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Instability of counterpropagating beams in a tvt'o-level-atom medium
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Self-oscillations are predicted for a simple nonlinear optical system consisting of two counterpro-

pagating waves in a two-level medium. Oscillations at frequencies of T & and the Rabi frequency are
expected for certain limits of system parameters. The physical origin of these instabilities is traced to
parametric amplification in the medium. The possibility of experimental verification is discussed.

I. INTRODUCTION

Nonlinear optical systems were shown to exhibit tem-
poral instabilities, which appear as periodic or chaotic in-
tensity oscillations. The research has been focused on sys-
tems which include external feedback, and in particular,
lasers' and bistable resonators. The external feedback
plays a crucial role in the generation of instabilities in
these systems.

In previous works we have shown that instabilities can
also occur when there is no external feedback, ' and are
therefore fundamental in nonlinear optics. We have
studied the interaction of two continuous-wave counter-
propagating beams in a nonlinear Kerr medium. This
interaction is very common in nonlinear optics experi-
ments, and in fact, in any interfering beam experiment
there is a component of counterpropagation. We have
found that such an interaction leads to a variety of
time-dependent phenomena, provided that the material
has a finite response time. In particular, two counter-
propagating beams may undergo self-oscillations beyond
a certain threshold intensity. As the intensity is in-
creased the oscillations go, through a series of bifurca-
tions, into a chaotic state. We have also shown that
these self-oscillations can be fully explained as paramet-
ric oscillations in a distributed feedback structure
formed by the phase grating in the medium. We have
been able to identify the various oscillation frequencies
with the modes of the distributed feedback resonator and
to explain their behavior as a function of the medium
length and response time. Our analysis, which treated
the case of a single polarization, was recently extended
to include vector field interaction.

The interaction of two counterpropagating beams was
extensively studied in laser instabilities. ' It was shown
that the grating formed by the two counterpropagating
beams increases the coupling between the two modes and
generates instabilities. It is interesting, therefore, to study
this interaction in a passive medium, with no external
feedback, where other sources of instability are eliminat-
ed.

In this paper we wish to investigate the interaction of
counterpropagating beams in a two-level medium (TLM).

Since a TLM can be approximated (at low intensities far
from resonance) by a Kerr medium, we may expect simi-
lar instabilities to appear. Resonant and coherent eA'ects

may lead to a much more complex and rich behavior in
this system. However, the main motivation for this study
is the possible definition of conditions for the experimental
observation of some of these e6'ects.

It is important to note that since the internal feedback
arises from the interference between the two beams, the
calculations are performed without the mean-field approxi-
mation. The analysis of the interaction in a TLM, howev-
er, is by far more complicated compared with that of a
Kerr medium.

(i) The phenomenological single Debye equation, which
describes the relaxation of the nonlinear index of refrac-
tion of the Kerr medium, is replaced in the TLM by three
Bloch equations.

(ii) The spatial modulation of the polarization is purely
sinusoidal in a Kerr medium, while saturation causes a
distortion of the sinusoidal pattern and generation of
higher Fourier terms in a TLM.

(iii) The number of free parameters is greater in a TLM.

Surprisingly, the TLM model can be solved analytically
with only minor approximations.

We shall investigate the interaction of two equa1-
intensity beams in a homogeneously broadened two-level
medium. In Sec. II we formulate the problem and find
the steady-state solutions. In Sec. III we describe the
linear stability analysis and in Sec. IV we explain several
unstable solutions. Finally, in Sec. V we try to explain
the physical origin of some of the instabilities and relate
them to other phenomena observed in TLM. We also
comment on the possibility of experiInental observations.

II. STEADY-STATE SOI.UTIONS

We consider two counterpropagating plane waves in-
teracting in a TLM, as shown in Fig. 1(a). Our treatment
will trivially hold for the geometry of Fig. 1(b), by replac-
ing z by z/cosO. The forward and backward propagating
fields are given by
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(a) EE*=EFEF+e~cs+eFE~ exp( —2ikpz)+c. c. (4)
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We therefore expand Dss in a Fourier series as

Dss = g D„(z)cos(2nkpz),
n=0

where D„ is given by

1 L
Dn = Dss cos(2nkpz)dz .I. O

6'F Performing the integration of Eq. (6) we get the
coefficients of the series

TWO —LEVEL
ME DIUM

FIG. 1. Geometries for interaction. (a) Two counterpropagat-
ing beams. (b) Two interfering beams.

