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The Schwinger multichannel formulation has been applied to study the role of electron correlation
in low-energy e-N, scattering. For the five nonresonant partial-wave channels studied here, 23/,
235, M, *Ag, and 2A,, we find angular correlation to be much more important than radial correla-
tion. Our results for the 23 channel are in agreement with those of Schneider and Collins [Phys.
Rev. A 30, 95 (1984)]. Our calculated total and differential cross sections agree with experiment ex-
cept for the differential cross sections at 1.5 eV. Our results are also compared with those obtained

using model polarization potentials.

I. INTRODUCTION

Correlation or polarization effects play an important
role in low-energy electron-molecule collisions. A num-
ber of theoretical methods have been developed for
describing these effects, including the use of polarization
potentials with an empirical cutoff function.! Onda and
Temkin? and Gibson and Morrison,’ among others, have
employed the polarized orbital method* to construct
ab initio polarization potentials. Padial and Norcross® in-
troduced a correlation-polarization potential where the
short-range correlation effects are approximated by the
electron-gas model. In close-coupling expansions, correla-
tion is described by virtual excitations to energetically
inaccessible electronic states of the target, i.e., closed
channels. This approach is also used in the R-matrix
method,® where correlation is introduced through the in-
clusion of pseudostates inside the R-matrix region.” Simi-
larly, the Schwinger multichannel method (SMC)®~!!
treats correlation by explicitly including closed-channel
functions in the expansion of the (N + 1)-electron wave
function. On the other hand, the optical potential ap-
proach!'?~ 16 incorporates the effect of virtual excitations to
target excited states in a nonlocal, energy-dependent opti-
cal potential for the continuum electron.

Generally, correlation can be grouped into two different
types: radial correlation (or in-out correlation) where the
closed-channel target state is of the same symmetry as the
initial state, and angular correlation where the initial and
closed-channel states are of different symmetry. In partic-
ular, if the closed-channel target state is coupled to the in-
itial state by a dipole-allowed excitation, the angular
correlation term reduces to the standard polarization po-
tential at large electron-target separation. In a recent pa-
per, Schneider and Collins'® applied the optical potential
method to study correlation effects in the *2; and ’II,
channels in low-energy e-N, scattering. They found
different types of correlation to be important in these two
channels. Based on the relation of angular correlations to
the long-range polarization potential, they used the terms
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short-range polarization for radial correlation and long-
range polarization for angular correlation. We choose to
use the terms radial and angular correlations to conform
with the standard terminology in quantum chemistry.
We also use the term correlation instead of polarization to
describe these effects. Polarization provides an appropri-
ate description in a two-step polarization potential calcu-
lation where the distortion of the bound electrons by the
free electron is considered first and then the distorted
molecular charge distribution is used to generate a poten-
tial for the continuum electron. In the SMC method, the
mutual distortion of the free and bound electrons is treat-
ed simultaneously, instead of stepwise, by the closed-
channel configurations in the wave function and correla-
tion is a more suitable term in this case.

In the preceding paper,'' hereafter referred to as I, we
present the results of a study on the ZIIg channel in e-N,
elastic scattering. Consistent with the results of Schneider
and Collins,"”” we found that radial correlation is dom-
inant for this channel. Inclusion of angular correlation
lowers the resonance position well below experiment, indi-
cating a differential correlation effect among bound elec-
trons in the N, and e+ N; systems. In this paper, we
study correlation effects in the other partial-wave channels
important in low-energy e-N, scattering. The present cal-
culation, together with the results from I, provides us
with a set of elastic scattering cross sections and momen-
tum transfer cross sections which can be used in the mod-
eling of reentry flow fields, swarm experiments, and plas-
ma etching experiments. The momentum transfer cross
sections, for this and other systems, will be reported else-
where.!”

The SMC formulation has been reviewed in paper I and
will not be repeated here. Section II gives the computa-
tional details and our results are presented in Sec. III.

