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Theory of inelastic scattering of a particle in the near-adiabatic limit
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A semiclassical theory for inelastic scattering of a particle by a two-state system in the near-
adiabatic limit is developed. The exponentially small transition amplitude is calculated. The theory
is an extension of Pokrovskii and Khalatnikov's theory for above-barrier reflection (Zh. Eksp. Teor.
Fiz. 40, 1713 (1961) [Sov. Phys. —JETP 13, 1207 (1961)]). The analysis involves studies of the
WKB solutions in the complex coordinate plane along certain contours. The region of validity of the
theory is established. Our result has the same form as the Landau-Zener-Stueckelberg formula; how-
ever, our theory is applicable to more general systems. Numerical comparisons with exact solutions
are presented; the differences between our results and exact solutions become negligible as the adia-
batic limit is approached.

I. INTRODUCTION

The inelastic scattering problem of a particle by dynam-
ical systems with internal degrees of freedom is an impor-
tant problem in many fields of physics and chemistry. In
various contexts the internal degrees of freedom could
represent phonons in solid, vibrational states of a mole-
cule, atomic energy levels, ionization states, etc. Consider
the scattering of a particle by a harmonic oscillator, for
example. In the adiabatic limit in which a heavy particle
is incident with low velocity, the oscillator wave function
follows the interaction potential due to the particle adia-
batically and returns to its initial state as the particle
leaves the interaction region; even if inelastic scattering is
energetically possible, the inelastic transition amplitude
approaches zero in the adiabatic limit. For a small but
finite incident velocity the transition amplitude is ex-
ponentially small as a function of a parameter which
characterizes the deviation from the adiabatic limit. Near
the adiabatic limit a WKB expansion in the appropriate
small parameter is natural; such an expansion yields a
vanishing transition amplitude in any finite order. Many
approaches' have been developed in the past to deal with
the problem with various degrees of success. However,
questions of the validity and generality of those ap-
proaches have remained unresolved. In this work we
have developed a rigorous treatment of this problem to
obtain exponentially small transition amplitudes for gen-
eral interaction potentials between a particle and a system
with two internal states.

Stueckelberg was the first to apply a Zwaan type of
analysis of the WKB solutions to the problem of the in-
elastic transition. His theory was based on the so-called
Stokes constant method. There have been a number of
studies' of the justification of Stueckelberg's method. In
the classical trajectory theory, for example, the Stokes
constant has been derived and the ambiguity in its phase
has been eliminated. However, this has been justified only
for two special situations: where the trajectories nearly
cross, ' and where the trajectories have nearly the same
turning points. We are not aware of any other methods

which convincingly justify the Stokes constant method in
more general cases.

The present theory is an extension of Pokrovskii and
Khalatnikov's theory for above-barrier reflection. Our
result agrees with the Landau-Zener-Stueckelberg formu-
la. However, our theory is not limited to the above-
mentioned special situations and its region of validity is
clearly established. This region includes cases which pre-
viously were believed to be outside the range of applicabil-
ity of Stueckelberg's method.

In Sec. II we review the work of Pokrovskii and
Khalatnikov and in Sec. III we review the two-state mod-
el and the adiabatic basis. Our procedure for obtaining
the transition amplitude is presented in Sec. IV and nu-
merical results are described in Sec. V. Mathematical
proofs of the propositions used in Sec. IV are given in the
Appendix.

II. ABOVE-BARRIER REFLECTION

&2M
(2)

has a physical solution corresponding to incidence from
the left, which satisfies the following asymptotic condi-
tions:

(e' e"+Re' e"), x~ —oo
V'q

%(x)~ '

e' ~, X~+ oov'-
q

(4)

where

Consider a one-dimensional potential scattering prob-
lem with a localized repulsion potential V(x). If
E ) V(x) everywhere on the real axis, the Schrodinger
equation

d 4(x) +a [E—V(x) ]%'(x)=0,
X
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q = lim +E —V(x),X~+ oo

R is the reflection coefficient, and T is the transmission
coe%cient. In the semiclassical limit a~~, T tends to
one and R is exponentially small in e. On the real axis
the WKB solutions of Eq. (1) are

c)

X4 +—(x,z ) = exp +ia q (x)dx
&q (x)

where

(6)

q (x)=&E —V(x),

and z is an arbitrary but fixed lower bound which may be
real or complex. These solutions have an error of order
e '. In the following we shall use the symbol = to
denote an approximate equality which becomes exact in
the limit u~ oo. According to the boundary condition
(3), the physical solution can be expressed in terms of the
WKB solution,

qi(x) = A +4+ (x,z ), x ~ oo

where 3+ is a constant. As we trace the solution along
the real axis beginning at + oo, Eq. (8) remains valid uni-
formly all the way to —oo. But 4+ does not include the
exponentially small reflected wave. In fact, R cannot be
obtained even if we expand the solution to higher orders
in powers of n '. Pokrovskii and Khalatnikov
developed a method for obtaining the exponentially small
R to leading order. We now review their work briefly.

Throughout this work we shall use z to denote a com-
plex coordinate and use x to denote a real coordinate. We
assume that all potentials can be analytically continued
into those regions of the z plane which are relevant to our
discussions. In order to obtain R we must construct a
solution of the Schrodinger equation along a path in the z
plane where, even as a~~, the ratio of reflected to in-
cident wave functions [see Eq. (3)] remains finite and does
not tend exponentially to zero. This path passes through
a point z„defined by q (z, ) =0, where the WKB solution
breaks down. However, similar to the familar case of a
classical turning point on the real axis, near z, an exact
solution of the Schrodinger equation can be obtained and
joined to WKB solutions. If there are more than one z„
the one closest to the real axis must be chosen.

Consider now the transition point z, . The appropriate
lines passing through z, are given by the condition

Im f '
q (z')dz' =0 .

They are the so-called anti-Stokes lines, on which the
functions 4+(z,z, ) and qi (z,z, ) have the same magni-
tude, regardless of the value of o.'[see Eq. (6)]. There are
altogether three anti-Stokes lines, two of which are
shown schematically in Fig. 1. L] and L2 are useful to
us because they form a contour connecting + ~ and

Asymptotically they run parallel to the x axis at a
distance which we denote by y]. The procedure of Ref.
5 for obtaining R is as follows.