Dp= —[1+2(IF+I')+.(IF —Ig ) ]

I,
D

~
= [( 1 +Ip +Ig )D p + 1 ]

2FpEg

1D„= n =2, 3, . . .
Dp Dp

(7)

EF(z, r)= —,'eF(z, t) exp[i (cot —kpz)]+c. c. ,

F~(z, t)= —,'es(z, t) exp[i(cot +kzp)] +c.c .

where IF=
~

Ep
~

/I„ I~=
~
eg

~

/I„and I, =(1+5 )/
(x T

& T2 ) is the saturation intensity.
Let us define now forward and backward steady-state

polarizations Sz and Sz, respectively, and expand them
also in Fourier series as

The TLM is characterized by longitudinal and transver-
sal relaxation times T~ and T2, respectively. The small-
signal absorption at the line center frequency coo is ao, and

p, b is the atomic matrix element. The Bloch equations
for the polarization S and the inversion D, induced by an
electromagnetic field E =EF+Eq = ,'E(z, t) exp—(idiot)+cc.
are then

SF = g SF„(z)exp[ —i (2n + 1 )kpz],
n=0

S~ = g S~ „(z)exp[+i(2n +1)kpz] .
n=p

(8)

BS (1 —i5) S+ I KED
at T

dD D+ 1 i
at= T, +2"

(2)

Substituting Eqs. (5) and (8) into Eqs. (3) yields

l KT2
SF„= (cFD„+EgD„+ ) ),

1 —i5
where ~=2hp, q, 5 =(cu rpp) T2, and —it is assumed that in
the absence of an external field the atoms are at ground
state. It is clear from Eqs. (2) that both S and D would
be spatially modulated by the standing-wave intensity pat-
tern. Moreover, we can anticipate that due to saturation
this modulation is not sinusoidal ~

First, we find steady-state solutions for Eqs. (2). We
then substitute the steady-state polarizations in Maxwell
equation to get the steady-state fields. Consequently, we
obtain the self-consistent values for the polarization and
the inversion. This problem was previously treated by
Charmichael in relation to a Fabry-Perot resonator.

Setting the time derivatives in Eqs. (2) to zero, we get

Tl T2K EE,

Dss = — 1+ 1+6'
IKT2

Sss = . ~Dss
1 —I.6

From Eq. (1) it follows that

Sa, n = 1 KT2 (DQ+DQ)
1 —i6

We now proceed to solve Maxwell equations, using the
slowly varying amplitude approximation. Since only the
first Fourier term of the polarization is phase matched
these equations acquire the form

Bc BE
+

~
f&pSFp

c Bt Bz

Bcg = —iapS~, p .
az

By substituting Eqs. (7) into Eqs. (9) and then into (10),
and setting the time derivatives to zero, we get equations
for the steady-state fields. These two complex equations
can be separated into four real equations for the intensities
I~~ and phases 4~~..
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for the perturbations, from which d+, d, s+, and s
can be determined. The explicit expressions are given in
the Appendix. Before substituting the polarization into
Maxwell equation, we should note that both c.+, the field
oscillating at ~+0,, and c, the field oscillating at cu —0,
are composed of forward and backward propagating
waves. We therefore redefine the fields E+ and c. by

d+F
Gz

np6

2IF (1+g

E+(z) =F~(z) exp( —ikz)+F2(z) exp(+ikz),

(z) =F3 (z) exp( ikz)—+F4 (z) exp(+ikz),
(15)

1+Ig —IF

[1+2(Is +It; ) + (IJ; Ig ) ]'—
dna 1 &p&=+

dz 2I~ (1+pi)
1+IF —Ig

X 1—
[1+2(Is+I')+(Ip Is) ]—2 1/2

If we limit ourselves to the case of very large detuning,
5~&1, and small absorption, aoL /5 && 1, we can assume
that the two beams are not depleted, i.e., dIF /dz
=de /dz =0, and we can consider only the phase
changes as the beams propagate along the medium. Tak-
ing the two intensities to be equal we get

d+F
dz

&p~ 1 11— —= —0,1+&' 2I v'1+4I
(12)

d Ng cxp6 1 1+ 2
1 =—+0,

dz 1+6~ 2I V'1+4I

where I =IF——I~. The steady-state field is then

ass ——&I exp[ —i(ko+9)z]+&I exp[+i(ko+9)z], (13)

and the self-consistent values Sss and D~~ are given by
substituting Eq. (13) into Eqs. (3).