II. COMPUTATIONAL PROCEDURES

A SMC calculation involves the determination of the
following quantities: (a) a Gaussian basis to expand the
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(N + 1)-electron wave function, W,*’, (b) an insertion

basis for the separable representation of the free-particle
Green’s function, (c) a set of molecular orbitals in terms
of basis (a), to be used in forming the Slater deter-
minants in the expansion of W{*’, and (d) the closed-
channel configurations to describe correlation. Once
these four quantities are chosen, the scattering amplitude
is determined by the fractional form of the multichannel
Schwinger variational principle.?~!!

The present calculation used Gaussian basis set B de-
scribed in paper I. We chose this basis set because the
calculated polarizability and quadrupole moment are in
good agreement with experiment. The basis set is well
balanced, and not biased toward a particular partial-wave
channel.

Five different insertion basis sets are used in the repre-
sentation of the free-particle Green’s function, depending
on the symmetry of the partial wave. All five insertion
bases include the original Gaussian basis set for ¥§*’, and
supplementary functions are added for all partial-wave
channels except the *A,. They are shown in Table I. As
described in paper I, we checked the quality of the inser-
tion bases by calculating the unitarity of the S matrix us-
ing the a-insertion technique (see Ref. 11) and we found
approximately a 3% deviation from unitarity using the in-
sertion basis sets presented here.

The choice of molecular orbitals and closed-shell
configurations is important because we use a limited set of
closed-channel configurations for W4*:

Vo' =S A D1y dubic)
X

+ 3 cijkajalA(idr - $udic) (1)

i)k

Here A is an antisymmetrization operator. The first
term in Eq. (1) gives the static exchange contribution,
with ¢,¢,, . ..,¢, the target self-consistent-field (SCF)
orbitals, and the set of ¢,’s orthogonalized to the target
orbitals. In our calculation, the full set of ¢, generated
from the Gaussian basis is always used for this term.
Thus, the result is independent of the choice of orbitals.
The second term gives the closed-channel configurations
which describe the mutual distortion of the incoming
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electron and the target. Since we only used a selected
set of closed-channel configurations, the quality of the
calculation depends on a judicious choice of molecular
orbitals and closed-channel configurations. The molecu-
lar orbitals used in the present calculation belong to the
same set of natural orbitals used in I. They were deter-
mined from a bound-state polarization configuration-
interaction'® (POLCI) calculation of the 22; state of
N,~. As discussed in I, such a bound-state calculation
does not provide a proper description of the continuum
electron. Nevertheless, a truncated set of natural orbit-
als, selected according to their occupation numbers, ap-
pears to describe the relaxation of the target in the pres-
ence of the extra electron very efficiently. In using the
same set of natural orbitals from a 22; CI calculation in
the other partial-wave channels, we assume that the
correlating orbitals describing molecular relaxation are
relatively insensitive to the symmetry of the continuum
electron. We tested this idea first on the I, channel
and found very little difference in the cross sections us-
ing natural orbitals calculated with different symmetries.
Thus, the 22; natural orbitals were used in the calcula-
tions of all partial-wave channels.

Considerable effort was required to determine an op-
timal set of closed channel configurations. Table II
presents the hole (¢;), particle (¢;), and scattering (¢;) or-
bitals used to represent the closed channels in the 22;
calculation. The closed-channel configurations for the
other partial waves can be generated by suitable replace-
ment of the scattering orbitals. In the five partial-wave
channels studied here, angular correlation is more impor-
tant than radial. Thus, the physical picture in correlating
these partial-wave channels is the reverse of the case for
the ?Il; channel reported in paper 1. To illustrate the
effect of various correlation terms, Table III shows the
35 25+, and 21, cross sections at selected incident en-
ergies and calculated using angular correlation alone, ra-
dial correlation alone, and angular and radial correlations
combined. The closed-channel configurations used in
these calculations are given in Table II (with suitable
change of scattering orbitals for 2Z;} and 2I1, symmetries)
except for the calculation using radial correlation only.
In that case we expanded the hole space to include the
205 and 20, orbitals. The particle and scattering space