Starting with the right-going wave (4) at + &n on L~,
we find the wave function in the asymptotic region,

FIG. 1. Typical topology of the complex transition point z,
and anti-Stokes lines Ll and L2 are shown for above barrier
reflection problem. Ll extends to + oo and becomes parallel to
the real axis at a distance y& asymptotically. Lz behaves similar-
ly as it extends to —oo.

gl(z) eia9zT
(10)

where z =x +iy]. Except in a small neighborhood of ra-
dius 0 (u ~

) near z„4(z) can be represented on L i by

e(z) = A + 4'+(z, z, ),
where

A+ =Te (12)

and

=+ I "
[q (z') —q]dz' —qz,

Zc
(13)

The solution is then matched to the exact solutions of the
Schrodinger equation in the vicinity of z„which are the
familar Airy functions. The Airy solutions are valid in a
neighborhood Q, of radius d, around z, (see Fig. 1),
where d, is the range in which the term [E —V(z)] can
be approximated by the linear term of its Taylor expan-
sion at z„' d, is evidently independent of a. The rnatch-
ing region lies between

~

z —z,
~

=d, and

~

z —z,
~

-a . a must be large enough so that the
matching region exists. Similarly, except for a small
neighborhood of z„ the physical solution on L2 can be
represented by a linear combination of the two WKB
solutions, Eq. (6),

P(z) = [B+4+(z,z, )+B 4 (z,z, )], (14)

where B+ and B are determined by a similar matching
procedure to the Airy solution in the vicinity of z, . B+
and B have the same magnitude. On L2, as x~ —oo,
4'(z), Eq. (14) takes the form

ia(g++g ) (16)

R = —ie2 (17)

Notice that
~

T
~

=1, while R is exponentially small.

qy(z) (B+e —iavl eiaqz+B —eiazl e
—iafz)

v'-
q

When the appropriate values of A+, B+, and B are
used and comparison with Eqs. (3) and (4) is made one
finds
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Let us note in passing that 8 cannot be obtained by us-
ing a contour consisting of L ~ and L 2, corresponding to
L] and L2, but passing through z,*, the complex conju-
gate of z, . The reason is that whereas on L] and L2, the
asymptotic magnitudes of the incident, transmitted, and
rejected waves are all equal, on L

& and L2 the magni-
tude of the rejected wave is exponentially smaller than
those of the incident and transmitted waves by a factor of

—4aqy Ie '. Such an exponentially small term is "missed" by
our procedure.

III. ADIABATIC BASIS

cos8(z) sin8(z)
—sin8(z) cos8(z) (23)

where

Vp(z)
tan28(z) =

Vi (z)
(24)

ly varying external field and the two-state system follows
nearly adiabatically; in the infinite a limit there is no in-
elastic transition. In the extreme adiabatic limit (a = oo )

the Hamiltonian is trivially diagonalized at each z by the
transformation'

We consider the one-dimensional scattering of a particle
of mass M by a two-state system with energy splitting Ace.

We denote the internal states by IO&, the lower-energy
state, and

I
1&, the higher-energy one. They form the so-

called diabatic basis for a two-dimensional vector space.
The Hamiltonian of the total system can be written as

with

Ace
Vi(z) = Vi(z)—

2
(25)

Equation (25) does not determine 8(z) uniquely; we make
the choice of 8(z) to tend to 0 as x~ oo so that

Hp ———

Hs= — oz ~

2

H =Hp+H, +H;„t,
2 2

2 + Vp(x), (19)

(20)

and

1 Vi(z)
cos8(z) = 1—

&2 [V'(z)+ V'(z)]' '

1 Vi (z)
sin8(z) = — 1+

&2 [V)(z)+ V2(z)]'

I /2

1/2

(27)

H;„,= V, (x)o, + V, (x)o„, (21)

where Hp is the Hamiltonian of the particle, H, is the
Hamiltonian of the two-state system, H;„t is the interac-
tion Hamiltonian, and o„,o., are Pauli matrices. The
two-component Schrodinger equation in this basis is

+o(z) +o(z)

+/(z) +/(z) (22)

We assume that Vp(x), V~(x), and V2(x) all tend to
zero as x~ao and that the particle comes in from the
right. For a fixed energy, the velocity of the incoming
particle decreases as the mass is increased. In the limit of
large a the particle acts on the two-state system as a slow-

I

Ioz& Io&

I
l,z &

(2&)

constitute the so-called adiabatic basis. In this basis the
Hamiltonian takes the form

We shall assume that there is a pair of points z, and z,*
where Vi+ V2 vanishes. If there are more than one pair
of z, we choose the one which is closest to the real axis.
( Vf+ V2)' is defined to be positive along the real axis
with one cut going from z, to i oo and the other from z,'
to —i oo. This choice of branch cuts insures that the mix-
ing angle 8(z) is a continuous function of x on the real
axis. For z real, U is unitary. The new basis vectors

H, =UHU (29)

g2 d 2 P2
(8') + Up(z)

2M dz2

, d
2M M dz

, d
2M M dz

g2 d 2 P2
(8') + U) (z)

2M dz2 2M

(30)

where UO, U~ are the adiabatic potentials,

Uo(z)= Vp(z) —[V~(z) + V2(z) ]'

and

(31)

where

d&p(z) 0 p(z)

@)(z) +((z) (34)

Ui(z)—= Vp(z)+[Vi(z) + Vq(z) ]'

The Schrodinger equation becomes

(32) It is easy to see that

+p(z)
I

o &+ ei(z)
I
1&—:@o«)

I
0» &+@i(z)

I
l,z & . (35)

Np(z) 4&p(z)

a @ (z)
= 4) (z) (33)

If the off-diagonal terms of H, are neglected, +0 and
N~ are uncoupled. The WKB solutions (a~ oo ) for these
uncoupled equations have the usual form,
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and

4p(z, z' ')= exp +ia f qp(z)dz
&qp(z)

(36) A; q,+i(x)~ e, x~ oo

e+, (z,z"')= exp +ia f qi(z)dz
V'q ) (z)

where

(37)

q;(z) = V E —U;(z), (38)

E —U;(x;)=0, i =0, 1 . (39)