where k =ko+9. From Eqs. (10) we get a set of linear
differential equations for the F s,

dF1

dz
iao—S+(k)— — i9 F—),

c

dF =+i tzSo+(k)+ — i9 F2, —
dz C

(16)
dF3

dz
=+iaoS* (k)— —+iO F3,

c

dF4

dz
= —iaoS* (k)+ —+io F4,

C

where S+(k) are the phase-matched polarizations obtained

by Fourier transform of s+. We therefore can write Eq.
(16) in a matrix form

d F=M1F,
dz

(17)

where F= (F~, F2,F3,F4 ). The elements of the matrix M i

represent phase-matched four-wave-mixing interactions
which couple each F; to the others. We shall discuss the
phase matching of these interactions later. Equation (17)
simplifies by defining G = (F

& +F2, F3+F4, F
~ F2, —

F3 F4) and we g—et

III. LINEAR STABILITY ANALYSIS G =M2G,
dz

(18)

E(z, t)=ess+E+ exp(At)+e exp(A*t),

D(z, t)=Dss+d+ exp(At)+d exp(A, *t),
S(z, t)=Sss+s+ exp(At)+s exp(A, t) .

(14)

Substituting Eqs. (14) into Eqs. (2) and retaining only
first-order terms we get a set of linear algebraic equations

We proceed by performing a linear stability analysis in
order to determine the occurrence of a transition from
stable output intensity to an unstable output intensity,
namely, self-oscillations. We add small perturbations to
the steady-state values ass, Dss, and Sss, and take their
time dependence to be exp(A. t). The real part of A, is the
growth rate of the perturbation, while Im(A, ) is its oscilla-
tion frequency Q near the instability threshold. We note
that a field oscillating at co+A may interact with the
strong field at co to generate a field at cu —Q. We there-
fore write the perturbations as a sum of terms oscillating
at +0 and denote their amplitudes with + and —,re-
spectively,

and the matrix elements of M2 are given in the Appendix.
The general form of the solution of Eq. (18) is

4

g(z)= g C;g;(z) exp(cr;z), (19)

where the g s and the o s are the eigenvectors and eigen-
values of the matrix M2, and the C s are coe%cients to be
determined by the boundary conditions. These boundary
conditions are

FI (0)=F3(0)=0,
F2(L)=F4(L)=0,

namely, the perturbation fields are zero at the inputs. A
set of homogeneous equations for the C s is easily ob-
tained by substituting Eqs. (19) into Eqs. (20), and the
solutions are non-zero only if this set has a vanishing
determinant.

The requirement for a vanishing determinant yields the
characteristic equation. It is a complex equation which



1734 I. BAR-JOSEPH AND Y. SILBERBERG 36

can be used to find the unknown complex parameter A, as
a function of all known system parameters. A solution
with Re(k) &0 describes a growing perturbation [see Eq.
(14)], i.e., an instability. Alternatively, we may find the
threshold of instability by setting Re(A, )=0. This condi-
tion describes a transition from a stable [Re(k) & 0] to an
unstable [Re(k) &0] solution.

IV. UNSTABLE SOLUTIONS

To study the detailed behavior of the system at the in-
stability threshold we solved the characteristic equation
setting Re(k)=0. It is a complex transcendental equa-
tion with two unknowns, the threshold intensity I,h and
the oscillation frequency A. It was solved using a stan-
dard computer program for root finding. Note that
there are four free parameters to this problem: the de-
tuning 5, the small-signal absorption aoL, the ratio be-
tween the two relaxation times Tz/T&, and the transit
time t„=L/C. Typically, for each choice of parameters,
there are many roots that solve the equation. We choose
the ones with the lowest I,h, as these are the solutions
which describe the instability threshold. In the follow-
ing we consider the solutions at two limits; one of pure
radiative broadening, i.e., Tz ——2T&, and one of rapid
collisional dephasing, i.e., Tz &&T]. We choose 6=100
and aoL/5 «1, in order to be consistent with our as-
sumption of undepleted fields.

Figure 2 depicts the solutions at the limit of pure radi-
ative broadening, as a function of the transit time t„.
The threshold intensity is expressed in units of the satu-
ration intensity I„ the transit time in units of Tz, and
the oscillation frequency in units of T z . The line in
Fig. 2(a) describes the threshold intensity for the onset of
oscillations. At lower light intensities the interaction is
stable, i.e., the output intensities do not change in time.
As the intensity is increased above this threshold line,
the system becomes unstable, and the output waves ex-
hibit spontaneous intensity oscillations. The threshold
intensity is of the order of the saturation intensity, and
as one might expect, is inversely proportional to the in-
teraction lengths. Solutions, however, are found only in
a limited length range, where t, && Tz. The frequency of
these oscillations is given at Fig. 2(b). Note that the os-
cillations are fast, i.e., A&) Tz '.

