sponding electron-beam radius via rb =r,f ' . To avoid
complications arising at the outer edges of the optical
beam, where the field amplitude is small, typically a filling
factor f5 —,

' is appropriate. It is also possible to rearrange
the expression for r, to obtain
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where

2f2

aw
y/v

' 4 1/3
yrbk

2 )+a /2

The cubic equation for f may be solved to obtain an expli-
cit expression for r, . Noting that the sum and the prod-
uct of the three roots of the cubic equal —1 and q, respec-
tively, it follows that there is a unique, real value for the
asymptotic spot size r, .

To examine stability, it is convenient to define

FIG. 3. Spot size (r, ), a, phase shift (Ak), gain (I ), and ra-
dius of electron beam (rb ) vs distance along wiggler.

and subsititute Eq. (14d) into Eq. (14c) to obtain the local
dispersion relation
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ck
Y +2

2

1+(rb /r, )

[1+2(rb!r, ) ]

1 —1 cx 2 ckto
Y = —2

(k r, )

(18)

which may be solved iteratively. It turns out that for the
parameters of case I, at the lowest order, the right-hand
side balances the quadratic term on the left. The relevant
root, with b,k, I &0, may be substituted into Eq. (14d) to
obtain, for n ~0,

F)
k ap

1 —/cx

(k r, ) +(k rb)

1

2(1+a )

a i [1+—(1+a z} ~)~] (k r, ) (k r, )(k rb)

[]+(1+a )'~ ]' (k r, ) +2(k r(, ) [(k r, ) +(k rb) ]'~

(19)

Perturbing Eqs. (14a) and (14b) about the fixed point and
making use of Eq. (19), it is simple to show that the per-
turbation is spatially damped, thus indicating the stability
of the fixed point. The algebraic details are relegated to
Appendix C.

Another aspect of the results which is of interest per-
tains to the nature of the phase fronts and the flux of opti-
cal power in the asymptotic region. From Eqs. (7) and (8)
it is simple to check that, in differential form, the surfaces
of constant phase are given by ((u /c + b,k )5z
+ (2ra/r, )5r=0, and hence, noting that bk, a & 0, the

wave fronts are divergent in the direction of propagation.
Consistent with this, there is a nonvanishing transverse
component of the Poynting flux. Specifically, for r/r, 51
the ratio of flux of optical energy in the transverse direc-
tion to that along the z axis is -ar/kr, &~1.

J„(r,e,z)= —
l
e

l
5n), (r, e,z)v,

nb.
' "

2ymoc
+c.c. ,

S(r, e,z)= ~nb&ul —l [(k + k )z t]—2

2
e

Qmpc . slow

where k =co/C.
The perturbed beam density can be evaluated from the

continuity equation

d5nb 85v
nb (A2)

where 5nb is the perturbed beam density and the relation
v„=v =

l

e
l
3 cos(k z )/ymoc has been used. Equa-

tion (2) can then be written as

V. CONCLUSION

Based on the results presented herein, the simplicity
and accuracy of the single-mode Gaussian-Laguerre ap-
proximation to the solution of Maxwell's equations have
been demonstrated. It is shown that, in the exponential
gain regime of operation of an FEL amplifier, there is a
unique, asymptotic spot size for the radiation beam ir-
respective of that at the entrance of the wiggler. There is,
however, a transverse flux of optical power. It is shown
analytically that the asymptotic profile (i.e., the radius and
the curvature at large z) is stable to small-amplitude per-
turbations. With a spatially modulated electron-beam en-
velope, that of the optical beam is found to oscillate on
the same spatial scale.

and the equation of motion in the z direction,

Vz

dt ymp

Vx &y u, (v„E, )

c 2
(A3}

6nb

dt2

—Ie lnb a a v, a+,—C'po d,
ymo Bz Bz C2 Bt

(A4)

where

where electron self-field effects are neglected. Taking the
convective time derivative of Eq. (A2), and incorporating
the linearized version of Eq. (A3), one can arrive at the
following equation for the perturbed beam density:
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((k+k ) — ]
4p,„d—— +c.c.