If we treat these solutions at the classical turning points
x;, we will obtain a reAection coefficient of magnitude 1

and a vanishing inelastic transition amplitude. This
remains true in all higher-order WKB approximations.
We need to go into the complex z plane and follow the
solutions along appropriate contours. We need to consid-
er the singular points: xp, x i, and z, (see Fig. 2). Note
that at z, the function 0(z) diverges and hence the off-
diagonal terms of H, also diverge, which signals the
failure of the adiabatic solutions. In Fig. 2 we show the
anti-Stokes lines defined as follows:

and z" is an arbitrary but fixed lower bound. The branch
of q;(z) is defined so that q;(x) =V'

~

E —V;(x)
~

for
x &x; and q;(x)=iV ~E —V(x)

~

for x &x;, where x; is
the classical turning point defined by

~0, x~—(x} (44)

(a)

Zi

where q;=q;(x~oo). In the adiabatic limit AP =0 and

~
Ail

~

is l. In the near-adiabatic limit, A+i cannot be
determined from the usual treatment of the WKB solu-
tions to all orders whereas A+p can be determined to
leading order, since its magnitude is —1. We have seen
in Sec. III that at the complex transition point z, the
adiabatic solutions break down. We shall obtain the
transition from one state to the other by a careful treat-
ment of the Schrodinger equation near z„we need to ob-
tain the exact solutions near z, in order to connect the
WKB solutions on L& and L2. One might hope to ob-
tain the exponentially small amplitude following a pro-
cedure similar to that described in Sec. II; however, the
geometry of L& and L2 are very different for the two

Li,Lp. lm f '
[qp(z) —qi(z)]dz =0,

~C

L3.Im qi(z)dz =0,
xi

and

(40)

(41)

L4.Im f qp(z)dz =0 . (42)
Xo

L 3 and L 4 are just the anti-Stokes lines for ordinary po-
tential scattering problems with classical turning points at
x ~ and xp. L ~ and L 2 are the lines on which
+g(z, z, }[+p(z,z, )] have the same magnitude as
@+i(z,z, }[@i(z,z, }]. The topology of Fig. 2 depends on
the potentials and the energy. Since U& & Up, x~ & xp.
Both xp and xi shift to the right as the energy is de-
creased, whereas z, does not depend on the energy. In
most previous discussions of Stueckelberg's theory, only
the cases where Re(z, )»xp, xi are discussed. We will
see that this restriction is not necessary. The general
features of L i and L2 are (1) L i extends to infinity and
becomes parallel to the real axis at a distance y~ for
x~oo, and (2) L2 intercepts the real axis at a point x
which can easily be shown to be always less than x].
Both y~ and x depend on the energy for given potentials.

IV. INELASTIC TRANSITION AMPLITUDE

Consider the physical solution of the Schrodinger
equation (22) along the real axis with the following
asymptotic conditions:

I

—2

0'p(x)~ (e ' + Ail e ' ), x~oo
V'qp

~0, x~ —oo (43)

FIG. 2. Transition points xo, xi, x, z, and anti-Stokes lines
Li, L2, L3 L4 are shown for the curve-noncrossing case in Sec.
V: (a) for E = 10 and (b) for E = 1.
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Proposition I. Consider the Schrodinger equation (33) on
the real axis. Under conditions detailed in the Appendix,
the physical solution, which vanishes at —~ and has an
incoming wave in channel 0, has the following com-
ponents:

dip
Np(x) =

dx

—1//2

Ai[ —a gp(x)], everywhere (47)

cases. In the case of above-barrier reAection L2 extends
to —ao where WKB solutions become the exact solu-
tions and yield the exponentially small reAection ampli-
tude. In the present case L2 goes down to the real axis
where the potentials do not vanish and hence the exact
solutions are not known. A different strategy is needed
in making use of the solutions on L i and L2.

It is helpful to think of the physical solution as a linear
combination of two-component Jost functions (JF). A JF
is a (nonphysical) solution of the Schrodinger equation
which asymptotically has only one incoming or one out-
going wave in one channel. The exact physical solution
corresponding to the asymptotic conditions (42) and (43)
can be written as

%'p(x) =4p '(x) ~ A g '0p + '(x) ~ A+) 4'p'+ '(x), (45)

4, (x)=%', '(x)+ Af 4, +'(x)+ 3+ + '+'(x), (46)

where 4I~—'(x) is the component in channel i of the JF
with unit incoming ( —) or outgoing (+ ) amplitude in
channel j. Our objective is to determine the coefficient

which, by Eq. (44), is the transition amplitude. The
procedure is as follows.

(1) We first obtain 3 p+, whose magnitude is —1, by or-
dinary WKB techniques, applied entirely within channel
0. (Ordinary reflection by a barrier. )

(2) Next we note that as x~ —oo each of the JF com-
ponents in Eqs. (45) and (46) grows exponentially like 0&+~,

Eq. (37), which is the most rapidly growing exponential.
We shall choose 3+i so that the total coefficient of 4+~

vanishes.
(3) To accomplish step (2), for Eq. (46), we need to

know the coefficient of N+~, for x~ —~, of each of the
JF components %P '(x), +P+'(x), and O'I~'+'(x). The
first two coefficients are exponentially small and need to
be carefully calculated on appropriate contours (see
below). The last coefficient is of order 1 and can be easily
obtained by ordinary WKB techniques, applied entirely to
channel 1.

(4) Since this procedure determines A+~ uniquely, it is
not surprising that, in fact, it also makes the leading ex-
ponentially growing term of Eq. (45) equal to zero.

We shall need a number of propositions which are
proved in the Appendix and which have been verified in
our numerical calculations.

and q; is given by Eq. (38). The branch of g; in Eq. (49)
is defined so that g';(z) = [—U'(x;)]'/ (z —x; ) in the vicin-
ity of x;. Proposition 1 established the validity of the or-
dinary WKB solution.