Figure 3 shows the solution at the same limit of
Tz ——2T& as a function of the small-signal absorption
aoL I5, for t„=0.01. It can be seen that there is a
minimum value of absorption over which the instability
occurs. The lower line describes the onset of instability
as we increase the intensity, while the upper line de-
scribes the same as we decrease it. The existence of an
upper limit to the instability range is due to the satura-
tion in this system.

Figure 4 describes the solutions at the limit of rapid
collisional dephasing, as a function of t„ for the case of
Tz ——0.2T&. Here we find a family of distinct solutions;
each of them extends over a certain length range. Note
that these solutions are found in relatively long interaction
lengths. The oscillation frequency is much smaller than
in the previous case and is of the order of T] . It is in-
versely proportional to the interaction length. The thresh-

old intensity is much below the saturation intensity, and
again we observe the existence of upper and lower
bounds.

V. DISCUSSION
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FIG. 2. Threshold intensity (a) and oscillation frequency (b)
as a function of the transit time in the medium, for pure radia-
tive broadening, T2 ——2TI, where 6=100 and aoL /6 =0. 1, In
Figs. 2—4 the intensity is expressed in units of the saturation
intensity at 5, the frequency is the angular oscillation frequen-
cy, in units of T2 ', and the transit time is in units of T2. The
dashed line in (b) is the generalized Rabi frequency which cor-
responds to the peak field values, taken from (a).

In our study of instabilities of counterpropagating
waves in a Kerr medium we showed that it can be fully
explained as parametric oscillations in a distributed feed-
back (DFB) formed by the phase grating in the medium.
We interpret the instability as a beating between the input
fields and the sidebands, generated by the nonlinear in-
teraction, through a gain-feedback process. Figure 5
shows schematically the two input fields at m, each with
two sidebands oscillating at ~+A. The sidebands are
identified by the corresponding terms of Eq. (15).

We now apply this model to the two-level system. Let
us first consider the feedback mechanism. It is clear that
the standing-wave pattern formed by the counterpropagat-
ing waves modulates both the absorption and the index of
refraction. The grating which is formed supplies feedback
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from Fig. 2(a).
Let us now proceed to discuss the limit of rapid col-

lisional dephasing. Figure 6 depicts the gain for a probe
beam as a function of its detuning from the pump, for
T2 ——0.2T, . In Fig. 6(a) we chose the pump intensity to be
0.1I„ofthe order of the threshold intensity found in the
stability analysis of this limit (Fig. 4). It can be clearly
seen that the peak of the gain is approximately at T

&

',
and there is no net gain at the Rabi frequency. Only when
we increase the pump intensity significantly [Fig. 6(b)],
does the gain at the Rabi frequency appear, and at higher
intensity [Fig. 6(c)] exceed that of the T, '. In order for
oscillations to be built at T

&

', there should be enough
feedback at that frequency. This suggests that such oscil-
lation would appear in a medium where t, —T& ~ Indeed,
we find T& oscillations in a relatively long medium and
low threshold intensities. Moreover, we can identify the
diA'erent solution curves of Fig. 4 as modes of the DFB
resonator. This behavior is completely analogous to that
found in a Kerr medium. This should not surprise us
since it is well known that in this limit a TLA can be
modeled by a Kerr medium with a response time T&.

An interesting point is the phase-matching question.
It is clear that at low powers the sidebands of the for-
ward propagating field are not coupled to those of the
backward propagating field due to phase mismatch. For
example, the waves F& and F3 of Fig. 5 are coupled
through the nonlinear interaction with cF, since the

copropagation geometry ensures perfect phase matching.
However, the waves F& and F4 are not coupled due to
the fact that phase matching is not possible in a counter-
propagating geometry. At high intensities, the strong
nonlinear dispersion shifts the phase of all waves, and
the coupling between F

&
and F4 becomes phase

matched.
Let us consider now the feasibility for experimental ob-

servation of these instabilities. In the above analysis we
concentrated on a homogeneously broadened medium.
Although an experiment in atomic beams can be imag-
ined, it is more practical to consider an experiment in a
Doppler-broadened medium. The eA'ect of Doppler
broadening is not as harmful as it may look at first sight.
It is clear that only the zero velocity atoms contribute to
the feedback mechanism, and hence in a simplified picture
we may assume that the interaction is only with them.
The other atoms may generate gain or loss. If the fields
are detuned to one extreme of the Doppler line, their ab-
sorption would be small, but they would still contribute to
gain at the sideband frequency. It is therefore expected
that Doppler broadening will not alter the predicted be-
havior significantly.

