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A transition-matrix theory for two-photon ionization processes in rare-gas atoms or isoelectronic
ions is presented. Uncoupled ordinary differential equations are obtained for the radial functions
needed to calculate the two-photon transition amplitude. The implications of these equations are dis-
cussed in detail ~ In particular, the role of correlations involving virtually excited electron pairs,
which are known to be essential to the description of single-photon processes, is examined for multi-

photon ionization processes. Additionally, electron scattering interactions between two electron-hole
pairs are introduced into our transition amplitude in the boson approximation since these have been
found important in two-photon ionization of xenon by L'Huillier and Wendin [J. Phys. B 20, L37
(1987)]. Application of our theory is made to two-photon ionization of the 3p subshell of argon
below the one-photon ionization threshold. Our results are compared to previous calculations of
McGuire [Phys. Rev. A 24, 835 (1981)],of Moccia, Rahman, and Rizzo [J. Phys. B 16, 2737 (1983)],
and of Pindzola and Kelly [Phys. Rev. A 11, 1543 (1975)]. Results are presented for both circularly
and linearly polarized photons. Among our findings are, firstly, that the electron scattering interac-
tions, which have not been included in previous calculations for argon, produce a substantial reduc-
tion in the two-photon single-ionization cross section below the one-photon ionization threshold,
which is in agreement with findings of L'Huillier and Wendin for xenon. Secondly, we find that de-
excitation of virtually excited electron pairs by absorption of a photon is important for describing the
interaction of the atom with the photon field, as in the case of single-photon ionization processes, but
that further excitation of virtually excited electron pairs by the photon field has completely negligible
effects, indicating a major simplification of the theory for higher-order absorption processes.

I. INTRODUCTION

Recent experiments on multiphoton ionization (MPI)'
of rare gases and alkaline earth atoms have revealed unex-
pectedly new behavior of multielectron atoms in strong
laser fields. One striking example is the unusually large
number of multiply charged ions produced by MPI of
such atoms, each of which must have absorbed a large
amount of energy, which in some cases is more than 200
eV. Evidence of such large energy absorption in MPI
has also been obtained by means of photoelectron spec-
troscopy; ' in xenon, for example, photoelectrons have
been observed with kinetic energies corresponding to the
absorption of 11 photons. Theory is only beginning to
understand this unexpectedly strong nonlinear response of
multielectron atoms to strong radiation fields.

Experiments clearly indicate that electron correlation
effects play a fundamental role in general in MPI and in
particular in explaining these new results. As a result
there is a renewed interest in theoretical descriptions of
multiphoton absorption processes which go beyond the
independent-particle model and include the treatment of
electron correlations. One approach attempts to formu-
late a theory of MPI of complex atoms in which the in-
teraction with the laser field is treated perturbatively.
This approach may be considered as the natural extension

of the theory of single-photon ionization ' to the multi-
photon case, with its main emphasis the description of
atomic correlation effects rather than laser intensity
effects. The new problem in the calculation of non-
resonant n-photon cross sections is that —in addition to
describing the initial and final states of the atom —n —1

summations over the generally infinite set of intermediate
states have to be performed. " An accurate description of
these virtual intermediate states requires treatment of elec-
tron correlation effects, in particular as these affect electric
dipole matrix elements. The few theoretical calculations
for multiphoton ionization which go beyond the Hartree-
Fock approximation have treated the rare gases' ' and
the negative hydrogen ion. ' ' These calculations are de-
scribed brieAy below.

Other approaches focus on the description of MPI in
the case of very intense laser fields for which a perturba-
tive approach is not appropriate and for which therefore
single-photon ionization is not so reliable a guide.
Rhodes, for example, has postulated a model in which
the outer atomic subshells are driven collectively by the
laser field. At present, however, there is a growing con-
sensus that currently observed multiply charged ion spec-
tra may be understood as produced by sequential ioniza-
tion in which each step may be treated theoretically
within lowest-order perturbation theory (LOFT).
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This most recent work has therefore refocused attention
on the role of electron correlations within LOPT.

In this paper we present a transition-matrix theory for
nonresonant two-photon ionization of rare-gas atoms and
isoelectronic ions within LOP T. From the theoretical
point of view, the rare gases and rare-gas-like negative
ions are the best candidates for developing a unified
theoretical treatment of electron correlation effects on
MPI processes. Firstly, the electron correlation problem
for these atoms and ions is well understood in the case of
single-photon ionization processes. ' This understand-
ing is of great benefit in studying this new process.
Secondly, these atoms' spherically symmetric ground
states and lack of low-lying excited states simplify the
theoretical treatment. Thirdly, the development of ArF
excimer lasers has permitted the experimental measure-
ment of the absolute two-photon ionization coeKcient of
xenon at 193 nm.

Our theory combines the differential equation method
of Dalgarno and Lewis for summing over intermediate
states with a generalization of the transition-matrix ap-
proaches of Chang and Fano ' and of Starace and
Shahabi for treating electron correlations in single-
photon transitions. In single-photon ionization of the
heavier rare gases, virtual excitations of pairs of outer p-
subshell electrons in the initial state to excited d orbitals
are known to have significant effects on the calculated
photoionization cross sections and angular distribu-
tions. ' It remains an open question in multiphoton
ionization processes, however, whether such virtual exci-
tations are also needed to describe the various intermedi-
ate states. On the answer to this question hangs the com-
plexity of the theory required to describe accurately multi-
photon ionization processes. Our transition-matrix theory
presented here has been formulated to enable a straight-
forward answer to this question for two-photon ionization
processes. Our calculations for two-photon ionization of
argon, presented here, indicate such virtual excitations in
intermediate states have negligible effects, thus simplifying
considerably the development of theoretical extensions to
three and more photon ionization processes.

In our transition-matrix theory we consider only the
so-called particle-hole interactions, which are those in-
cluded in the random-phase approximation (RPA) and
which are known to be the most important interactions
for describing single-photon ionization of the rare
gases. ' These particlelike interactions are strongest in
the heavier rare gases and have been included in three al-
ternative theoretical treatments for the heavier rare gases:
The many-body perturbation theory calculation of the
two-photon ionization cross section of argon of Pindzola
and Kelly, ' the approximate RPA calculation of the
two-photon ionization cross sections of neon and argon of
Moccia, Rahman, and Rizzo, ' and the RPA calculation
for the two-photon ionization cross section of xenon of
L'Huillier and Wendin. ' In addition, we have calculated
the effect in argon of certain electron scattering interac-
tions perturbatively (using our transition-matrix results
for the atom-photon interactions) because these have been
found important in xenon' but have not been treated in
previous calculations for argon.