4/mpc

With the assumption that A (r, e,z) is a slowly varying
function of z, i.e., l

a]nA/az
l
«k «k, Eq. (A4) be-

comes

APPENDIX A: SOURCE TERM
d 6nb

dt2
(«+k. ).— t]

2

k ke " +c.c. ,
2P mpc

(A5)

In this appendix, the details of the evaluation of the
source term S in Eq. (11) are presented.

The FEL source current, J„(r,e,z) in a linear wiggler is
given by

where the resonance condition ~=u, (k +k ) is used.
For a near-Gaussian radiation field in the exponential

gain regime,
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A (r, 8,z)= Ap(r, 8,z)

= Ap(0)exp i f '[bk(zi) —iI (zi)]dzi
0

p
2—[1—ia(z)]

r, (z)

and assuming that Ak, I, a and r, are slowly varying
functions of z, Eq. (AS) can be integrated immediately to
give

(~k+i,.~
— tl

2

~nb =
2 2 4 2 +

2y m pc (b,k —i I )
(A6)

When Eq. (A6) is substituted into Eq. (Al), taking into
account the usual difference of Bessel functions for a pla-
nar wiggler, and Eq. (10) for the beam profile, the source
function in Eq. (1) is then given by Eq. (11).

APPENDIX B: SIDEBAND GENERATION

In this appendix generation of sidebands to the primary
optical wave, due to the spatial modulation of the electron
beam, is analyzed. It is to be emphasized that the follow-
ing analysis is intended merely to show that the dispersion
characteristics of the primary optical wave are only slight-
ly modified [-(6Np/Np) ] for typical experimental pa-
rameters, as implicitly assumed in applying the results of
Appendix A to the case of a modulated electron beam in
Sec. III. The development of the linear theory herein
generalizes that of Sprangle et al. ,

' to which reference
should be made for further details.

The form of the vector potential of a planar wiggler em-
ployed in this appendix is slightly different than that given

+ A p exp( ikz i cot —) +c.c. ]e

where it is assumed that the electron density, modulated
at the betatron wavelength 2~/kp, has the simple form

5Np
n p Np +—— [exp( ikiiz ) + c.c.],

2

with kp (&k &(k, and k+ ——k+kp, k =k —kp.
Following Ref. 12, the wave equation is found to be

r

2
Cc) ba2 4~~ ~ ~'65nA

c Qt Poc, Qom Qc

a2

az2

where yp is the relativistic factor in the absence of the ra-
diation field, tvb =(4rrnp

~

e
~

/mp)', and 6n is the den-
sity perturbation caused by the radiation. Note that the
velocity U, p along the wiggler axis is not affected by the
betatron oscillation and hence yp, to lowest order in

~
eA~/ypmpc ~, is not a function of z. Defining the

ponderomotive potential

~ pond= 2
Aw. A,

yompc

the momentum, continuity, and Poisson's equations may
be combined to obtain

by Eq. (12),

A = A [exp(ik z) —c.c. ]e

where 3 is purely imaginary, and that of the linearly po-
larized radiation field is taken to be of the form

A=[A+exp(ik+z —itvt)+ A exp(ik z —itpt)

U, p Bn 06n- 5n+
np, Bz, dt

4lrnp/e
6n+

mpFQX m O'V O'Yz

Bnp

az az

—
[
e

[
a a v, p a

no + —q
moyo Bz Bz c Bt

(Bl)

where y, =(1—v,p/c ) ', 0& is the scalar potential, and
terms such as 8 np/Bz, which are on the order of kp,
have been neglected.

Writing k+ =k+kp, k =k —kp,

6n = [6n+exp[i(k++k )z itvt]—
;2

6NQ
m22—

2 0

m32m23 m )2m2]+
m33 m[~

where e=(6Np/2Np) and mi3, m3i ——O(e ). It is then
simple to show that, correct to O(e ), the dispersion rela-
tion is given by

+6n exp[i(k +k )z —icvt]

+6npexp[i(k +k )z —itvt)+c. c.],
where

L

2
6NQ

2%0
a22+m22

m33

noting that, on the left-hand side of Eq. (Bl), the ratio of
the fourth to the third term is on the order of kp/k «1,
one finds that

2
CObQ

m22 =m22(k):— [CO —(k +k )v p]
XQX.