TABLE I. Gaussian basis sets used in the representation of G5’

Basis set

Exponent

234 channel: Basis set for W6+’
plus 15 s functions at midpoint

23+ channel: Basis set for Wit
plus 15 p, functions at midpoint

M1, channel: Basis set for WhH*’
plus 15 p. functions at midpoint

2A, channel: Basis set for W&’
plus 10 dx, functions at midpoint
plus 5 d > and 5 d, functions
at midpoint

2A, channel: Basis set for W§’

4800, 2400, 1200, 600, 480, 240,
120, 60, 30, 15, 8, 4, 2, 1, 0.25

4800, 1200, 600, 300, 120, 60, 30,
15, 8, 4, 2, 1, 0.25, 0.01, 0.001

4800, 1200, 600, 300, 120, 60, 30,
15, 8, 4, 2, 1, 0.25, 0.01, 0.001

dx,: 4800, 1200, 480, 120, 30, 8, 2,
0.25, 0.01, 0.001
d 2, dyz.' 4800, 480, 48, 4.0, 0.25
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TABLE II. Closed-channel configurations used for the S/} channel.

& b
Angular correlation

3o, 3, 4, 50, 3, 4, 5o,
2, 3, 4mux 2, 3, 47,
2, 3, 4my, 2, 3, 4m,,

17,4 4,5,6, 70y, 1,25 > 2, 3, 4, 5m,,
1, 2, 37 3, 40, 1,28, 5 2
1, 2, 384, 2, 3, 4y, '

17, 4, 5, 6, To,, 1, 283"x27y2) 2, 3, 4, 57y,
1, 2, 3my, 3, 40,, 1, 261”)(241‘
1, 2, 36, 2, 3, 41,

20, 4,5, 6, 7o, 3, 4, 50,
1, 2, 3my 2, 3, 47,
1, 2, 3m, 2, 3, 4wy,

20, 3, 40, 3, 4, 50,
2, 374 2, 3, 4wy,
2, 3y, 2, 3, 4m,,

Radial correlation

3o, 5, 60, 4, 5, 60,

1. 2, 3. 4, 5, 60,

1y, 2, 3wy, 4, 5, 60,

were also expanded. All calculations were carried out at
R =2.068 a.u.

Schneider and Collins!® have reported a similar study
of correlation effects in the ZE; partial-wave channel us-
ing the linear-algebraic-optical-potential method. Their
cross sections are also presented in Table III. A com-
parison with their results shows that the difference be-
tween the cross sections obtained using angular correla-
tion alone and combined angular and radial correlations
is smaller in our case. Otherwise, the two sets of calcu-
lations are similar. The numerical differences between
the two are probably due to differences in basis sets and
the choice of the closed-channel space. Using a sem-
iempirical polarization potential with the cutoff parame-

ter chosen to fit the experimentally observed position of
the 2Hg resonance, Morrison and Collins!® obtained a
value of 41.674 a.u. at 0.05 a.u., significantly larger than
the present result of 30.89 a.u. and the value of 26.89
a.u. from Schneider and Collins. The recent calculation
of Gibson et al.?® reported a value of 34.387 a.u. ob-
tained with an ab initio polarization potential deduced
using the polarized orbital method. Their result reflects
a better treatment of short-range angular correlations.
The remaining difference between their result and the
present ab initio value may be due to their use of a non-
penetrating approximation.*

The polarization potential of Padial and Norcross’
differs from the two discussed above in their use of the

TABLE III. Comparison of angular and radial correlation effects in the 22;, 3+, and I,

channels.?