Due to the strength of electron correlations in the
heavier rare gases and because of the existence of alterna-
tive treatments of two-photon ionization of the outer sub-
shell of the rare gases, ' ' ' ' we present our theory ex-
plicitly for an atom or ion having an outer p subshell.
Our approach is, however, applicable with minor
modifications to He (and H ) as well. Electron correla-
tion effects on the two-photon ionization cross section of
He have been treated in the time-dependent Hartree-Fock
approximation by Victor' and by Ritchie' as well as by
L'Huillier et al. ' Two-photon ionization of H has been
treated in the adiabatic hyperspherical approximation by
Fink and Zoller' and using discrete basis-set methods by
Aymar and Crance. '

In Sec. II we present our transition-matrix theory for
two-photon ionization of an atom or ion with an outer p
subshell. Our assumptions and approximations are
specified and our transition-matrix radial equations are
presented explicitly. In Sec. III we discuss the implica-
tions of our transition-matrix equations and compare
them to those for single-photon ionization. ' In Sec. IV
we discuss certain electron scattering interactions which
we have treated perturbatively. In Sec. V we present our
results for the two-photon ionization cross section of the
3p subshell of argon below the one-photon ionization
threshold. In Sec. VI we present some conclusions. Pre-
liminary results of this work have been reported else-
where. ""

II. TRANSITION-MATRIX NIKTHOD

The transition-matrix method was developed by Chang
and Fano specifically to treat electron correlations irn-

portant for photoionization processes at a level equivalent
to that of the random-phase approximation (RPA) or the
time-dependent Hartree-Fock method while at the same
time maintaining a close connection to the more familiar
configuration-interaction picture. Applications have
been made to single photoionization of the outer subshell
of argon, a closed-shell atom having a spherically sym-
metric ground state, as well as to isoelectronic ions and
other rare-gas atoms. A graphical method for evaluating
the matrix elements needed in the transition-matrix
method was developed by Starace and Shahabi. This
graphical method permits a straightforward derivation of
the transition-matrix equations for open-shell atoms of ar-
bitrary symmetry. It uncovered as well a new definition
of the RPA that is not limited to atoms having a spheri-
cally symmetric ground state. Application has been
made to photoionization of atomic chlorine. ' Each of
these earlier works ' describes in detail the analytical
calculations needed to obtain equations for the radial
functions which determine the desired transition ampli-
tudes. In our presentation of a transition-matrix method
for two-photon ionization of a rare-gas atom, we therefore
focus only on the key approximations introduced and the
final radial equations obtained and refer the reader to
these earlier works ' for an exposition of the detailed
calculational procedures involved.
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A. Implicit summation procedure

In a two-photon ionization process the transition ampli-
tude T(cu) for photons of energy co between an initial state
i and a final state f may be written as

~ (f ID lm&(m ID Ii&
CO+ C, ; —C

where c, is the polarization of the photons and where r; is
the radial coordinate of the ith atomic electron (1 &i & X).
Hence, the transition amplitude T(co) may be expressed
as the one-electron integral,

T(co)= I dry f drive, riv5(riv rN—)(rx
I

1
I
rIv)

where the first-order transition matrix is defined by
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Here m is an intermediate atomic state of energy c, and
D is the electric dipole operator. Rather than contend
directly with an infinite summation over the intermediate
states, Dalgarno and Lewis introduced a differential-
equation method for carrying out the summation implicit-
ly. They defined the effective function k(co), where
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i.e., it is the integral over all coordinates but those of the
Nth electron of the outer product of the intermediate and
final states,

I

iI.(co) & (f I, where the latter are expressed in
coordinate-space representation. In the transition-matrix
method an equation for the first-order transition matrix,
(riv I

I
rIv), is obtained by integrating the following com-

mutator equation for the outer product
I
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over
the first N —1 electron coordinates:

(co+E; H)
I

A, (c—o) & =D
I

i & . (3)

Then T(co) is simply given by
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and showed that i(,(co) may be obtained as the solution of
the following inhomogeneous differential equation:

The initial and final states, i and f, are presumed to be
eigenstates of the exact Hamiltonian H with eigenvalues c.;
and cf, where cf ——c;+2~. The main task of any theory
of two-photon ionization is then to specify representations
for the initial, intermediate, and final states, i, A, , and f,
appearing in Eqs. (3) and (4) and to derive solvable equa-
tions for any unknown functions appearing in these repre-
sentations that are needed for the calculation of Eq. (4).

B. First-order transition matrix

Motivation for a transition-matrix approach stems from
the observation that the dipole operator in Eq. (4) is a
one-electron operator, i.e.,

A key feature of the transition-matrix approach is that it
focuses directly on those electron correlations that are im-
portant for calculating the transition amplitude T(co) in
Eq. (4) and ignores other correlations common to A, (co)
and f which cancel in the commutator equation (8).

C. State representations

Those correlations to be considered are restricted by the
forms specified for the initial, intermediate, and final
states, i, A, (co), and f, in Eq. (8). We emphasize the
particle-hole electron correlations known to be important
in single-photon ionization processes. We therefore
represent the initial, intermediate, and final states as fol-
lows:

3

I

i &=
I
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I
3p (LS)i''igt(LS)('S) &,

L,S 1=2

I
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(9b)

(9c)

The ground state
I
i & is thus represented by an ad-

mixture of the normal 3p configuration plus a sum of
doubly excited configurations in which two 3p electrons
are virtually excited to a pair of d or f orbitals. The in-
termediate state

I
A, (co) & is represented by an admixture

of the expected singly excited state, in which one 3p elec-
tron is photoexcited to the itii (lq ——0 or 2) orbital, and a

sum of doubly excited configurations, /dpi (lf ——1,3),
arising from photoexcitation or de-excitation of the dou-
bly excited electron pairs in the ground state: P'dP'd and

pf pf . [Note that we ignore intermediate-state pair exci-
tations such as pf pg~ arising from photoexcitation of
i1ifpf since pf pg cannot be de-excited by the second
photon to a final state having a configuration as in Eq.
(9c).] Our final state is assumed to have only one elec-
tron excited out of the 3p subshell. This final-state
electron's orbital angular momentum lf is I or 3. Due
to angular momentum selection rules for absorption of
two photons haUing the same polarization, the I = I final
state is not allowed.
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D. Two-photon transition amplitude

The desired transition amplitude T(co) is calculated by substituting the states in Eq. (9) in Eq. (4) to obtain
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The reduced angular matrix element in Eq. (10) is defined by
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where the six numbers in braces represent a 3-j symbol, and [a]=—2a +1. The radial dipole matrix element is defined by
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In Eq. (10) we have also defined an effective one-electron correlation function, Pd(r), as
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where ($1 I g& ) is a radial overlap integral, 5(S,S& ) is a &f f
function, and the nine numbers in curly brackets comprise
a 9-j coefficient. Note that pd(r) is dependent on the final
total orbital angular momentum L as is g, although for

simplicity of notation we have not indicated this depen-
dence explicitly.