Proposition 2. Consider a circle 0, of radius d, around
z, . We denote the intersection of 6, with L ] and L2 by
z, and z2, respectively (see Fig. 2). Assume that
V& V&+ V2V2 does not vanish at z, . Then for sufficiently
small d, the general solutions of the Schrodinger equa-
tion (22) in Q, are given by

4 (z)=e ' [a„Ai( —a 'C g)~b Bi( —a C' '()]
~e ' [a Ai( —a C g)

+g Bi( a2/3( 2/3g)]

to the leading order in g, where

g=z —z, ,

q, =QE —Vp(z, ),
[ (

P-2 ~ 1/2 )) ]1/2
C=

26'c

(50)

(51)

(52)

(53)

and ap and b+ are arbitrary constants.

Propositions 3 and 4 give the WKB solutions on LI
and L2 which are needed for finding %p +'(z).

Proposition 3. Consider the anti-Stokes line L]. Let z]
denote a point on L~ at a fixed distance from z, and let
L i denote L], excluding the segment from z, to z]. Un-
der conditions detailed in the Appendix there is a solution
of the following form:

C&p(z) 4&p (Z, Z )

&bi(z) =0,
&Pp(z)

(54)

(55)

for z on L] .

Proposition 4. Consider the anti-Stokes line L2. Let zq
denote a point on L2 at a fixed distance from z, and let

denote L2, excluding the segment from z, to zq. Un-
der conditions detailed in the Appendix, there is a solu-
tion of the following form:

@p(z)= @+p (z, z, },
N)(z) =N+)(z, z, ),

(56)

Proposition 2 gives the exact solutions in the vicinity of
zc '

4)(x) —0, x(xp )

a' 4)(x)=0, x &xp,

where

—,'[g';(x)] = f q;dx,

(48)

(49)

for z on L2.
On L 2, &Pp (z,z, ) and N~ (z,z, ) have the same magni-

tude. Therefore their coefficients can be determined accu-
rately. To the left of the point x, N+~(x, z, ) becomes ex-
ponentially larger than Np+(x, z, ), since the real part of the
exponent of the former is larger than that of the latter for
x (X.

We now proceed to find the leading exponentially
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growing parts (for x ~—ao ) of the JF components.
Consider first the JF component q/0 +'(z) in Eq. (45). As
x ~+ ao, q(p +'(z) on L, is an outgoing wave in channel
0,

This yields, on L2,
+ '(z ) = A ' + '4+ (z, z, ) cose(z)

—2 Ip+ '4+((z, z, ) sin9(z), (68)

qp(0+)(z) e'"", x
V'q,

(58) (p+ ) (o+ )A1, ——eAp, ' (69)

where z =x +iyi. According to proposition 3, the con-
tinuation of this function on L1 is given by e= lim i cot8(z) . (70)

where a=+1 and for any specific potentials is given by

(I(' +'(z)= A' +'e+(z, z, ) COSO(z), (59)

A (P+ )
—lag

o,z, (60)

where 40+(z, z, ) is the WKB approximation, Eq. (36), of
the component of the exact solution along the adiabatic
basis vector

~

O, z );

To be definite we choose a= +1 for the following calcula-
tions. From Proposition 4, Eq. (68) is valid on the whole
L2 down to the real axis. (See Fig. 2.) On the real axis,
to the left of the point x, the JF component is dominated
by N+)(x, z, ).

Therefore, on the real axis, we have

c — qp qp dz qoz
~C

(61)

and cos8(z) is given by Eq. (26). The approximation is
valid on L1, from + oo up to a point a 1, where

~
a( —z,

~

=O(a ).
We now match this WKB solution (59) to the appropri-

ate linear combination of Airy functions, Eq. (50), at a
point m1 at which both the WKB solutions and the Airy
solutions become exact in the limit e~ oo. By taking, for
example,

~

m( —z,
~

-a ', we see that
~
m( —z,

~

/
~
z( —z,

~

-a', validating the WKB solutions, and

~
m( —z,

~

/
~

z( —z,
~

-a ', validating the Airy solu-
tions. At m1 we can use the asymptotic form of the Airy
functions, since the argument,

~

a C (m( —z, ) ~, is
0( 1/3)

where

and

e(0+)(x)= ~(0+)e+(x x )1,xi

(p+ ) a+ l a'g —I a/O
A1 ——e e

2);= f [q;(x) —q;]dx —q;x;,

'g+ l'I/' = qo Z dZ — q1 Z dz

4'0(+'(x)~ e ', x~+ oo
V'q,

= —4p+'(x) sin8(x), x &x

(71)

(72)

(73)

(74)

(75)

(76)

Ai( —w)—,sin —,w +—1 1

77 w 4

Bi( —w) — —,cos —,w
1 1 2 3/2 7T

77 W

(62)

(63)

It is easy to see that y is positive, hence A'1 +, ' is ex-

ponentially small. The 0 component of the JF, q/(0 '(x),
needed in Eq. (45) can be obtained simply by taking the
complex conjugate of (I(0 + '(x),

where 2'/3 & arg(w—) & 2m. /3. Accordingly, inside Q, ,
the JF component is given by

1/3~ 1/3 ) 1/2
q((0+)( )

in/4 ( '& 3/ D g (0+) ' qc&

u'q,

y [Ai( (2 / C2/ g) i Bi( ~ /3C /3g)]

qi(00- '(x) e
' '", x

&qp

= —4p '(x) sinO(x), x &x

where

ep-)(x) = ~ p.—,) e+(x,x, ),

(77)

(78)

(79)

where C is given by Eq. (53) and
(64) (p ) . a&

—i ay+i ago
,

——ie e (80)

D-= V1

[( y2+ I/2 )~]1/2
(65)

In the same way we match the Airy-type solution (64) in-
side 0„ to the appropriate WKB solution on L2, where
the asymptotic forms of Airy functions can be found us-
ing the following identities: e", +)(x) e'"'", x

V'q(
(81)

Finally we require, for Eq. (45), %p'+', the 0 com-
ponent of the JF corresponding to channel 1 outgoing.
In the adiabatic basis this JF is, for our purpose, obtain-
able everywhere on the real axis by ordinary WKB turn-
ing point methods,

Ai(e '
w) =e '"

—,
' Ai(w)+ —Bi(w) (66) (82)

Bi(e ' w) =e '
[ ,'i Ai(w)+ —,'Bi—(w)] . (67) where
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—l a'g l

,
——e (83) Here z1 is given by the condition

and

e"+'(x)
e"+'(x)

=0, everywhere . (84)