m~~+e a2

6m2&

m3]

Em ~2

m22+e a22
2

E'm 32

m&3

Em23

m33+6 a+2

2
co ~bo

X k —,+ 2
2Mbp 2kk a

QO

is the usual matrix element for the primary wave,
m 11 m22(k+ ) m33 ™22(k—)
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m, ~ =m, p(k+, k, kp)
2

[co—(k++k )v,o]—
roc

r

2
~bo

2
ro3 z

2
CObP+ kpu 0[co—(k +k )u 0]—
ror,'

2 2 2

k'— k+ k„a
c ro

2
~bo

roc 2

m21=m12(k, k+, —kp), m&3 =m1z(k, k, kp),

m3q =m1q(k, k, —kp),
2Mb p 2') bpk pvzp

4 2 2 2

a22 = — +

2 2~bo bo
kpu, p[co —(k +k~ )u, o] +

roc ror,'

and co1,0=(4me No/mo)' . Note that with the definition
chosen for 3 in this appendix, a = (e 2 /m Oc ) & 0.

To proceed along the lines of Ref. 12, it is convenient
to write

2
5Np

2Np

a+ a
+

m33 m»

i.e., if

5Np
2kpcco

— /2(2jcu )1/& 1/2 /4

Np

For typical experimental parameters, the right-hand side
of this equation exceeds unity, whereas 6NO/No « 1, im-

plying the insignificance of the effect of modulation on the
dispersion relation.

APPENDIX C: STABILITY ANALYSIS

where x=(k r, ),y=(k r1, ),

The purpose of this appendix is to establish the stability
of the fixed point (r„a) of Eqs. (14).

Perturbing Eqs. (14a) and (14b) about the fixed point
and making use of Eq. (19), it is seen that the perturbation
evolves according to

d 5a a» a12 5a
=2

d (k z ) &x a21 a22

m22 =M22+ C22,

where

M22 = [co —(k +k )v,o]—
2

~bp
2rory

a»=

a12 =

—a(ck /co) a+XI+ (Xg —aXI ),x+y aux

—(1+a )(ck /co)y(2x+y)
(X~ aXJ ), —

x (x+y) ax

x&r

and

2 2
CO ~hok-
c roc

—2cob p
2

C22 —— kk a
ro

is the "coupling" term. The dispersion relation then be-
comes

and

a21 =

x= —1

2(1+a )

1/2
a —i [1+(1+ )a'/ ]
[1+(1+a2)1/2]1/2

1/2

a(ck /co)
(xXI ),

(x +y)2 c)x

r 2
RVO1+
2NO

a+ +
m33 m11

M22
X

x xy
x+2y x+y (Cl)

'2

1+ No

2Np

a+ a
+

m33 m11
C22

2
No

2Np m33m11

(B2)

m 12m 21 m 32m 23+ —a 22 —a( ck /co )x

(x +y)

2

+S2 —S1 —S3

1/2

where

Assuming that 5a, 5x -exp(A. k z), one finds that

a(ck /co)(x +2y)
+S2+S1

(x +y)'

M22 yields the dispersion relation for uncoupled elec-
tromagnetic and space-charge waves. The right-hand side
of Eq. (B2) introduces the FEL interaction and coupling
to sidebands, and its effect is included iteratively. At the
lowest order, M2q=0 for some (co, k). Substituting in the
right-hand side, the second set of terms vanishes; the term
proportional to C22 survives.

Substantial modification of this dispersion relation is ex-
pected if

S3 ———4x
axr
aux

a~, ax,
S1 ——— +0.

ao! acr

a
Sp = (xXI ),ax

—(1+a )(ck /co)y(y+2x)
x (x+y)

a
(Xg —aXI )

ax
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(Note that all the variables in this appendix are evaluated
at the fixed point. ) Making use of Eq. (C 1), it is simple to
show that Xl /a —t)XI/t)a )0, t)A'g —a&1)/c)x & 0,
whence S3 )0 and hence, noting that Sq+S~ )0, and that

the perturbation solution for Eq. (18) implies
Si &a(ck /ni)/(x+y), one finds that Rek&0, thus indi-
cating the stability of the fixed point to small-amplitude

perturbation s.
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