Examination of Eq. (10) shows that there are two con-
tributions to the desired transition amplitude: a photoex-
citation of the intermediate-state electron described by
Pi (r) to the final-state electron described by g(r), and af
photo de-excitation of an electron described by the
effective intermediate-state function Pd(r) to the 3p sub-
shell, described by the radial function X3 (r). The second
contribution to T (co) arises from the doubly excited
configuration in the intermediate state in Eq. (9b). Note
that only one of these doubly excited electrons is de-

excited; the other becomes the excited electron in the final
state with an amplitude given by the radial overlap in-
tegral in Eq. (12).

E. Equations for one-electron radial functions

Calculation of the desired two-photon transition ampli-
tude in Eq. (10), therefore, requires only that we obtain
the one-electron radial functions il/1 (r), pq~ (r), g(r),'and
X3&(r). We do this by substituting the representations for
the initial, intermediate, and final states given in Eq. (9)
into the equation of state in Eq. (8), integrating over the
first N —1 electron spatial and spin coordinates, keeping
only particle-hole interactions, and equating to zero the
coeScients of certain double-tensor operators as described
in detail in Refs. 28 and 30. The resulting differential
equation for it/~& (r) is'
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The di{ferential equation for Pd(y) is
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In Eqs. (13) and (14) the following reduced matrix ele-
ment resulting from the Coulomb interaction has been
defined
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Our expression in Eq. (10) for the transition amplitude
for two-photon ionization of the outer p subshell of a
rare-gas atom or ion together with Eqs. (13) and (14) for
the two intermediate-state radial functions, gi (y) and
Pd(y), that are required for its evaluation are the main for-
mal results of this paper. We discuss the implications of
these results in Sec. III. Here we indicate how the other
radial functions needed to calculate Eq. (10) and to solve
Eqs. (13) and (14) are obtained.

Firstly, as is the case in single-photon ionization, we as-
sume that the radial functions X„i(y) for the bound nl
electrons are obtained from a Hartree-Fock (HF) calcula-
tion for the 'S ground state of the atom or ion.

Secondly, the final-state radial function g(y) is ob-
tained from an LS-dependent HF calculation in the field
of the unrelaxed ion having an outer p subshell. The ra-
dial equation is similar in form to that for Pi (y) in Eq.
(13) except for the absence of source terms. Unlike the
case of single-photon ionization we find that the final-state
radial function g does not couple to the intermediate-
state correlation function Pd(y).

Lastly, the initial-state correlation functions Pi(1=2, 3)

may be obtained using the multiconfiguration HF code of
Froese Fischer. The use of an average function, P'i, in-
stead of functions dependent on the term level, LS, of the
p core [cf. Eq. (9a)] has been found to be a good approxi-
mation in single-photon ionization studies of rare gases.

III. DISCUSSION

We have shown in this paper how those electron corre-
lations found to be most important in single-photon ion-
ization, ' the particle-hole interactions, may be included
in a calculation of two-photon ionization processes using a
transition-matrix approach. A key feature of our ap-
proach, as shown in the representation of states in Eq. (9),
is the inclusion of excited virtual pairs of electrons in both
initial and intermediate states. The two-photon transition
amplitude in Eq. (10) is found to have two terms, a pho-
toexcitation term, and a photo de-excitation term, as in
the case of single-photon ionization. Unlike the case of
single-photon ionization, the transition-matrix equations
for the radial functions involved are uncoupled. In addi-
tion, there are source terms arising from dipole excitation
of the initial state. We discuss each of these aspects of
our results in turn.

A. Comparison with single-photon transition-matrix equations

Our radial equations (13) and (14) are identical to the
single-photon transition-matrix equations except for,
firstly, the absence of coupling between gi(y) and (tid(y),f
and, secondly, the presence of the source terms arising
from the implicit summation over intermediate states [cf.
Eq. (3)]. The lack of coupling in the two-photon case
arises from the different tensorial properties of the second
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photon s excitation and de-excitation transitions. To un-
derstand the absence of coupling in the two-photon case,
consider how the coupling comes about in the one-photon
case.

In single-photon ionization of argon, for example, the
following direct photoexcitation process,

Ar 3p ('5)+y~Ar+ 3p g('P), (16a)

: Ar+ 3p'P'd('P) .
Coulomb

interaction

(16b)

That is, both (16a) (for lf =2) and (16b) represent p~d
transitions: Equation (16a) describes excitation of a 3p
electron directly to the continuum state represented by the
photoelectron's d-orbital wave function, g 2, whereas)

Eq. (16b) describes the excitation of a 3p electron to some
excited d orbital, represented by gd, followed by a
Coulomb interaction which de-excites the electron in itd
and one of the electrons represented by the correlation
function Pd to the 3p subshell leaving a remaining P~ elec-
tron to go off with the appropriate photon energy. In the
transition matrix method ' this common p ~d transi-
tion in the one-photon ionization case leads to a coupling
between g (r) for lf =2 and Pd(r).

In the two-photon ionization case, however, the direct
photoexcitation from the intermediate state to the final
state is of the form

Ar+ 3p 1(i ('P)+y~Ar+3p g('L)

and the de-excitation process analogous to (16b) is

Ar** 3p PdPi ('P)+y~Ar*** 3p3g~gdgi ('L)

= Ar+ 3p 'Pi ('L ) .
Coulomb

interaction

(17a)

(17b)

has in the case of lf ——2 the same tensorial properties as
the following photo de-excitation process:

Ar** 3p /de'd('5)+y~Ar*** 3p'pdpdpd('P)

a 3p-subshell electron to a state of angular momentum l.
This term stems from the usual 3p configuration of the
argon ground state [cf. the first term of Eq. (9a)]. The
second term on the right of Eq. (13), proportional to
(+3@

~

r
~
Pi )PI ( r ), arises from the virtual doubly excited

states in the argon ground state [cf. the second term of
Eq. (9a)]. In this case the first photon de-excites one of
the doubly excited electrons, described by P'i, to the 3p
subshell with an amplitude proportional to (X3~

~

r
~

~t'i).

The other doubly excited electron, also described by P'i,
then is left to contribute to the amplitude Pi(r). Note
that since gi (r) can only have l =0 or 2 (by dipole selec-
tion rules) and since P'i(r) is assumed to have l values of 2
or 3, it is obvious that only Pd(r) contributes to gd, Pf(r)
plays no role here.