The reason is that for this JF a single component,
@~~'+'(x), is dominant everywhere on the x axis; this is not
the case for the JF's (0+ ) and (0—), for which @p

+—~(x)
is dominant for x &x, while @P (x) is dominant for
x &x. The required component 4p~'+~(x) in the diabatic
basis is given by

1 d 1 =1,a dz q;(z) —q,
(94)

which is the analog of the condition signaling the break-
down of the standard WKB approximation,

1 d 1 =1'
a dz q(z)

(95)

and d, is the distance from z, over which the following
expansion is valid:

Vp'+ '(x) = —4'&'+ '(x) sinH(x), everywhere . (85)
qp(z) = [E —Vp(z)+ [ V) (z) + V2(z) ]'

]
' '

We are now ready to determine the required
coefficient 2+1 from the condition that the coefficient of
the dominant exponential, for x ~—co, in Eq. (45) van-
ishes. Substituting Eqs. (72), (78), and (85) into Eq. (45)
gives

=q, +C(z —z, )'~ (96)

where q, and C are defined in Eqs. (52) and (53). Com-
bining (93) and (94) gives

W" '+W+W[0 '+a+~ "+'=0
1,xl 0 1,xl 1 1,xl (86) ad,'

i
C ))1 . (97)

A+( = —2 sin(ag)e re (88)

Incidently, we can verify that the coefficient of 4&+, (x,x, )

in Eq. (46), for x &x, also vanishes as it should if A+, is
given by Eq. (88).

Following the standard definition of the S matrix,

For a wave incident in channel 0 with unit amplitude,

Af = ie '"'—. (87)

Substituting in Eq. (86) for Ap+, A P, ', A P+', and A t'+, ',

we obtain, on solving for 3+1,

Since a = &2M /A it is evident that for any given poten-
tials and given incident energy, the condition (97) will al-

ways be satisfied for sufficiently large M.
The left-hand side of Eq. (97) is the dimensionless large

parameter which characterizes the deviation from the adi-
abatic limit. [Let us remark that condition (97) is not
necessarily equivalent to the intuitively suggestive cri-
terion that the exponent ay', in Eq. (92), be »1.]

V. COMPARISON WITH NUMERICAL RESULTS

%p(x)~ (e ' —Sppe ' ), x~+ ~
V'q.

(89)
We present comparisons between our results and exact

numerical solutions. We choose exponential potentials,

4)(x)~—

we find that

S01 iaq l xe, x~+~
V'q,

(90)
Vp(z) = upe

Vi(z)=use
2

(98)

(99)

~ 21a'gp
S00 le

aIld

Sp~ =2sin(ag)e re ia(pp+ pl )

(92)

i
z

&

—z~ ((d~ (93)

[If e is chosen to be —1, the right-hand side of Eq. (92)
would change sign. ]

Equation (92) has the same form as the Landau-Zener-
Stueckelberg formula in the near-adiabatic limit. Howev-
er, whereas the earlier derivation was limited to the case
where z, is near the real axis (almost crossing adiabats on
the real axis) and well to the right of the classical turning
points x0 and x1, our derivation is not limited by these re-
strictions.

We shall now indicate the conditions under which our
near-adiabatic approximation is valid. It requires the ex-
istence of admissible matching points m1 on Lj and m2
on L2 (see Fig. 2). It is easy to see that if m~ exists so
does m2. The existence of m1 requires that

V2(z) = u2e (100)

where the u; are the strengths of V;(z). Varying u s we
can study both curve-crossing and curve-noncrossing
cases. We shall set Ace = 1.

(1) Curve noncrossing. In this case we choose
u0 ——1.02, u1 ——0.02, u2 ——0.2. Two energies E =1,10 are
studied for difterent values of o.. The two cases have very
different topology of z„x0, x1 and anti-Stokes lines as
shown in Figs. 2(a) and 2(b). Although the diabatic po-
tentials Vp(x)+ V~(x) cross at x = —3.2, this point is far
to the left of the classical turning points. In the region
where the transition takes place the adiabatic potentials
are almost parallel to each other. In Fig. 3 the absolute
values of 4p~ +'(x) and NP+'(x) for E =10 are Plotted for
different values of o;. For large a, channel 1 is seen to
dominate for x &x. Numerical results for the S matrix
are listed in Table I. The differences between semiclassi-
cal and exact solutions diminish in the limit of large o. for
both energies.

(2) Curve crossing. In this case we choose up=1. 2,
u1 ——0.5, uq ——0.2. The diabatic potentials cross at x =0.
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(a) (b)

+
Oe

O
+

0 I

—2
0 I

—2.5 -2.0

(c)

+
O

0 I

—2.5 —2.0

FIG. 3. Absolute values of No +'(x) and N& +'(x) for the case of Fig. 2(a) are shown for several values of a: (a) for a=1, (b) for
a=5, and (c) for a= 10.

~
No +'(x)

~

is represented by the solid line and
~
4I + (x)

~
by the dashed line. The vertical dot-dashed

line marks the position of x. Note that for large a,
~
4I +'(x)

~

becomes greater than
)

N~o +'(x)
~

as x moves to the left of x.

TABLE I. The numerical results of exact and semiclassical solutions for the S matrix are shown. The first number in

parentheses is the real part of the matrix element, the second number is the imaginary part. The semiclassical results are calculated
from Eqs. (91) and (92). Note that the differences between them decrease as a is increased.