Present result

Schneider and Collins®

(a.u.) (a.u.)
234 cross section at 0.1 Ry
Angular correlation only 31.35 29.59
Radial correlation only 48.64 49.49
Angular + radial correlations 30.89 26.80
23} cross section at 0.2 Ry
Angular correlation only 2.25
Radial correlation only 4.83
Angular + radial correlations 2.18
I cross section at 0.2 Ry
Angular correlation only 0.41
Radial correlation only 2.69
Angular + radial correlations 0.35

2Calculated at R =2.068 bohr.
YReference 14.
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electron-gas model to describe short-range correlation. A
comparison with their cross sections reveals some interest-
ing features of that potential. Our 22; cross section ap-
pears to agree well with their data using ESECOP (exact
static-exchange correlation polarization), an indication
that the short-range angular correlation is probably treat-
ed correctly in their potential. On the other hand, they
reported a position (2.17 eV) and width (0.47 eV) for the
Zﬂg resonance, which are in much better agreement with
our calculation excluding angular correlation (2.29 and
0.41 eV, respectively). This discrepancy in their descrip-
tion of correlation effects may well be due to their use of
the electron-gas approximation.

The present calculations support the conclusion drawn
by Schneider and Collins'® that the lack of & functions in
the basis set of Burke, Noble, and Salvini?? is the source
of the large 22; cross sections from their R-matrix cal-
culations. While the R-matrix method should, in princi-
ple, provide the same type of ab initio treatment of elec-
tron correlation as presented here, their ZEgJ' Cross sec-
tion, 55.78 a.u., is significantly larger than the ab initio
values in Table III. The importance of & functions is il-
lustrated in a calculation using Gaussian basis set A of
paper I, i.e., without the 6X2#yz functions but keeping
one of the 8,, functions. This calculation gave a value
of 39.79 a.u. for the 22; cross section, significantly
larger than the value of 30.89 a.u. when 8 > functions
are included. In view of this result, it should not be
surprising that the 22; cross section of Burke et al. is
significantly larger than other ab initio values.

For the 2IIg channel, we found a significant
differential correlation effect. The same question may be
raised for the five partial-wave channels studied here. Is
a POLCI treatment of correlation, which neglects the
differential correlation effect between the bound elec-
trons in N, and e +N,, sufficient to provide reliable
cross sections for these channels? A comparison be-
tween the calculated cross sections with experiment in
Sec. III indicates that the differential correlation effect is
probably small in these channels.

III. RESULTS AND DISCUSSIONS

The integral cross section for the *3;, 2.5, 2I1,, *A,,
and %A, partial-wave channels are tabulated in Table IV.
All calculations include both angular and radial correla-
tions and were carried out at R =2.068 a.u. Static-
exchange calculations at other R values showed a very
weak R dependence in these cross sections, at least at
this level of approximation. For example, the 3.
static-exchange cross section decreases by 8% as R in-
creases from 1.7 to 2.3 a.u. In view of this result, the
fixed nuclei cross sections for the five partial-wave chan-
nels reported here should be directly comparable with
experiment. The same situation holds for the non-
resonant contributions in the ZHg channel. On the other
hand, an appropriate treatment of the nuclear dynamics
is required for the resonant /=2, m =1 partial wave in
that channel. This was done by first deducing the width
and shift functions from the electronic calculation re-
ported in paper I and then doing the nuclear dynamics
calculation with the Feshbach projection operator for-
malism. The procedure we used has been described pre-
viously.?! Theoretical total cross sections are deter-
mined using this hybrid form of fixed-nuclei cross sec-
tions for the nonresonant channels and nuclear dynamics
calculations for the resonant channels from v=0 to
v=0-8. Figure 1 compares the theoretical total cross-
section curve with the experimental data of Kennerly,?
Hoffman et al.,?* and Baldwin.?* In the nonresonant re-
gion, the theoretical cross sections are about 10% lower
than Kennerly’s experiment. The deviation from the
other two sets of data is slightly larger. The discrepancy
may be due to limitation of the basis set, the use of a
noniterative procedure in the solution of the SMC equa-
tions, neglect of correlation among the bound electrons,
and the use of the fixed-nuclei approximation in the non-
resonant channels. In view of these considerations, the
agreement is reasonable. In the resonant region, the
present calculation gives the correct peak positions but
the calculated peak heights are somewhat higher than
experiment for the first three peaks and become lower