The intermediate-state correlation function P~(r),
defined by Eqs. (9b), (12), and (14), also has two source
terms given on the right of Eq. (14). Both of these source
terms originate with the correlated part of the initial state
in Eq. (9a). The first source term, proportional to
(P'd

~

r
~ g )Pd(r), arises from an electric dipole excitation

of the virtually excited ground-state pair PdP'd to gPd
The second photon will then de-excite P'd back to the 3p
subshell leaving only a single electron in the excited state,

This de-excitation by the second photon is described

by the second term in the two-photon transition ampli-
tude in Eq. (10).

Pd(r) is also populated by the second source term in
Eq. (14), which is proportional to (P&

~ g )P'i (r)r Since.
is assumed to have the values lf =2, 3 and since g

can only have the values 1 or 3, clearly only PfPf contrib-
utes here. In fact this is the only contribution that PfQf
makes in our treatment. This source term describes one
of the Pf electrons overlapping with the final-state wave
function Pf while the other Pj electron is de-excited first
to a d orbital, which contributes in Eq. (14) to Pd(r), and
then to the 3p subshell, as in the second term of the two-
photon transition amplitude in Eq. (10).

Since l~=O or 2 and lf =1 or 3 we see that the l~~lf
transition in Eq. (17a) has different tensorial properties
from the p~d transition in Eq. (17b). For this reason g
is uncoupled from the effective intermediate-state correla-
tion function Pd defined in Eq. (12) and hence g may be

obtained from a HF or close-coupling calculation (the
latter including coupling between the lf ——3 and lf =1
channels).

B. Source terms

The radial functions itti(r) and P~"(r) defined in Eqs.
(13) and (14) arise due to the source terms on the right-
hand sides of these equations. On the left-hand side of
each equation are simply HF or close-coupling radial
differential operators. It is therefore of interest to exam-
ine the nature of each of the source terms on the right-
hand sides of Eqs. (13) and (14).

The first term on the right in Eq. (13), proportional to
p+3p (r), is the usual source term for populating the inter-
mediate excited state iti (r): namely, a dipole transition of

C. Role of virtual doubly excited states

While it is well established that virtual doubly excited
states are essential to a theoretical description of single-
photon ionization processes, ' what role they play in
multiphoton processes is still an open question. Are they
only necessary in describing absorption of the first pho-
ton? Or, must they be considered in every intermediate
state of a multiphoton process? Our formulation is
designed to answer this crucial question.

If the contribution of Pd to the two-photon transition
amplitude [cf. the second term in Eq. (10)] is negligible,
then a theoretical description of two or more photon ion-
ization processes including the important particle-hole
electron correlations will be straightforward. Both of the
electron correlations that are important in single-photon
ionization from the ground state are already included in
Eq. (13) for the function iti(r). Extension of our treat-
ment of two-photon ionization processes to multiphoton
ionization processes involving three or more photons will
then involve merely HF-type iterations of the Dalgarno-
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Lewis differential Eq. (3) once the first intermediate state
is calculated according to Eq. (13).

If, on the other hand, the contribution of Pq to the
two-photon transition amplitude in Eq. (10) is significant,
then this will imply that virtual electron pairs must be in-
cluded theoretically in the intermediate states of a multi-
photon process. Extension of our two-photon treatment,
presented in this paper, to three or more photon processes
would be nontrivial. In particular, the second-order tran-
sition matrix would need to be introduced to describe
the propagation of the virtual electron pairs from one in-
termediate state to another. In short, Eq. (14) would have
to be generalized to a pair equation; one could no longer
get by with a one-electron function such as P~(r) to
represent a pair of virtually excited electrons.

Numerical calculations for two-photon ionization of ar-
gon using the theory presented here are presented below.
These calculations answer the theoretical questions posed
here on the role of virtual pairs of electrons in multipho-
ton ionization.

(a)

(b)

no~0

flp)o/r

(b)
IV. ELECTRON SCATTERING INTERACTIONS

Until very recently, all calculations for two-photon
one-electron ionization processes restricted their treatment
of electron correlations to those in which only one of the
two photons interacts with the target and the other pho-
ton interacts with one of the electrons excited from the
target. Our transition-matrix approach, described above,
also employs this restriction. (Our approach can treat a
more general class of interactions, but the calculation of
interactions between atomic states having several electrons
excited from the target quickly becomes rather complex. )
L'Huillier et al. ' ' approximately treated in addition to
these interactions a set of electron correlations in which
each photon excites an electron from the unexcited atomic
target. The electrons then interact in such a way that one
electron is de-excited back to the core and the other goes
off as the single observable photoelectron. These interac-
tions were found by L'Huillier and Wendin' to reduce
the two-photon single-ionization cross section of atomic
xenon by a large fraction in the region below the single-
photon ionization threshold. In the region above the
single-photon ionization threshold, these interactions were
found to increase the cross sections by an order of magni-
tude.

These interactions are specified exactly (in lowest order)
by the many-body perturbation theory (MBPT) diagrams
shown in Figs. 1(a) and 1(b); a more informal "picture" of
these interactions is provided in Figs. 1(a') and 1(b') for
those who are not conversant with MBPT. Each of the
diagrams in Fig. 1 describes a particular path by which
the following general process occurs:

X+2y~X (nplp ')+e
i.e., the process in which two photons ionize a single elec-
tron from the nplp subshell of atom X. In Figs. 1(a) and
1(a') the photoelectron having kinetic energy e and orbital
angular momentum l that is ionized by the first photon
from the atom's nolo subshell scatters from the residual
ion core. By means of the Coulomb interaction, it excites

FIG. 1. Electron scattering interactions relevant to two-
photon ionization processes. See text for description. Many-
body-perturbation-theory diagrams are shown in (a) and (b).
Corresponding schematic scattering diagrams are shown in (a')
and (b').

a second nolo subshell electron to the state c"l"; as a re-
sult of this interaction, the first electron is scattered into
the c'l' state. The second photon then de-excites the c."l"
electron back to the nolo subshell, leaving the single c'l'
electron to go off.

In Figs. 1(b) and 1(b') on the other hand, each photon
excites an nplp subshell electron (to the states el and
e"l"). These two excited electrons then interact via the
Coulomb interaction in such a way that the c.l electron is
scattered into the state c'l' while the c"l" electron is de-
excited back to the nolo core. An additional diagram that
must be considered, but which is not shown in Fig. 1, is
very similar to that in Fig. 1(b) but differs in that the e"1"
electron is excited before the cl electron, where time in
these diagrams is directed from bottom to top.

It is intuitively clear why the interactions in Fig. 1 turn
out to be important. One knows that the single-photon
electric dipole transition from the outer p subshell of
rare-gas atoms is very strong, particularly above the
single-photon ionization threshold. ' The diagrams in
Fig. 1 introduce this interaction twice, once for each pho-
ton. Roughly speaking, this transition amplitude is
stronger for an nolp electron than for an excited electron
by a factor corresponding to the occupation number of the
nolo subshell; however, potential barrier effects important
for the transition nplp~e(lp+ 1) come into play as well.