10

Case I

5

10

5

10
20

Case II
a

Exact

(0.532, 0.808)
(0.552, —0.834)
( —0.924, 0.383)

(0.564, —0.825)
( —0.734, 0.678)
( —0.993, 0.115)

Exact

Semiclassical

(0.488, 0.873)
(0.557, —0.831)
( —0.925, 0.380)

(0.343, —0.939)
( —0.644, 0.765)
( —0.985, 0.171)

Semiclassical

Exact

(O.O72, —O.243)
(0.308. 0.103)x 10
( —0.166, —0.132)X 10

(0.454, —0.017)X 10
( —0.328, 0.022) x 10-'
( —0.608, 0.080) x 10

Exact

Sot

Sot

Semiclassical

(0.130, —0.323)
(0.260, 0.092) x 10
( —0.157, —0.127) K 10

(0.574, —0.019)x 10
( —0.345, 0.022) x 10
( —0.613, 0.080) x 10

Semiclassical

0.7

1.5

10
20
30
10
20
30

(0.999, —0.038)
( —0.079, —0.997)
( —0.993, 0.119)
(0.979, —0.126)
( —0.874, —0.402)
(0.430, 0.887)

(0.999, —0.038)
( —0.079, —0.997)
( —0.993, 0.118)
(0.739, —0.674)
( —0.996, —0.091)
(0.604, 0.797)

(0.207, 0.042) X 10
(0.258, 0.114)x 10-'
(Q l43 0 ]04)x 1Q—

( —0.103, —0.120)
(0.045, —0.269}
(0.144, —0.085)

(0.165, 0.035)x 10
(0.227, 0.102)x 10
(0.126, 0.093)x 10

( —0.258, —0.305)
(0.053, —0.311)
(0.147, —0.087)
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Two energies, E =0.7, 1.5, are studied. For E =1.5, the
topology of z„xo, x] and anti-Stokes lines is similar to
Fig. 2(a) and for E =0.7, it is similar to Fig. 2(b). Results
of the S matrix are also included in Table I. The
differences between semiclassical and exact solutions also
diminish in the limit of large e for both energies.

VI. CONCLUSION

APPENDIX

In the following propositions we make the same as-
sumptions about the potentials as in the text. The proofs
of propositions 1, 3, and 4 are analogous to Jeffreys's
proof' for the ordinary potential scattering problem. For
convenience we shall use X to denote a bounded constant
independent of o.. The value and the dimensionality of N
may be different at different places and are irrelevant to
our discussions.

We have presented a rigorous treatment of the semiclas-
sical theory for obtaining exponentially small inelastic
transition amplitudes. The region of validity of our
theory is established. Our result, Eq. (92), has the same
form as the Landau-Zener-Stueckelberg formula in the
near-adiabatic limit. However, our theory is more general
and is applicable to a wide range of systems.

Fp(x)= f"
I foo(x')

I

Proposition 1. Consider the Schrodinger equation (33)
on the real axis. We assume that for a given energy E
each adiabatic potential U;, i =0, 1, has only one classi-
cal turning point, x;, and that U (x; ) (0, which will nor-
mally be the case. If the following functions are bound-
ed,
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+ fo((x')
l X

qp(x')

gp(x ')

F((x)= f
g'((x')

+ f(p(x')
p X

q ((x')
g((x')

and if the following quantities can be bounded by a'

(101)

(102)

F, f '— d q, (x')h (x')
+

[$0(x ')g((x ')]' [q()(x')+q, (x')]
dx', (i,j ) =(0, 1),(1,0), (103)

dip
Np(x) =

dx

where x,—=x;+Na /, g; is given by Eq. (49), fJ, and h

are given by Eqs. (109)—(112), then the physical solution,
which vanishes at —~ and has an incoming wave in
channel 0, has the following form:

—1/2

Ai[ —a $0(x)], everywhere (104)

I

where
r

h(;)=

(gimel

)l/2
(109)

(110)

N((x)
0, x (xo

(I)p(x)

a' C( (x)=0, x )x
Proof. Defining a new set of variables

X;(g;(x))= dg,
dx

N;(x), i =0, 1

the Schrodinger equation (33) can be written as

d d
2&0+a'go)t'0=f00(go)&0+f0((40%(+h (ko) dd$2 0

(105)

(106)

(107)

fp(($0) =, , (6)"g(—0'g'),
(gs gl )3/2

f(0(kl) =, , 3/2 ( —0"g()+&'gp')
(g&gl )3/2

(112)

In Eqs. (107) and (108) X; are functions of g;. The
correspondence between $0 and g( is one to one. If g( is
negligible, Eq. (107) involves only channel 0. The solu-
tion of Xp is given by Eq. (104). To show that p( is
indeed negligible we transform Eq. (108) into an integral
equation. ' We need to construct the Green's function.
The general solutions of the homogeneous equation,

2X(+a g(&(=f»(g()&(+f(0(g()+0 —h (g() &0
dg( 1

(108)

y(0)+ 2g y(0) ()

are Airy functions,

(113)
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Xp'($1)=a1 Ai( —a / g1)+b1 Bi( —a g1), (114)

2

g2
G1($1,$1)+a $1G;(g1,g1)=5((1—g1),

has the following form:

(115)

where a~ and b~ are arbitrary constants. The required
Green's function which satisfies the differential equation,

=[i Ai( —a g1)

+Bi( —a'"g, )]P1(g, ), (116)

where G1~0 as g1~ —oo and, as f1~+ oo, G1 is an
outgoing wave in channel 1 for fixed g1. Solving for G1,
we obtain

G1($1,$1)=—
2 3

Ai( —a (1)[iAi( —a g1)+Bi(—a / g1)],

Ai( —a / (1)[iAi( —a g1)+Bi(—a g1)], (117)

The integral equation for the required solutions is

X1($1)= f dg161(41,41) f11X1+f1oXo—h Xp
oo d J

(118)

X'1 '(g1 ) = 2/3 f d (1K (g1,g1) f1p —h
Q +co d

X Ai( —a2/'gp), (122)

where the homogeneous term is chosen to be 0. (We have
omitted some arguments of the functions to shorten the
notation. ) The first interation of Eq. (118) is obtained by
substituting X1 with 0 and Xp with Ai( —a gp),

where

K+(g;,g;)=Bi( —a g;) Ai( —a g;),
K (g;,g;) =Ai( —a g;) Bi( —a g;) .

(123)

(124)

X1($1)= f +
d(1G1((1,$1) f1p —h Ai( —a gp) .

oo df1

Since Ai( —a /g1) is bounded everywhere and
Ai( —a / g1) is exponentially smaller than Ai( —a /

gp)
for x & xo, we have

(119)

The right-hand side of Eq. (119}can be written as a sum
of three terms,

X'1"(x)
0, x &xo

Ai[ —a / gp(x)]

a'/ X('1(x)=0 x &x

(125)

(126)
X'1"(g1)=i

2 3
Ai( —a g1)

r

X f dg1Ai( —a g1} f1o—h
—QO dg1

XAi( —a / go), (120)

Both Xp' and X'1 ' satisfy equations similar to (125) and
(126). We shall give the bound for the second term of
Xi

X p'(g1) —= — f d(1K+h Ai( —a gp}; (127)a'" —- dg1

X'12'(g1)=- „,f' dg1K+(g1, &1) flp
df1

XAi( —a / gp), (121)

the bound for other terms in g'~ ' and 7'~ ' can be obtained
similarly. Consider first the region x &xo. In order to
utilize the asymptotic form of Ai( —a go } we discuss
two cases, x &xo and xo &x &xo, separately.