Generation of sidebands at the Rabi frequency was al-

ready demonstrated by Harter et al. in a single beam ex-
periment. ' The gain for these frequencies is so large
that spontaneous generation can occur. The contribu-
tion of the feedback given by the counterpropagating

I=0.1 Is

Is

(b)

(c)

I

-110
I

-108
I

-106
I

-104
I I I I

-100 -8 0 4 8
Probe Detuning

FICz. 6. The gain for a probe beam as a function of its detuning from the pump, for T2 ——0.2T2, and for three pump intensities (a)
0.1I., (b) 0.5I„and (c) 1.5I, . The gain at large detuning is at the generalized Rabi frequency, while the gain and loss at small detun-

ings are approximately at +Tl '.
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APPENDIX

The solutions of the linearized Bloch equations are

(&P1+43 )XoX„+(4&3+ 4&2 )XoX'
d+ —Do

T2
XoXo (@1+C 2 )+2 +2k, T2

T1

(A1)

beam is just to lower the threshold. However, we pre-
dict that in a long medium and low intensities, popula-
tion pulsations at T1 ' can be induced and observed.
Consider, for example, sodium vapor where T1 ——16 nsec
and I, =10 m%/cm . In order to observe experimental-
ly the T1 oscillation shown in Fig. 4 we should set Tz to
3 nsec in a cell about 2 m long. The threshold intensity
is predicted to be of the order of 60 W/cm . The laser
should be detuned 5 GHz from the line center, and the
absorption at the laser frequency should be adjusted to
about 0.25.

In conclusion, we have studied the stability of the in-
teraction of two counterpropagating waves in a two-level
medium, and showed that it exhibits a rich spectrum of
self-oscillations. %'e have explicitly shown the behavior at
two limits: one of pure radiative broadening and the oth-
er of rapid collisional dephasing. However, it should be
noted that other solutions, at the intermediate range of
Tz, exist and show complicated behavior, which is not al-
ways understood. We believe that an experiment in a
two-level medium, which would demonstrate the oc-
currence of T1 ' oscillations, is feasible.

1
Z1 =

bc —ad

1
r

a b (a2 b2)1/2
1+a+&

M23 ———~2 Y1Z2

M2 4 ——C&2 ( Y2Z2+ Z4) —(A+i 8),
M3 1=%1(Y1Z1—Z3) —(A i—8),
M3 2

——41Y2Z1,

M41 ——42 Y1Z1,

M4 2
——&b2 ( Y2Z, —Z3 ) —(A+10) .

The following is a list of notations:

A=XTzt, =A.L/c,
41=(1 i5+—A, T2)

42 = ( 1 i 5—+ A,
' T2 )

@3=(1 i 5)—

Qp=xT23/I, .

X;=xTzc;, i =0, +, —

a =XT2+ T2/T1+ Qo(+1+@2 )

b =Q, o(41++2 ),
c = T2 /T1+ Q o(4&3+ 43 ),
d =Q p(%3+43 ),

T2- 2
Y1 =apL Q p( N1+ N3 ),

T1

Tz
Y2 =apL Q p(+2 +43)

T1

d-=d+
s+ =i @1(Xpd+ +X+Do ),

i @2(Xo d—+ +X* Dp ) .

T 1/2

+ e —d
e+d

2 d 2)1/2

The matrix M2 of Eq. (18) is
1Z2=-

be —ad
a —b (a b2) '/2 —a—1+a+& b

Mz ——

0 0

0 0
M13 M, 4

Mz 3 Mz4

0 0 (A2)

' 1/2
e —d+ e+d 1+ (c 2 d 2)1/2

where

M41 M4 2 0 0 Tz (
2 d 2)1/2

2 1/2 +
T1 (c —d)

M], 3 =%1(Y1Z2+Z4) —(A —i 8)

M14 ———@2YzZz

(
2 d 2)1/2

Z4=aw T 2 2 1/2
—1+

d(c —d )
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