Exact evaluation of the interactions in Fig. 1 by the
transition-matrix approach is complex. The doubly excit-
ed intermediate states introduce complicated angular
momentum algebra and summations over coefficients of
fractional parentage. L'Huillier et al. ' ' treat the in-
teractions in Fig. 1 by means of the random-phase ap-
proximation (RPA): Each interaction of a photon with
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the nolo subshell is treated as if it were a transition of the
41p+2 4lp+ 1

type, nplp ( S)+y~nplp El( P), i.e. , a single-
photon ionization process from the atomic ground
configuration, in which the transition amplitude used is
the RPA amplitude.

Because of the significance of the electron scattering in-
teractions, we include their effect on our transition ampli-

tude in the same approximate way as done in the work of
L'Huillier et al. ' ' That is, we use our result for QI (r) in
Eq. (13) to describe the effective intermediate state
[defined in Eqs. (2) and (9b)] resulting from the photon's
interaction with the atom.

In this way, the transition amplitude in Eq. {10) is
modified to

lg 1 1

T(tp)=(lfIIC ' III')[1]' [I ]'
f

16
I

r
I

OI', (~+&3@)) 3 X(lllc Ill~)R (4f Wl, (~+e3p) +3p 4, (~+E3p))
I

—3 '"X(l~llc("Ill)R'(4 Pl', (~+E3p) ql', (E3p —~»~3p) +(~3@ " Pd)(IIIC")II2)[-,']'"
lg

(19)

V. APPLICATION TO TWO-PHOTON IONIZATION
OF THE Ar 3p SUBSHELL

We are concerned with the calculation of the cross sec-
tions for each of the following transitions:

Ar 3p ('S)+2y~Ar+ 3p ( P)Ef('D)

~Ar+ 3p ( P)Ep('D)

~Ar+ 3p'( P)Ep('S) .

(20a)

(20b)

(20c)

We present in turn some numerical details of our calcula-
tions, discussion of our results, and comparisons with re-
sults of other authors.

A. Numerical details

In Eq. (19), the third term in large parentheses describes
the interaction in Figs. 1(a) and 1(a ) while the second
term in large parentheses describes the interaction shown
in Figs. 1(b) and 1(b') as well as the corresponding in-
teraction in which the time ordering of the photons is re-
versed. Also in Eq. (19), radial Slater integrals are indi-
cated by R ', and the energy at which each g is calculat-
ed is indicated in parenthesis [cf. Eq. (13)].

Note that interactions of higher order than shown in
Fig. 1 are included implicitly in our expression for the
transition amplitude in Eq. (19). Due to the second
source term on the right of Eq. (13) above, the effects of
electron pairs virtually excited out of the ground state are
included also in describing the photon-atom interaction.
Such higher-order effects are included also in Refs. 16 and
17, where they are included as part of the "screened in-
teraction" described there.

g(k, r)=
1/2

sin[0(lf, k, r) +5], (21a)
2

~ (lf, k, r)

where

I

form 3d, 4d, . . . , 4f, 5f, . . . . Furthermore, Swanson
and Armstrong have found that in the case of argon
these expansions are so rapidly convergent that only the
leading terms need to be included. We have therefore in-
cluded only the 3d and 4f excited pairs in our represen-
tation for the initial state. We have used the McHF com-
puter program of Froese Fischer to calculate firstly the
Ar 3p ('S) single-configuration ground-state wave func-
tions. These were then used as "frozen" input orbitals to
a multiconfiguration calculation that mixed the 3p
configuration with configurations of the type 3p 3d and
3p 4f . The calculated weights of each of these
configurations are given in Table I. Note that only a sin-
gle 3d orbital wave function and a single 4f orbital wave
function were calculated, i.e., as in Ref. 38, the term
dependence of these orbitals was ignored.

The final-state wave function for the photoelectron in
each of the configurations on the right in Eq. (20) was cal-
culated in the V '(I.S) potential ' for the ion. We em-
ployed the frozen core approximation, i.e., the ionic one-
electron orbitals of the Ar+ 3p ( P) configuration were
the same as those calculated for the Ar 3p ('S) initial
configuration. Orthogonality of the continuum p-electron
wave functions to the bound 2p and 3p wave functions
was assured by calculating both the bound and continuum
orbitals in the same Hermitian potential, as described in
Refs. 42 —44 and as illustrated in detail for photoioniza-
tion of atomic chlorine in Ref. 45. Each of our continu-
um wave functions was energy normalized at large radial
distances:

Our initial state is represented as a superposition of the
frozen core Hartree-Fock (HF) ground-state configuration,
3p ('S), and configurations having pairs of d and f elec-
trons excited out of the ground-state configuration. As
shown by Froese Fischer, such excited pairs of electrons
may be well represented by a diagonal expansion of the

0(lf, k, r ) ~ kr —,' nlf +k ' ln(2kr)—

+ arg1 ( lf + 1 i /k), —

g(lf, k, r) ~ k .

{21b)

{21c)
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TABLE I. Weights of initial-state configurations.

Configuration

Ar 3p ('S)
Ar 3p ('S)3d ('S)
Ar 3p ('D)3d ('S)
Ar 3p ( P)3d ('S)
Ar 3p ('S)4f ('S)
Ar 3p ('D)4f ('S)
Ar 3p ( P)4f ('S)

Weight'

0.9776
0.1101
0.1200
0.1268

—0.0237
—0.0233
—0.0261

'Calculated using the MCHF computer program of Froese
Fischer (cf. Ref. 40).

In Eq. (21), k /2 is the kinetic energy of the photoelec-
tron and 6 is the phase shift with respect to a Coulomb
wave. The phase function H(lf, k, r) and the amplitude
function g(lf, k, r) are calculated at large but finite r using
the procedure of Martins. In our calculations we have
ignored the final-state interchannel coupling between the

f 'D and p 'D channels.
The intermediate-state functions, $1 and Pd [cf. Eq.

(12)], which are needed to calculate the transition ampli-
tudes in Eqs. (10) and (19), were obtained as the solu-
tions of Eqs. (13) and (14). Each of the source terms on
the right in these two equations was calculated using the
one-electron orbital wave functions calculated for the in-
itial and final configurations. Since we have restricted
our calculations to the region below the one-photon ion-
ization threshold, both Pl (r) and Pd(r) satisfy bound-

f
state boundary conditions at large r In solvin. g Eqs. (13)
and (14) we have used the HF value for the 3p-orbital
energy, c3p i.e. , E3p —0.5910 au. , where 1 a u.
27.2108 eV.