For x &xo, using the asymptotic forms of Airy func-
tions, we have

Xp'=, s
', exp a f '

~ q1
~

dx" f" dx'qp(x')h(x') exp —a f '
~ q1 ~

dx" + f '
~
qp ~dx"

4 1/s(
g )

1/4
oo X X

where

h(x) = h (x)

[g, (x)g (x)]'/

The integral in Eq. (128) can be written as

qp(x')h (x') Xof dx' . . . exp —a f ~q1~dx+ f ~qo~dxr

(128)

(129)
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Performing an integration by parts in this form, we obtain

qph(x) Xp
exp —a

I qo I

dx'
a7~6[g, (x)]'~4 [qp(x)+q ) (x)]

1 qph

a ~ [g, (x) ]'~4 — dx' qp+ q ~
f Iqi I«"+ f Iqo I«"—f '

Iql
X X X

(&30)

I
X P'

I
& —Ai[ —a' 'go(x)], x &xoa (131)

For xp (x (xp the asymptotic forms of Airy functions
are not valid. However, since both Ai and Bi are bound-
ed, we can estimate the magnitude of the integral easily.
In this region the integrand can be bounded as follows:

1 + N
, , IK+I& —, (132)

and

Since we have assumed that there is only one classical
turning point for each adiabatic potential, the function
f"'

I q& I

dx" + f„"o
I qp I

dx" is monotonically increasing
as x moves from xp to —oo. Hence the exponential term
in the integral of Eq. (130) is bounded by

Xo
exp —a qp dx"

X

From this and the assumption about F2+, it is not
difficult to see that

d4 d3 d2
D+p(z) =

4 +f3(z)
3 +fq(z) zdz dz dz

+f~ (z) +fp(z) +p(z)
d
dz

=0

where

V23= —2
V2

fz =2(E —Vp)+a
V2' V2

'
+2

V2
+

V2

V2
fi = —2a Vo+ V'i+ (E —Vp —Vi)

V2

fp a[(E———Vp) V( —Vp]

(136)

(137)

(138)

(139)

d
Aj( a g )

1

(133)
2( Vz) —Vp Vz+a' —( Vp'+ V'i')+

V2
(E —Vp —Vi )

Since the integration region is only of O(a ), the in-
tegral is only O(a '). Therefore we conclude that

V2+2 ( Vo+ V'I )
2

(140)

X ',"(x)
=0, x (xp ~

4o(x)
(134)

Pulling out a fast oscillating part of Op,

+p(z) =e ' X(g), (141)
For x & xp, P '~

' can be analyzed for regions
xp (x (x&, x ~ (x (x+], and x &x+] by a similar treat-
ment. We obtain a' X I '(x)=0.

Proposition 2. Consider a circle 0, of radius d,
around z, . Assume that V] V&+ V2V2 does not vanish at
z, then for sufficiently small d, and sufficiently large a,
the general solutions of the Schrodinger equation (23) in
0, is

the solutions of X(g) include two slowly varying solutions
(for sufficiently small g I

) and two fast-oscillating solu-
tions; we will find the former. The equation for 7 reads

d4 d3 d2
~ +g3(z) 3 +gq(z) zdz4 dz3 dz2

d+g(z) +gp(z) X(z) =0, (142)dz

4p(z) =e ' [a+ Ai(a C g)+b Bi+(a C g)]

'
[ Ai( ' 'C' 'g)+b B (

' 'C'"g)],
(135)

to the leading order in g, where g, q„and C are given by
Eqs. (51)—(53), and a+ and b+ are arbitrary constants.

Proof. Eliminating %~(z) from the Schrodinger equa-
tion we obtain the fourth-order differential equation for
eo(z),

where

g3(z) = —4iaq, ,

gz(z) =2a (E —Vo —3q, ),
g&(z)=4a iq, (E —Vo —q, )

I

—2a Vo+ VI +(E —Vo —V& —3q, )
V2

(143)

(144)

(145)
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gp(z) a [q —2q (E —Vp )+ (E Vo )' —( V1 + V2 )]

V2
+2a'iq, V1+ Vo+(& —Vo —V1 —q. )

V2
J

(146)

not pass through singularities of the potentials. (2) The
mappings g;(z)= I; q;(z)dz, i =0, 1, are one to one. "
(3) Im(g;) increases monotonically as z moves to the
right on L&. ' If the following functions can be bounded
by X,

Linearizing the potentials at z, and changing variable
from z to g we obtain

Po(z) = f" ( If~«) I + If»(» I
)

I qo(z)dz
I

Z

F1(z)= f (
I
f11(z)

I +
I f1o(z)

I
)

I
q1(z)dz

I

Z

(159)

(160)
d4

+aS3 +a S2 +(a S1+a'T1()

+ (a' S()+a Top) X(g) =0, (147)

q ;(z)h (z)
F2—(z) =

z dz qp(z)+q1(z)
Idz I, i =0, 1

(161)
where

S3 ———4iq, ,

S2 ———4q, ,

b)a2 2 Q2
$'~ = —2a ~

—2ap+2 +4qc
b2

'
b2

(148)

(149)

(150)

@1(z) =0,
4p(x)

where Np+(z, z, ) is defined in Eq. (36).