TABLE IV. Integral cross sections for the *Z;, 23, 2I1,, 2A,, and %A, channels.®

Incident energy (Ry) 23 35 11, 2N, 2A,
0.05 27.73 0.55 0.44 0.01
0.08 29.79 0.80 0.28 0.03
0.10 30.89 0.98 0.17 0.06
0.1102 31.18 1.07 0.13 0.08 0.0001
0.12 31.32 1.16 0.10 0.10 0.0002
0.13 31.37 1.26 0.09 0.13 0.0003
0.1396 31.37 1.38 0.09 0.15 0.0004
0.1543 31.30 1.54 0.11 0.19 0.0006
0.1764 31.14 1.83 0.20 0.26 0.0012
0.20 30.86 2.18 0.35 0.33 0.0020
0.22 30.51 2.46 0.53 0.40 0.0030
0.25 29.65 2.93 0.86 0.51 0.0050
0.30 27.42 3.72 1.57 0.71 0.0097
0.40 23.05 5.18 3.05 1.17 0.025

“In atomic units at R =2.068 a.u.
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FIG. 1. Total electron scattering cross section for N,.

(——), present results; (O), experimental data of Kennerly,
Ref. 22; (X), experimental data of Hoffman er al., Ref. 23;
(+ ), experimental data of Baldwin, Ref. 24.

than experiment at the high-energy end.

The same hybrid treatment using a fixed-nuclei ap-
proximation and nuclear dynamics where appropriate
was also used to determine electronically elastic
differential cross sections. In this case we replace the
I =2, m =1 fixed-nuclei partial-wave amplitude with the
corresponding value from a vibrationally elastic nuclear
dynamics calculation. Figures 2—8 compare the theoret-
ical differential cross sections calculated at incident ener-
gies between 5.0 to 1.5 eV with the experimental mea-
surements of Shyn and Carignan,25 and Srivastava
et al.*® The incident energies can be separated into three
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FIG. 2. e-N, elastic differential scattering cross section at
5.0 eV. (——), present results, (O), experimental data of Shyn

and Carignan, Ref. 25, and (Q), experimental data of Srivastava
et al., Ref. 26.
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FIG. 3. e-N, elastic differential scattering cross section at
4.0 eV. ( ), present results, and (O), experimental data of
Shyn and Carignan, Ref. 25.

regions. At 5.0, 4.0, and 3.0 eV (Figs. 2—-4), the incident
energy is above the ZHg resonance. Theory reproduces
the shape of the experimental curves rather well except
that the experimental curves show stronger backscatter-
ing than our calculations. Also, at 4.0 and 5.0 eV, we
find a small dip in the forward scattering. This feature
is absent in the measurement at 4.0 eV, and the 5.0-eV
data show a slight forward dip, but significantly weaker
than theory. The calculations at 2.4, 2.1, and 1.9 eV
(Figs. 5-7) typify the resonance region. The typical
double minimum of the 7, partial wave is readily discer-
nible in both theory and experiment. The largest devia-

5
3.0eV

DIFFERENTIAL CROSS SECTION (10716 cm?2/sr)

T T T

0 30 60 20 120 150 180
SCATTERING ANGLE (deg)

FIG. 4. e-N, elastic differential scattering cross section at
3.0 eV. (——), present results, and (O), experimental data of
Shyn and Carignan, Ref. 25.
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24eV
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FIG. 5. e-N, elastic differential scattering cross section at
2.4 eV. ( ), present results, and (O), experimental data of
Shyn and Carignan, Ref. 25.

tion between theory and experiment is in the region be-
tween the two minima, with the theoretical curve rising
more sharply than experiment. At 1.5 eV (Fig. 8) the
calculated and experimental results are somewhat
different, particularly in the forward and backward
directions. Note, however, in the experimentally most
accessible region between 30° and 120°, the agreement is
satisfactory.?®
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