+1
+1

's
D
'S
1D

1

9
2

45

0
1

15

cm sec, requires the conversion of the dimensions, I, T,
from a.u. to cgs units:

L T (a.u. )=1.8967 X 10 cm sec . (24)

We present our length form results for the generalized
two-photon cross section for each of the three transitions
in Eq. (20) in the case of linearly polarized photons in

Fight. 2 —4. Our results are shown in four levels of approx-
imation, which we discuss in turn. In the Hartree-Fock

16x10 ~" A 0
BCbc

]/

14—
r

f D

TABLE II. Values for f [cf. Eq. (23)] for linearly polarized
(q =0) and circularly polarized (q = + 1) photons.

Final-state
term level

B. Results and discussion

1. Generalized two-photon cross-section results
for individual channels

D

LLI
CA

In lowest-order perturbation theory the N-photon ion-
ization rate, 8' is given by

W=o-~I~ . (22)

8'JT COrr)=
t
T

~ fq (a.u. ) .
c

(23)

Here ~ is the photon energy, c is the speed of light, T is
the reduced transition-matrix element [cf. Eqs. (10) and
(19)], and fq is a geometrical factor dependent on the po-
larization q of the photons and on the final-state term lev-
el. Table II gives the values of f~ for the cases of interest
in this paper. Conversion of Eq. (23) to the usual units,

Here v~ is a generalized N-photon cross section depen-
dent only on properties of the atomic or molecular target
and on the polarization of the incident light, and I is the
intensity of the laser field. 8' is usually measured in units
of ions/sec, 0.~ in units of cm sec ', and I in units of
photons /(cm sec). For two-photon ionization, the gen-
eralized cross section in atomic units (i.e., e =Pi=I =1)
1s

I I I I I I I

8 9 10 11 12 15 14 15
PHOTON ENERGY (eV)

FIG. 2. Generalized two-photon cross section (length form)
for the transition Ar 3p ('S)+2y~Ar+ 3p'Ef('D) for photon
energies below the single-ionization threshold. The locations of
the Ar 3p 4s('P), Ar 3p'Ss('P), and Ar 3p'3d('P) intermediate-
state resonances are indicated by the vertical lines, which are la-
belled, respectively, by 3, B, and C for the experimental reso-
nance energies and a, b, and c for the Hartree-Fock (HF) reso-
nance energies. Our results are given in four different approxi-
mations, discussed in the text, which are identified as follows:
dash-dot curve, HF results; dash-double-dot curve, HF plus
ground-state correlations (GSC); solid curve, HF plus GSC plus
intermediate-state interchannel coupling (IIC); dashed curve, HF
plus GSC plus IIC plus electron-scattering interactions (ESI).
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FIG. 4. Generalized two-photon cross section (length form)
for the transition Ar 3p ('S)+2y~Ar+ 3p'cp('S) for photon
energies below the single-ionization threshold. Notations are the
same as for Fig. 2.

FIG. 3. Generalized two-photon cross section (length form)
for the transition Ar 3p ('S)+2y~Ar+ 3p'cp('D) for photon
energies below the single-ionization threshold. Notations are the
same as for Fig. 2. Note that the GSC results are not shown

separately as they are nearly the same as the IIC results shown.

(HF) approximation, we calculate the transition matrix
T(co) by including only the first term on the right in Eq.
(10); the function gl is computed using only the first

source term on the right of Eq. (13) and ignoring inter-
channel coupling by requiring l'=l in the sum over l' in
Eq. (13). At the next level of approximation, we include
ground stat-e correlations (GSC) by calculating the transi-
tion matrix T(to) using both terms on the right in Eq.
(10); the functions gi and Pd are obtained as the solu-

tions of Eqs. (13) and (14), respectively, but in Eq. (13) in-
terchannel coupling is ignored by requiring / =I in the
sum over l'. The third level of approximation includes
both ground-state correlations and intermediate-state in-
terchannel coupling (IIC); the transition matrix T(to) is
computed from Eqs. (10), (13), and (14) as they are writ-
ten. Lastly, in the fourth level of approximation, we add
the effect of the electron scattering interactions (ESI),
which are discussed in Sec. IV, by calculating the transi-
tion matrix T(to) from Eqs. (19), (13), and (14).

2. Discussion of eQects of electron correlations

Examination of Figs. 2 —4 shows that in the region be-
tween threshold and the Ar 3p 4s('P) intermediate-state
resonance, all of the approximations which improve upon
the HF approximation lower the generalized cross section.
Ground-state correlations and intermediate-state inter-
channel coupling correlations reduce the generalized cross
section by about 15%%uo. The electron-scattering interac-
tions reduce the cross sections significantly more (e.g., by
approximately a factor of 2 in some cases at certain pho-
ton energies). This large near-threshold reduction in the
cross section due to the electron-scattering interactions is
in agreement with similar findings of L Huillier and Wen-
din' for two-photon ionization of the 5p-subshell of xe-
non.

Our calculations allow some additional general con-
clusions, which are not illustrated in Figs. 2 —4, on the im-
portance of different kinds of ground-state correlations.
We have found that inclusion of l =3 doubly excited
configurations in the initial state [cf. Eq. (9a)], whose
effect enters through the second source term on the right
in Eq. (14), is unnecessary. Similarly, we have found that
inclusion of doubly excited configurations in the inter-
mediate state Icf. Eq. (9b)], whose effect enters through
the function Pd [cf. Eq. (12)], is negligible. Both effects,
which inhuence the cross section through the second term
in the transition matrix T(to) in Eq. (10), change the cross
sections on the order of 2%. This finding implies that
virtual pairs of excited electrons are important only to de-
scribe the interaction of photons with the atom, as in the
case of single-photon ionization processes. The effect of
these virtually excited electrons' being further excited by
the incident photons (as opposed to being de-excited) is
negligible. Thus theoretical treatments of higher-order
multiphoton processes can probably use HF-approx-
imation wave functions for all photoelectron intermediate
states except the first one. The function g~ calculated
from Eq. (13), is required for the first intermediate state
and for all correction terms involving photons interacting
with the atomic or ionic core (as for, e.g. , the electron-
scattering interactions discussed in Sec. IV).



36 TRANSITION-MATRIX THEORY FOR TWO-PHOTON. . . 1715

3. Discussion regarding intermediate-state resonances

Ar 3p ('S)+y~Ar+ 3p ( P)Ed('P)

~Ar+ 3p'( P)es('P) .

(25a)

(25b)

Now without interchannel interactions between the d ('P)

TABLE III. Energies of the lowest three intermediate-state
resonances.