(163)

where fi and h are given by Eqs. (167)—(170), then, for z
on L ], there is a solution of the fol1owing form:

4p(z) =411 (z,z, ),

T] ———4iq, a p,
2qc

SQ = i [—b 1 a 2 b2 ( a 1 +—a p )]
b2

Tp ———2(a2b2+a1b1),

with

a; = V (z, ),
b1, 2 —V1,2(z )

(151)

(152)

(153)

(154)

(155)

Proof. Defining a new set of variables
1/2

d
X;(g;(x))=

dx
4;(x), i =0, 1

the Schrodinger equation (33) can be written as

d,Xo+a'Xo =fop(go)Xo+ fo1(go)X1+h (go)d$2 0

(164)

(165)
Making a scale transformation

31 =a2/3g, (156)
d

df1,X1+a» =f11($1)X1+f1o($1)Xo—& ($1) Xo
df1

and assuming that
I
d "X/dq"

I
are of the same order as

I
X I, Eq. (147) can be reduced to the leading order in a,

d'X 1 d'7 dg+C TIE+ S3 +T] —Spg —0 .
dg S2a' dq dg

(157)

For g) O(a '
) the last term is negligible, and the solu-

tions are the Airy functions. For g&0(a '/3)

term is not smaller than the second term, however, all
terms are small; the correction to the Airy functions van-
ishes in the large-o, limit. Hence the slowly varying solu-
tions are

where

i1 (;)=
(g&g~ )1/2

fo1(go)=, , (8"g—9'g ),
(g~g~ )3/2

f1o(41)=, , ( —~)"go+ 6'go') .
(g&g~ )3/2

i =0, 1

(166)

(167)

(168)

(170)

X(g)= Ai( 'C 'g)+b Bi( 'C 'g) (158)

where a+ and b+ are arbitrary constants. This shows
that the scaling, Eq. (156), is indeed a correct one. Equa-
tions (141) and (158) give one set of solutions. Pulling out
another fast-oscillating factor e ' [cf. Eq. (141)] we
can obtain the other set of solutions in Eq. (135).

The correspondence between variables go and g', is one
to one. Similar to the proof of proposition 1, we trans-
form (165) and (166) into coupled integral equations,

Xo(go)=Xo (go)+ f dg'oK (go g'o)

foo(go)Xo(go)+ fo1(go)X1($1)
Proposl. tion 3. Consider the anti-Stokes line L&. Let

z] denote a point at a fixed distance from z, and let L
&

denote L&, excluding the segment from z, to z&. We as-
sume the following conditions to be true. (1) 1.

1 does
+h (go) X1($1)

d p

(171)
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X)(g) )=Xp'(g) )+ f dg)& (g), g) )

X f))(g))X((g))+f)o(g))Xp(k)

Gf—h (g) ) X)(g) )

where 70 ' and 7I ' are solutions of the homogeneous
equations,

where
h (z)q()(z)

qp(z) —q) (z)

h (z)qp(z)

qp(z)+ q) (z)

Bj ———

B2 ——

(184)

(185)

(186)

h(z')qp(z'); [g, (, ) g,(, ))B3 —— dz' 1 p

dz' qo(z') —q)(z')

Xo '(gp) =a()e '+ b()e

XP'(g))=a)e' '+b)e

and E is the kernel,

(173)

(174)

z d h (z')qp(z')
B4 —— dz'

dz' q()(z')+q, (z')

&&~I [gl(z )+gp(z'')] —[gp{z)+pl(z)] IXe (187)
7T

(
ia(s; —t;) —(a(g; —t;))

a (175)

Choosing the lower bounds of the integrals to be g;,
where z(g,".

) = Oe +iy), and choosing

i a{(P—gl )From the definition of L ),
I

e ' '
I

is 1. Therefore
B~, B2, and B3 are bounded for z on L ~ . From condition
3 about L ~ we see that the real part of the exponent of B4
is always less than O. Thus B4 is also bounded. There-
fore we have

(O) iagp
Xp

Y)' ——0

(176)

(177)

X", )(z) =0.
@o(z)

(188)

the integral equations become

Xo(go)=e '+ f „dgoKa fooXo+ foiX(+h X)
gp dip

(178)

(179)

The first iteration of Eqs. (178) and (179) gives

Xo(4)=e' + f dgoK fooe'
gp

(180)

X)(g))= f dg)E f)p —h e
r(

(181)

dX)(g))= dg)& f))X)+f)()X() hXp—
kP 6

The proof of proposition 4 is similar to what we have
just shown. %e only give the statement.

Proposition 4. Consider the anti-Stokes lines L2. Let z2
denote a point at a fixed distance from z, and let L2
denote L2, excluding the segment from z, to z2. %e as-
sume the following conditions to be true. (1) Li does not
pass through singularities of the potentials. (2) The map-
pings g;(z) = f; q;(z)dz, i =0, 1, are one to one. (3)
Im(g;) increases monotonically as z moves down to x on

If the following functions can be bounded by cV,

Fo(z)= f; ( Ifoo(z)
I
+ Ifo)(z) I )

I
qo(z)dz

I

F)(z) = J (
I
f))(z)

I
+

I
f)p(z)

I
)

I
q)(z)dz

I

Equation (180) includes only one channel, which is simi-
lar to the ordinary potential scattering problem; the in-
tegral is negligible. ' %e will only show the bound for
the second term of (181),

q ;(z')h (z')
F2—(z) =

2 dz' qp(z')+q) (z') Idz'I, i =0, 1

(191)

X,"(g))=—f dg I(: h e
&(" dg')

(182)

Performing an integration by part [which is similar to the
step from Eq. (128) to Eq. (130)], we obtain

@p(z) =(I&p+(z, z, ),
(I&)(z) =4&+)(z,z, ),

(192)

where f), and h are given by Eqs. (167)—(170), then, for z
on L 2, there is a solution of the following form:

X') '= —e (B)+B2+Bi+B4), (183) where 4&o+(z, z, ) and @+)(z,z, ) are defined in Eqs. (36) and
(37), respectively.

'For a review on the subject, see B. C. Eu, Semiclassical Theories
of Molecular Scattering (Springer-Verlag, Berlin, 1984); E. E.
Nikitin and S. Ya. Umanskii, Theory of Slow Atomic Collisions
(Springer-Verlag, Berlin, 1984).
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i'The g defined here are different from those used in proposition
1.

~~This condition is not restrictive at all; it is satisfied for all nu-
merical examples presented in Sec. V. A weaker condition is
sufficient: there exists a path from z to oo along which Im(g;)
increases monotonically. (Such a path need not be I.&. )

'3This is also true for our numerical examples. A weaker condi-
tion is su%cient: there exists a path from z, to z along which
Im(g; ) increases monotonically.