Energy above Ar ground state (eV)

In each of Figs. 2—4 we have indicated the location of
the Ar 3p 4s('P), Ar 3p 5s('P), and Ar 3p 3d('P)
intermediate-state resonances by vertical lines. For each
resonance we have indicated both the experimentally ob-
served photon energy as well as our predicted HF ener-
gy. The energy values are given in Table III. In our cal-
culations, HF energies were used whenever energies were
explicitly required. However, in order to facilitate com-
parison with both experiment and with Ref. 13, we have
used the experimental 3p ionization threshold, 0.579 a.u.
(15.76 eV), rather than the HF one, 0.591 a.u. (16.08 eV),
to compute the generalized cross section [Eq. (23)]. Thus
at any given m in our figures, the kinetic energy we have
used for our final-state wave functions is k /2 =2'
—0.579 a.u.

With one exception, we have not given predictions for
the generalized two-photon cross sections in the vicinity
of the intermediate state 4s('P), Ss('P), and 3d('P) reso-
nances. The reason is that the Dalgarno-Lewis pro-
cedure we use to solve Eqs. (13) and (14) does not con-
verge at energies close to these resonances. Chang and
Poe have shown how to handle this difficulty when one
knows the energies of these resonances, as in the purely
HF calculations they carry out. In our case, however, the
correlations we have included are expected to improve the
HF resonance energies to be closer to the experimental
energies. However, we have chosen not to focus on the
determination of these resonance energies, which is really
a rather different problem. We therefore simply indicate
both the experimental and the HF resonance energies in
our figures and have not tried to give predictions for the
cross sections in these regions. The one exception is the
f('D) channel cross section, for which we have predicted
approximately the cross section in the region of the
intermediate-state resonances (cf. Fig. 5) in order to com-
pare with the work of Ref. 13, as discussed in Sec. V C.

Finally, we mention here one particularly striking effect
of intermediate-state interchannel interactions on the
theoretically predicted resonance structure of the f ( 'D)
channel cross section, shown in Figs. 2 and 5. After ab-
sorption of the first photon by the 3p subshell, there are
two intermediate-state ('P) channels:
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FIG. 5. Generalized two-photon cross section (length form)
for the transition Ar 3p ('S)+2y~Ar+ 3p'Ef('D) for photon
energies below the single-ionization threshold. Our third (IIC)
and fourth (ESI) level approximation results, described in the
caption to Fig. 2, have been shifted to give resonance profiles at
the observed experimental energies, denoted by 3, 8, and C, as
in Fig. 2. Solid curve, shifted IIC results; dashed curve, shifted
ESI results; dot-dash curve, "LGI" results of Pindzola and Kel-
ly (Ref. 13).

and s('P) channels in Eq. (25), the s('P) channel does not
contribute to the f('D) final state in Eq. (20a). Hence, as
shown in Fig. 2, at the HF level as well as in the case
where only ground-state correlations are introduced, the
corresponding theoretical two-photon cross section passes
smoothly through the region of the 4s( 'P) resonance.
Only when such interchannel interactions are introduced
does one see an effect on the calculated two-photon cross
sections, as shown in Figs. 2 and 5. (This effect has been
pointed out also by Pindzola and Kelly. '

)

C. Comparisons with other calculations

There have been two detailed calculations of the two-
photon cross section of the 3p subshell of argon which
treat many of the electron correlation effects considered
here using different theoretical approaches. These are the
many-body perturbation theory (MBPT) calculation of
Pindzola and Kelly' and the approximate random-phase
approximation (RPA) calculation of Moccia, Rahman,
and Rizzo. ' We compare our results with each of these
works as well as with the recent central potential model
calculations of McGuire.

Resonance
configuration

Ar 3p'4s('P)
Ar 3p'5s('P)
Ar 3p'3d('P)

'See Ref. 48.

Experiment'

11.62
14.09
14.15

HF

12.23
14.47
14.55

1. Generalized two-photon cross section
for the f('D) channel

Pindzola and Kelly' have predicted the cross sections
for each of the individual channels in Eq. (20). However,
they treat electron correlations only for the f('D) channel.
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For this reason, we compare our results with theirs in de-
tail only for this channel. In order to make a fair com-
parison of our results with theirs, we have had to take
into account that in Ref. 13 the intermediate-state sum-
mation [which we handle by the Dalgarno-Lewis
differential equation technique (cf. Sec. II A above)] is
carried out directly using the experimental resonance en-
ergies given in Table III. Therefore, we have shifted ap-
proximately the energy position of our calculated reso-
nance profiles for this channel to the experimental reso-
nance energies in Table II using the techniques described
by Chang and Poe. The results for our third and fourth
levels of approximation for the treatment of electron
correlations (cf. Sec. VB 1 above) are compared in Fig. 5

with the "LGI" results of Ref. 13. '

Our third level of approximation (IIC), which treats
ground-state correlations and intermediate-state inter-
channel interactions, is theoretically comparable to the
"LGI" results of Pindzola and Kelly. ' That is, both cal-
culations include the same major types of electron correla-
tion effects. One sees that the predictions by these two
very different methods are essentially identical in the re-
gion below the 4s('P) intermediate-state resonance. Be-
tween the 4s('P) and Ss('P) resonance energies, these two
theoretical predictions differ. One possible explanation
may be the much greater difficulty we had for the 5s('P)
and 3d('P) intermediate-state resonances in shifting our
curves approximately to the experimental resonance ener-
gies that are used in the calculations of Ref. 13.

The electron scattering interactions (ESI), which we
treat in our fourth level of approximation, and which Ref.
13 does not treat, reduces our predicted cross section by
an increasing amount as one approaches the 4s('P) reso-
nance from below. It reduces the cross section as well be-
tween the 4s('P) and Ss('P) resonances. As mentioned
already, these ESI predictions for argon are consistent
with those in Ref. 17 for the Sp subshell of xenon.

2. Total two-photon cross section
for circularly polarized light

McGuire and Moccia et al. ' have not published their
predictions for the individual channels in Eq. (20), but
rather they give the total two-ohoton cross sections that
experimentalists are most likely to measure. We examine
here the predictions for the total two-photon cross section
for circularly polarized photons. From Table II we see
that the p('S) channel in Eq. (20c) does not contribute
and that the p('D) and f('D) cross sections, shown in
Figs. 2 and 3 for linearly polarized light, need only be
multiplied by —, to obtain the corresponding cross sections
for circularly polarized light.

Our IIC and ESI length form results (cf. Sec. VB1
above) are shown together with the length form results of
McGuire, Moccia et al. ,

' and Pindzola and Kelly' ' '

in Fig. 6. The results for Pindzola and Kelly' were ob-
tained by multiplying by 1.5 the sum of their HF results
for the p ('D) channel and their "LGI" results for the
f ('D) channel. Our IIC results are nearly identical to the
resulting predictions of Pindzola and Kelly. ' [Note that
although Pindzola and Kelly' have not treated electron
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correlations for the p('D) channel, as shown by our re-
sults in Fig. 3, the correlation effects for this channel are
much less significant than for the f ('D) channel, which is
in any case much larger. ] The central potential model
predictions of McGuire appear to be close to the approx-
imate RPA predictions of Moccia et al. ' near 9 eV, but
for higher photon energies they are much higher than the
results of all of the other calculations. The predictions of
Moccia et al. ' shown in Fig. 6 were obtained from their
total cross section for linearly polarized light and their
circular to linear cross-section branching ratio. Their re-
sults are considerably above our IIC results and the re-
sults of Pindzola and Kelly' from threshold to the 4s('P)
resonance and they drop below these other results above
the 4s('P) resonance. Possible explanations for these
differences are, firstly, their use of relaxed core wave func-
tions as compared to our use of frozen core wave func-
tions, and secondly, their use of continuum wave func-
tions calculated in a static exchange potential as opposed
to our use of continuum HF wave functions calculated in
an appropriate V '(LS) potential (cf. Sec. VA above).

3. Total ttoo photon cross sec-tion for linearly polarized light

Theoretical predictions for the total two-photon cross
section for linearly polarized light are shown in Fig. 7.
Our predictions in our IIC and ESI approximations (cf.
Sec. V B 1) are simply the sum of the corresponding indi-

0.0 I I I I I I I

8 9 10 ll 12 13 14 15
PHOTON ENERGY (eV)

FIG. 6. Generalized two-photon total cross section (length
form) for circularly polarized photons. Solid curve, present IIC
results; dashed curve, present ESI results; dotted curve, central
potential model results of McGuire (Ref. 34); dot-dash curve,
MBPT results of Pindzola and Kelly (Ref. 13); dash-double-dot
curve, approximate RPA results of Moccia, Rahman, and Rizzo
(Ref. 15). See text for descriptions of our IIC and ESI calcula-
tions (in Sec. VB1) and for descriptions of the results of other
authors (in Sec. VC2).
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VI. CONCLUSIONS

Our application to the 3p subshell of argon of a
transition-matrix-theory approach for two-photon ioniza-
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FIG. 7. Generalized two-photon total cross section (length
form) for linearly polarized photons. Notation is the same as in

Fig. 6.

vidual channel cross sections shown in Figs. 2—4. As be-
fore, our ESI results are significantly below our IIC re-
sults due to the strong effect of electron-scattering interac-
tions. The results of Pindzola and Kelly' shown are ob-
tained as the sum of their HF predictions for the p('D)
and p('S) channels and their "LGI" predictions for the
f('D) channels. Generally, we would expect their results
as obtained in this way to be close to our IIC results, as
in the case of circularly polarized light. The fact that
their results are significantly lower than our IIC results
(and in fact are very close to our ESI results) has been
traced to differences, which are not understood, in our
respective predictions for the p('S) channel cross sections
at the HF level.

Finally, the results of Moccia, Rahman, and Rizzo'
appear to agree with both our ESI results and the results
of Pindzola and Kelly. ' However, when one notes that
the total cross section for circular polarization of Moccia
et al. ' is larger than either one of ours or the one of
Pindzola and Kelly (cf. Fig. 6), one must conclude that
the p('S) cross section of Moccia et al. ' must be smaller
than either one of ours or the one of Pindzola and Kelly
in order to have the total cross sections for linear polar-
ization agree.

We conclude, therefore, that all three calculations differ
significantly in their predictions for the p ( 'S) channel
cross section. These differences are hidden by the ap-
parently fortuitous agreement of three of the cross sec-
tions in Fig. 7 for the total two-photon cross section for
linear polarization.

tion processes allows two main conclusions regarding
electron correlation effects. The first is that the major
correlation effects of virtually excited electron pairs are
the same as those needed to describe the photon-atom in-
teraction in ordinary one-photon ionization processes. In
particular, we find that whenever a photon interacts with
the atom or ion, virtually excited electron pairs must be
included, since their de-excitation in the photoabsorption
process has a significant effect on the transition amplitude.
The further excitation of these pairs to intermediate states,
however, has negligible effects. This finding greatly
simplifies the extension of our theory to higher-order mul-
tiphoton processes.

The second conclusion is that the electron-scattering in-
teractions, described in Sec. IV, reduce the two-photon
cross section substantially below the single-photon ioniza-
tion threshold, in agreement with similar findings for xe-
non of L'Huillier and Wendin. ' In other words, there is
strong competition between two mechanisms of ioniza-
tion: The first is the one in which each of the two pho-
tons acts on the same photoelectron; the second is the one
in which each of the photons excites a diferent photoelec
tron and these two photoelectrons then scatter from one
another in such a way that one is de-excited back to its in-
itial state and the other goes off as the single, observable
photoelectron. It is this latter mechanism, whose impor-
tance was discovered in Ref. 17 for xenon and confirmed
here for argon, which is new.

With regard to the comparison of our results with those
of other authors, we find the following: Firstly, our re-
sults which include the electron-scattering interactions
give generally lower cross sections than those of others.
Secondly, our results without these electron-scattering in-
teractions (but including ground-state correlations and
intermediate-state interchannel coupling) are in excellent
agreement with the MBPT calculation of Pindzola and
Kelly' for the f('D) channel and the total two-photon
cross section for circularly polarized photons. Thirdly,
none of the calculations appear to agree on the p('S)
final-state channel cross section, although this fact is ob-
scured by fortuitous agreement of three of the theoretical
total two-photon cross sections for linearly polarized light.
Experimentalists should be aware that the theoretical pre-
dictions are probably more reliable for the total two-
photon cross section for circularly polarized light, since
the p('S) final state is not populated by circularly polar-
ized photons. Fourthly, central potential model calcula-
tions give a much larger total two-photon cross section for
the 3p subshell of argon than do calculations which either
start with a HF representation or else treat some portion
of electron correlation effects.
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These differences in the p('S) cross section stem, we believe,
from differences in the p('S) final-state radial wave func-
tions, which we describe here for the record. At the HF lev-

el, the only differences in technique between our calculations
and those in Ref. 13 of which we are aware concern the or-
thogonalization of the p('S) wave function to the bound 2p
and 3p wave functions. In our calculations, we carry out
this orthogonalization for both the p('D} and p('S) orbitals
using the techniques of Refs. 42 —44. Pindzola and Kelly use

these same techniques for the p('D) orbitals but use Schmidt
orthogonalization for the p( S) orbitals. Another bit of evi-
dence that our p('S) wave functions and those of Ref. 13
differ is given by Table I of Ref. 13, which lists matrix ele-
ments of z between the 3p orbital and the three types of
final-state orbitals, f('D), p('D), and p('S). We agree exact-
ly on the matrix elements for f('D) and p('D), but our
respective wave functions give different values of the matrix
elements for p('S).


